Integers¶
This document describes the Open Dylan implementation of arithmetic functions, especially integer arithmetic. It describes a number of extensions to the Dylan language, which are available from the Dylan library. It also describes a generic arithmetic facility that, through the use of other libraries, allows you to extend arithmetic to special number types, such as “big” (64-bit) integers.
Throughout this document, arguments are instances of the class specified
by the argument name (ignoring any numeric suffixes), unless otherwise
noted. Thus, the arguments integer, integer1, and integer2 would
all be instances of the class <integer>
.
The goals of the extensions to the Dylan language described in this document are as follows:
Provide arithmetic operations that are closed over small integers.
This allows type inference to propagate small integer declarations more widely, because there is no possibility of automatic coercion into some more general format.
Make the arithmetic operations that are closed over small integers easily accessible to programmers.
Allow the Dylan library to be described in such a way that only small integers are present by default, moving support for infinite precision integer arithmetic to the Big-Integers library, which must be explicitly used.
Support infinite precision integer arithmetic through the Big-Integers library.
Note
Using that library in another library does not have a negative effect on the correctness or performance of other libraries in the same application that do not use it.
Maintain compatibility with the DRM specification.
In particular, the extensions support the production of efficient code for programs written to be portable with respect to the DRM specification. Use of implementation-specific types or operations in order to get reasonable efficiency is not required. This precludes relegating the
<integer>
class and limited-<integer> types to inefficient implementations.Note
When there are several distinct interfaces with the same name but in different modules, the notation interface # module is used in this document to remove ambiguity.
Specify that the class
<integer>
has a finite, implementation-dependent range, bounded by the constants$minimum-integer
and$maximum-integer
.The representation for integers must be at least 28 bits, including the sign. That is, the minimum conforming value for
$maximum-integer
is2 ^ 27 - 1
and the maximum conforming value for$minimum-integer
is-2 ^ 27
.Note
Rationale: Restricting
<integer>
in this way allows the programmer to stay in the efficient range without requiring exact knowledge of what that range might be. The full generality of extended precision integers is provided by the Big-Integers library, for programmers who actually need that functionality.Define the type
<machine-number>
to be the type union of<float>
and<integer>
.
The Dylan library provides implementations of the generic functions and
functions described in this document. If the result of one of these
operations is specified to be an instance of <integer>
and the
mathematically correct result cannot be represented as an <integer>
then an error is signaled. This removes fully generic arithmetic from
the Dylan library. In particular, it removes extended integers, ratios,
and rectangular complex numbers.
Extensions to the dylan Library¶
This section describes the extensions to the Dylan library that provide the arithmetic operations available as standard to your applications. You do not have to explicitly use any additional libraries to have access to any of the functionality described in this section. Note that this section only describes extensions to the Dylan library; for complete descriptions, you should also refer to the Dylan Reference Manual.
Note that the Common-Dylan library also has these extensions because it uses the Dylan library.
Ranges¶
The initialization arguments for <range>
must all be instances of
<machine-number>
rather than <real>
.
Specific constructors¶
The following specific constructors are available for use with the class
<integer>
.
- limited Generic function¶
Defines a new type that represents a subset of the class
<integer>
.- Signature:
limited integer-class #key min max => limited-type
- Parameters:
integer-class – The singleton(<integer>).
min – The lower bound of the range. The default is
$minimum-integer
.max – The upper bound of the range. The default is
$maximum-integer
.
- Discussion:
The integer-class argument is the class
<integer>
, and all other arguments are instances of<integer>
. The range of<integer>
is bounded by default.
- range Function¶
This function is used to specify ranges of numbers.
- Signature:
range (#key from:, to:, above:, below:, by:, size:) => <range>
- Discussion:
All of the supplied arguments must be instances of
<machine-number>
.
Equality comparisons¶
The =
function compares two objects and returns #t
if the values of
the two objects are equal to each other, that is of the same magnitude.
- = Open Generic function¶
- Signature:
= object1 object2 => boolean
- Discussion:
Tests its arguments to see if they are of the same magnitude.
- =(<complex>) Sealed Method¶
Tests its arguments to see if they are of the same magnitude.
- Signature:
= complex1 complex2 => boolean
- =(<machine-number>) Method¶
Tests its arguments to see if they are of the same magnitude.
- Signature:
= machine-number1 machine-number2 => boolean
Magnitude comparisons¶
The Dylan library provides the following interfaces for testing the magnitude of two numbers:
- < Open Generic function¶
Returns
#t
if its first argument is less than its second argument.- Signature:
< object1 object2 => boolean
Properties of numbers¶
Various number properties can be tested using the following predicates in the Dylan library:
- odd? Open Generic function¶
Tests whether the argument supplied represents an odd value.
- Signature:
odd? object => boolean
- odd?(<complex>) Sealed Method¶
- Signature:
odd? complex => boolean
- Discussion:
Tests whether the argument supplied represents an odd value.
- odd?(<integer>) Method¶
Tests whether the argument supplied represents an odd value.
- Signature:
odd? integer => boolean
- even? Open Generic function¶
Tests whether the argument supplied represents an even value
- Signature:
even? object => boolean
- even?(<complex>) Sealed Method¶
Tests whether the argument supplied represents an even value
- Signature:
even? complex => boolean
- even?(<integer>) Method¶
Tests whether the argument supplied represents an even value
- Signature:
even? integer => boolean
- zero? Open Generic function¶
Tests whether the argument supplied represents a zero value.
- Signature:
zero? object => boolean
- zero?(<complex>) Sealed Method¶
Tests whether the argument supplied represents a zero value.
- Signature:
zero? complex => boolean
- zero?(<machine-number>) Method¶
Tests whether the argument supplied represents a zero value.
- Signature:
zero? machine-number => boolean
- positive? Open Generic function¶
Tests whether the argument supplied represents a positive value.
- positive?(<complex>) Sealed Method¶
- Signature:
positive? complex
- Discussion:
Tests whether the argument supplied represents a positive value.
- positive?(<machine-number>) Method¶
- Signature:
positive? machine-number => boolean
- Discussion:
Tests whether the argument supplied represents a positive value.
- negative? Open Generic function¶
Tests whether the argument supplied represents a negative value.
- Signature:
negative? object => boolean
- negative?(<complex>) Sealed Method¶
Tests whether the argument supplied represents a negative value.
- Signature:
negative? complex => boolean
- negative?(<machine-number>) Method¶
Tests whether the argument supplied represents a negative value.
- Signature:
negative? machine-number => boolean
- integral? Open Generic function¶
Tests whether the argument supplied represents an integral value.
- Signature:
integral? object => boolean
- integral?(<complex>) Sealed Method¶
Tests whether the argument supplied represents an integral value.
- Signature:
integral? complex
- integral?(<machine-number>) Method¶
Tests whether the argument supplied represents an integral value.
- Signature:
integral? machine-number => boolean
Arithmetic operations¶
The following arithmetic operations are available in the Dylan library:
- + Open Generic function¶
Returns the sum of the two supplied arguments. The actual type of the value is determined by the contagion rules when applied to the arguments.
- Signature:
object1 object2 => #rest object
- +(<complex>, <complex>) Sealed Method¶
- Signature:
complex1 complex2
- +(<integer>, <complex>) Method¶
- Signature:
integer1 integer2 => integer
- +(<machine-number>, <machine-number>) Method¶
- Signature:
machine-number1 machine-number2 => machine-number
- - Open Generic function¶
Returns the result of subtracting the second argument from the first. The actual type of the value is determined by the contagion rules when applied to the arguments.
- Signature:
object1 object2 => #rest object
- -(<complex>, <complex>) Sealed Method¶
- Signature:
complex1 complex2
- -(<integer>, <integer>) Method¶
- Signature:
integer1 integer2 => integer
- -(<machine-number>, <machine-number>) Method¶
- Signature:
machine-number1 machine-number2 => machine-number
- * Open Generic function¶
Returns the result of multiplying the two arguments. The actual type of the value is determined by the contagion rules when applied to the arguments.
- Signature:
object1 object2 => #rest object
- *(<complex>, <complex>) Sealed Method¶
- Signature:
* complex1 complex2
- *(<integer>, <integer>) Method¶
- Signature:
* integer1 integer2 => integer
- *(<machine-number>, <machine-number>) Method¶
- Signature:
* machine-number1 machine-number2 => machine-number
- / Open Generic function¶
Returns the result of dividing the first argument by the second. The actual type of the value is determined by the contagion rules when applied to the arguments.
- Signature:
/ object1 object2 => #rest object
- /(<complex>, <complex>) Sealed Method¶
- Signature:
/ complex1 complex2
- /(<float>, <float>) Method¶
- Signature:
/ float1 float2 => float
- negative Open Generic function¶
Negates the supplied argument. The returned value is of the same float format as the supplied argument.
- Signature:
negative object => #rest negative-object
- negative(<complex>) Sealed Method¶
- Signature:
negative complex
- negative(<integer>) Method¶
- Signature:
negative integer => negative-integer
- negative(<float>) Method¶
- Signature:
negative float => negative-float
- floor Generic function¶
Truncates a number toward negative infinity. The integer part is returned as integer, the remainder is of the same float format as the argument.
- Signature:
floor object => integer object
- floor(<machine-number>) Method¶
- Signature:
floor machine-number => integer machine-number
- floor(<integer>) Method¶
- Signature:
floor integer => integer integer
- floor(<float>) Method¶
- Signature:
floor float => integer float
- ceiling Generic function¶
Truncates a number toward positive infinity. The integer part is returned as integer, the remainder is of the same float format as the argument.
- Signature:
ceiling machine-number => integer machine-number
- ceiling(<machine-number>) Method¶
- Signature:
ceiling machine-number => integer machine-number
- ceiling(<integer>) Method¶
- Signature:
ceiling integer => integer integer
- ceiling(<float>) Method¶
- Signature:
ceiling float => integer float
- round Generic function¶
Rounds a number toward the nearest mathematical integer. The integer part is returned as integer, the remainder is of the same float format as the argument. If the argument is exactly between two integers, then the result integer will be a multiple of two.
- Signature:
round object => integer object
- round(<machine-number>) Method¶
- Signature:
round machine-number => integer machine-number
- round(<integer>) Method¶
- Signature:
round integer => integer integer
- round(<float>) Method¶
- Signature:
round float => integer float
- truncate Generic function¶
Truncates a number toward zero. The integer part is returned as integer, the remainder is of the same float format as the argument.
- Signature:
truncate machine-number => integer object
- truncate(<machine-number>) Method¶
- Signature:
truncate machine-number => integer machine-number
- truncate(<integer>) Method¶
- Signature:
truncate integer => integer integer
- truncate(<float>) Method¶
- Signature:
truncate float => integer float
- floor/ Generic function¶
Divides the first argument into the second and truncates the result toward negative infinity. The integer part is returned as integer, the type of the remainder is determined by the contagion rules when applied to the arguments.
- Signature:
floor/ object1 object2 => integer machine-number
- floor/(<machine-number>, <machine-number>) Method¶
- Signature:
floor/ machine-number1 machine-number2 => integer machine-number
- floor/(<integer>, <integer>) Method¶
- Signature:
floor/ integer1 integer2 => integer integer
- ceiling/ Generic function¶
Divides the first argument into the second and truncates the result toward positive infinity. The integer part is returned as integer, the type of the remainder is determined by the contagion rules when applied to the arguments.
- Signature:
ceiling/ object1 object2 => integer object
- ceiling/(<machine-number>, <machine-number>) Method¶
- Signature:
ceiling/ machine-number1 machine-number2 => integer machine-number
- ceiling/(<integer>, <integer>) Method¶
- Signature:
ceiling/ integer1 integer2 => integer integer
- round/ Generic function¶
Divides the first argument into the second and rounds the result toward the nearest mathematical integer. The integer part is returned as integer, the type of the remainder is determined by the contagion rules when applied to the arguments.
- Signature:
round/ object1 object2 => integer machine-number
- round/(<machine-number>, <machine-number>) Method¶
- Signature:
round/ machine-number1 machine-number2 => integer machine-number
- round/(<integer>, <integer>) Method¶
- Signature:
round/ integer1 integer2 => integer integer
- truncate/ Generic function¶
Divides the first argument into the second and truncates the result toward zero. The integer part is returned as integer, the type of the remainder is determined by the contagion rules when applied to the arguments.
- Signature:
truncate/ machine-number1 machine-number2 => integer machine-number
- truncate/(<integer>, <integer>) Method¶
- Signature:
truncate/ integer1 integer2 => integer integer
- modulo Generic function¶
Returns the second value of floor/ ( arg1 , arg2 ). The actual type of the second value is determined by the contagion rules when applied to the arguments.
- Signature:
modulo machine-number1 machine-number2 => machine-number
- modulo(<machine-number>, <machine-number>) Method¶
- Signature:
modulo machine-number1 machine-number2 => machine-number
- modulo(<integer>, <integer>) Method¶
- Signature:
modulo integer1 integer2 => integer
- remainder Generic function¶
Returns the second value of
truncate/
(* arg1 , arg2 ).The actual type of the second value is determined by the contagion rules when applied to the arguments.- Signature:
remainder machine-number1 machine-number2 => machine-number
- remainder(<integer>, <integer>) Method¶
- Signature:
remainder integer1 integer2 => integer
- ^ Open Generic function¶
Returns the first argument raised to the power of the second argument. The value is of the same float format as the first argument. An error is signalled if both arguments are 0.
- Signature:
^ object1 object2 => #rest object
- ^(<complex>, <complex>) Sealed Method¶
- Signature:
^ complex1 complex2
- ^(<integer>, <integer>) Method¶
- Signature:
^ integer1 integer2 => integer
- ^(<float>, <integer>) Method¶
- Signature:
^ float1 integer2 => float
- abs Open Generic function¶
Returns the absolute value of the argument. The value is of the same float format as the argument.
- Signature:
abs object => #rest object
- abs(<complex>) Sealed Method¶
- Signature:
abs complex
- abs(<integer>) Method¶
- Signature:
abs integer => integer
- abs(<float>) Method¶
- Signature:
abs float => float
- logior Function¶
Returns the bitwise inclusive OR of its integer arguments.
- Signature:
logior #rest integers => integer
- logxor Function¶
Returns the bitwise exclusive OR of its integer arguments.
- Signature:
logxor #rest integers => integer
- logand Function¶
Returns the bitwise AND of its integer arguments.
- Signature:
logand #rest integers => integer
- lognot Function¶
Returns the bitwise NOT of its integer arguments.
- Signature:
lognot integer1 => integer2
- logbit? Function¶
Tests the value of a particular bit in its integer argument. The index argument is an instance of
<integer>
.- Signature:
logbit? index integer => boolean
- ash Function¶
Performs an arithmetic shift on its first argument.
- Signature:
ash integer1 count => integer
- lcm Function¶
Returns the least common multiple of its two arguments.
- Signature:
lcm integer1 integer2 => integer
- gcd Function¶
Returns the greatest common divisor of its two arguments.
- Signature:
gcd integer1 integer2 => integer
Collections¶
The keys for sequences are always instances of <integer>
. This means
that certain kinds of collections cannot be sequences; very large (or
unbounded) sparse arrays are an example.
The Table Protocol¶
See Language Differences for a list of changes to the table protocol.
Iteration Constructs¶
- for Statement Macro¶
The start, bound, and increment expressions in a numeric clause must evaluate to instances of
<machine-number>
for this macro.
The generic-arithmetic Library¶
The Generic-Arithmetic library exports the functions described in this section from a module called generic-arithmetic.
The Generic-Arithmetic library provides a fully extensible version of all arithmetic operations. If an application only uses Generic-Arithmetic, these versions of the operators reduce themselves to be equivalent to those in the Dylan library. But when you use additional implementation libraries, the arithmetic operators are extended.
The Big-Integers library is one such implementation library. It provides a
implementation of <integer>
that uses two machine words to represent
each integer. For example, on a 64-bit machine architecture this is a 128-bit
signed integer.
The standard integer implementation in the Dylan library is actually part of the following class hierarchy:
<abstract-integer>
├── <integer>
└── <big-integer>
└── <double-integer>
(The classes <big-integer>
and <double-integer>
are implementation
classes. You do not need to use them.)
The modules in the Generic-Arithmetic library export <abstract-integer>
with the name <integer>
. They also export a full set of arithmetic
operators that use instances of <abstract-integer>
rather than instances
of <integer>
(in the Dylan library naming scheme). However, those
operators just fall back to the Dylan library operators until you include an
implementation library, such as Big-Integers, in your application.
When you use the Big-Integers library, the arithmetic operators exported by
Generic-Arithmetic are enhanced to extend their results to 128-bit integers on
64-bit machines or 64-bit integers on 32-bit machine architectures. If a result
is small enough to fit in a Dylan library <integer>
, it will be fitted
into one.
Note that the Generic-Arithmetic library uses the same naming conventions for arithmetic operators as used by the Dylan library. This means that some renaming is required in modules that require access to both the basic Dylan interfaces and the interfaces supplied by the Generic-Arithmetic library. As described earlier, the notation interface # module is used to denote different interfaces of the same name, where interface is the name of the interface, and module is the name of the module it is exported from.
See Using special arithmetic features for an example of how to use an implementation library with Generic-Arithmetic.
Ranges¶
The Generic-Arithmetic library defines the class <range>
, which is in
most respects functionally equivalent to <range>#Dylan, but uses generic
arithmetic operations in its implementation so that the initialization
arguments can be instances of <real>
, rather than being restricted to
<machine-number>
.
Classes¶
The class <abstract-integer>
is imported and re-exported under the
name <integer>#generic-arithmetic.
Specific constructors¶
- range Function
- Signature:
range #key from to above below by size => range
This function is identical to the function range#Dylan, except that
all of the supplied arguments must be instances of <real>
.
Arithmetic operations¶
The following functions all have Generic-Arithmetic implementations that are
mathematically equivalent to the corresponding implementations defined on
<integer>
and documented in the DRM. See Arithmetic operations
for descriptions of each function as
implemented in the Dylan library.
+
object1 object2 => #rest object
-
object1 object2 => #rest object
*
object1 object2 => #rest object
/
object1 object2 => #rest object
negative
object => #rest negative-object
floor
real1 => abstract-integer real
ceiling
real1 => abstract-integer real
round
real1 => abstract-integer real
truncate
real1 => abstract-integer real
floor/
real1 real2 => abstract-integer real
ceiling/
real1 real2 => abstract-integer real
round/
real1 real2 => abstract-integer real
truncate/
real1 real2 => abstract-integer real
modulo
real1 real2 => real
remainder
real1 real2 => real
^
object1 object2 => #rest object
abs
object1 => #rest object
logior
#rest abstract-integer1 => abstract-integer
logxor
#rest abstract-integer1 => abstract-integer
logand
#rest abstract-integer1 => abstract-integer
lognot
abstract-integer1 => abstract-integer
logbit?
integer abstract-integer => boolean
ash
abstract-integer1 integer => abstract-integer
lcm
abstract-integer1 abstract-integer2 => abstract-integer
gcd
abstract-integer1 abstract-integer2 => abstract-integer
Iteration constructs¶
While a programmer could make use of generic arithmetic in a for
loop
by using explicit-step clauses, this approach leads to a loss of
clarity. The definition of the for
macro is complex, so a version that
uses generic arithmetic in numeric clauses is provided, rather than
requiring programmers who want that feature to reconstruct it.
- for Statement Macro
The start, bound, and increment expressions in a numeric clause must evaluate to instances of
<machine-number>
for this macro. Otherwise, this macro is similar to for#Dylan.
Exported Modules from the generic-arithmetic Library¶
The Generic-Arithmetic library exports several modules that are provided for the convenience of programmers who wish to create additional modules based on the dylan module plus various combinations of the arithmetic models.
The dylan-excluding-arithmetic Module¶
The Dylan-Excluding-Arithmetic module imports and re-exports all of the interfaces exported by the dylan module from the Dylan library, except for the following excluded interfaces:
The dylan-arithmetic Module¶
The Dylan-Arithmetic module imports and re-exports all of the interfaces exported by the dylan module from the Dylan library which are excluded by the dylan-excluding-arithmetic module.
The generic-arithmetic-dylan Module¶
The Generic-Arithmetic-Dylan module imports and reexports all of the interfaces exported by the dylan-excluding-arithmetic module and the generic-arithmetic module.
The dylan-excluding-arithmetic, dylan-arithmetic, and generic-arithmetic modules provide convenient building blocks for programmers to build the particular set of global name bindings they wish to work with. The purpose of the generic-arithmetic-dylan module is to provide a standard environment in which generic arithmetic is the norm, for those programmers who might want that.
Using Special Arithmetic Features¶
As noted in The Generic-Arithmetic library, the Generic-Arithmetic library provides an extensible protocol for adding specialized arithmetic functionality to your applications. By using the Generic-Arithmetic library alongside a special implementation library, you can make the standard arithmetic operations support number types such as big (128-bit or 64-bit) integers, or complex numbers.
This section provides an example of extending the basic Dylan arithmetic features using the Generic-Arithmetic library and the Big-Integers implementation library.
To use special arithmetic features, a library’s define library
declaration must use at least the following libraries:
common-dylan
generic-arithmetic
special-arithmetic-implementation-library
So for Big-Integers you would write:
define library foo
use common-dylan;
use generic-arithmetic;
use big-integers;
...
end library foo;
Next you have to declare a module. There are three ways of using big-integer arithmetic that we can arrange with a suitable module declaration:
Replace all integer arithmetic with the big-integer arithmetic.
Use both, with normal arithmetic remaining the default.
Use both, with the big-integer arithmetic becoming the default.
To get one of the three different effects described above, you need to
arrange the define module
declaration accordingly. To replace all
integer arithmetic with big-integer arithmetic, include the following in
your define module
declaration:
use generic-arithmetic-common-dylan;
(Note that the module definition should not use the Big-Integers module. The Big-Integers library is used as a side-effects library only, that is, it is referenced in the library definition so that it will be loaded. Its definitions extend the Generic-Arithmetic library.)
If you replace all integer arithmetic with big-integer arithmetic in this way, there will be performance hits. For instance, loop indices will have to be checked at run-time to see whether a normal or big integer representation is being used, and a choice must be made about the representation for an incremented value.
You can take a different approach that reduces the cost of big-integer
arithmetic. Under this approach you leave normal integer arithmetic
unchanged, and get access to big-integer arithmetic when you need it. To
do this, use the same libraries but instead of using the
common-dylan-generic-arithmetic
module, include the following in your
define module
declaration:
use common-dylan;
use generic-arithmetic, prefix: "generic/"; // use any prefix you like
This imports the big-integer arithmetic binding names, but gives them a prefix
generic/
, using the standard renaming mechanism available in module
declarations. Thus you gain access to big arithmetic using renamed classes and
operations like:
generic/<integer>
generic/+
generic/-
generic/*
...
The operations take either instances of <integer>
or
generic/<integer>
(a subclass of <integer>
) and return instances of
generic/<integer>
.
Note that having imported the big-integer operations under new names, you have to use prefix rather than infix syntax when calling them. For example:
generic/+(5, 4);
not:
5 generic/+ 4;
The existing functions like +
and -
will only accept <integer>
instances and generic/<integer>
instances small enough to be represented as
<integer>
instances.
Under this renaming scheme, reduced performance will be confined to the
generic/
operations. Other operations, such as loop index increments and
decrements, will retain their efficiency.
Finally, you can make big-integer arithmetic the default but keep normal
arithmetic around for when you need it. Your define module
declaration should contain:
use generic-arithmetic-common-dylan;
use dylan-arithmetic, prefix: "dylan/"; //use any prefix you like
The big-integers Library¶
The Big-Integers library exports a module called big-integers
, which
imports and re-exports all of the interfaces exported by the
generic-arithmetic
module of the Generic-Arithmetic library.
The Big-Integers library modifies the behavior of functions provided by the Dylan library as described in this section.
Specific Constructors¶
The Big-Integers library extends the functionality of specific constructors in the Dylan library as follows:
- limited Function
- Signature:
limited abstract-integer-class #key min max => limited-type
Returns a limited integer type, which is a subtype of
<abstract-integer>
, whose instances are integers greater than or
equal to min (if specified) and less than or equal to max (if
specified). If no keyword arguments are specified, the result type is
equivalent to <abstract-integer>
. The argument
abstract-integer-class is the class <abstract-integer>
.
If both min and max are supplied, and both are instances of
<integer>
, then the result type is equivalent to calling limited on
<integer>
with those same bounds.
The Limited Integer Type Protocol is extended to account for limited
<abstract-integer>
types.
Instances and subtypes in the Big-Integers library¶
In each of the following code snippets, the expression in the first line is true if and only if all of the expressions following it are true.
instance?(x, limited(<abstract-integer>, min: y, max: z))
instance?(x, <abstract-integer>)
y <= x
x <= z
instance?(x, limited(<abstract-integer>, min: y))
instance?(x, <abstract-integer>)
y <= x
instance?(x, limited(<abstract-integer>, max: z))
instance?(x, <abstract-integer>)
x <= z
subtype?(limited(<abstract-integer>, min: w, max: x),
limited(<abstract-integer>, min: y, max: z))
w >= y
x <= z
subtype?(limited(<abstract-integer>, min: w ...),
limited(<abstract-integer>, min: y))
w >= y
subtype?(limited(<abstract-integer>, max: x ...),
limited(<abstract-integer>, max: z))
x <= z
Type-equivalence in the Big-Integers library¶
In each of the following code snippets, the expression on the first line is type equivalent to the expression on the second line if and only if the text following both expressions is true.
limited(<abstract-integer>, min: y, max: z)
limited(<integer>, min: y, max: z)
y and z are both instances of <integer>
.
limited(<abstract-integer>, min: y, max: $maximum-integer)
limited(<integer>, min: y)
y is an instance of <integer>
.
limited(<abstract-integer>, min: $minimum-integer, max: z)
limited(<integer>, max: z)
z is an instance of <integer>
.
Type disjointness is modified as follows to account for limited
<abstract-integer>
types.
A limited integer type is disjoint from a class if their base types are
disjoint or the class is <integer>
and the range of the limited
integer type is disjoint from the range of <integer>
(that is, from
$minimum-integer to $maximum-integer).
Equality comparisons¶
The behavior of equality comparisons in the Dylan library is modified by the Big-Integers library as follows:
= *abstract-integer1* *abstract-integer2* => *boolean*
= *abstract-integer* *float* => *boolean*
= *float* *abstract-integer* => *boolean*
Magnitude comparisons¶
The behavior of magnitude comparisons in the Dylan library is modified by the Big-Integers library as follows:
< *abstract-integer1* *abstract-integer2* => *boolean
< *abstract-integer* *float* => *boolean*
< *float* *abstract-integer* => *boolean*
Properties of Numbers¶
The behavior of number property tests in the Dylan library is modified by the Big-Integers library as follows:
odd? *abstract-integer* => *boolean*
even? *abstract-integer* => *boolean*
zero? *abstract-integer* => *boolean*
positive? *abstract-integer* => *boolean*
negative? *abstract-integer* => *boolean*
integral? *abstract-integer* => *boolean*
Arithmetic Operations¶
The Big-Integers library modifies the behavior of the functions provided by the Generic-Arithmetic library as described below.
The actual type of the return value for all the following interfaces is determined by the contagion rules when applied to the arguments.
+ *abstract-integer1* *abstract-integer2* => *abstract-integer*
+ *abstract-integer* *float1* => *float*
+ *float1* *abstract-integer* => *float*
- *abstract-integer1* *abstract-integer2* => *abstract-integer*
- *abstract-integer* *float1* => *float*
- *float1* *abstract-integer* => *float*
* *abstract-integer1* *abstract-integer2* => *abstract-integer*
* *abstract-integer* *float1* => *float*
* *float1* *abstract-integer* => *float*
The return value of the following interface is of the same float format as the argument:
negative *abstract-integer* => *negative-abstract-integer*
The second return value of all the following interfaces is of the same float format as the argument:
floor *abstract-integer* => *abstract-integer1* *abstract-integer2*
floor *float1* => *abstract-integer* *float*
ceiling *abstract-integer* => *abstract-integer1* *abstract-integer2*
ceiling *float1* => *abstract-integer* *float*
round *abstract-integer* => *abstract-integer1* *abstract-integer2*
round *float1* => *abstract-integer* *float*
truncate *abstract-integer* => *abstract-integer1* *abstract-integer2*
truncate *float1* => *abstract-integer* *float*
The second return value of all the following interfaces is of the same float format as the first argument:
floor/ *abstract-integer1* *abstract-integer2* => *abstract-integer3* *abstract-integer4*
floor/ *float1* *abstract-integer1* => *abstract-integer2* *float2*
ceiling/ *abstract-integer1* *abstract-integer2* => *abstract-integer3* *abstract-integer4*
ceiling/ *float1* *abstract-integer1* => *abstract-integer2* *float2*
round/ *abstract-integer1* *abstract-integer2* => *abstract-integer3* *abstract-integer4*
round/ *float1* *abstract-integer1* => *abstract-integer2* *float2*
truncate/ *abstract-integer1* *abstract-integer2* => *abstract-integer3* *abstract-integer4
truncate/ *float1* *abstract-integer1* => *abstract-integer2* *float2*
The second return value of the following interfaces is of the same float format as the second argument:
floor/ *abstract-integer1* *float1* => *abstract-integer2* *float2*
ceiling/ *abstract-integer1* *float1* => *abstract-integer2* *float2*
round/ *abstract-integer1* *float1* => *abstract-integer2* *float2*
truncate/ *abstract-integer1* *float1* => *abstract-integer2* *float2*
The return value of the following interfaces is of the same float format as the first argument:
modulo *float1* *abstract-integer* => *float*
remainder *float1* *abstract-integer* => *float*
The return value of the following interfaces is of the same float format as the second argument:
modulo *abstract-integer1* *abstract-integer2* => *abstract-integer*
modulo *abstract-integer* *float1* => *float*
remainder *abstract-integer1* *abstract-integer2* => *abstract-integer*
remainder *abstract-integer* *float1* => *float*
The behavior of the following miscellaneous interfaces is also modified by the Big-Integers library:
^ *abstract-integer1* *integer* => *abstract-integer
abs *abstract-integer1* => *abstract-integer*
logior #rest *abstract-integer1* => *abstract-integer*
logxor #rest *abstract-integer1* => *abstract-integer*
logand #rest *abstract-integer1* => *abstract-integer*
lognot *abstract-integer1* => *abstract-integer*
logbit? *integer* *abstract-integer* => *boolean*
ash *abstract-integer1* *integer* => *abstract-integer*
lcm *abstract-integer1* *abstract-integer2* => *abstract-integer*
gcd *abstract-integer1* *abstract-integer2* => *abstract-integer*