Open Dylan Hacker’s Guide

Documentation
Release 0.1

Dylan Hackers

December 15, 2018

CONTENTS

Copyright 3
How to contribute to Open Dylan 5
2.1 Looking for Ideas? e e e e e e e e e e 5
2.2 Making Changes v v v i e e e e e e e e e e e e e e e e e e e 5
23 Guidelines e e e 5
24 Testing e e 6
2.5 Licensing L. e e e 6
Writing Documentation 7
3.1 Guidelines oL e e e e e e 7
3.2 Generating Documentationol e e e e e 7
33 DOCIOWET . . . o o v o e e e e e e e e e e e e e 8
3.4 Example documentation i e e e e e e e e e e e e e e e e 8
Jam-based Build System 11
4.1 Introduction e e e e e e 11
4.2 Why Jam-based? e e e e e e e 11
4.3 Choosing Build Scripts e 12
4.4 How the Compiler Uses the Build System 12
4.5 Automatically-invoked Jam Rules 13
4.6 Additional Built-InJam Rules 14
4.7 Built-InJam Variables e 14
4.8 EditingJam Files L 15
DFMC, The Dylan Flow Machine Compiler 17
5.1 Notes, Warnings and Errors e e e e e 17
52 Compiler Design (OId) e 33
5.3 Compiler Internals (O1d) o . o e 42
The Runtime 49
6.1 ObjectRepresentation L e 49
6.2 CallingConvention e e 51
6.3 Special Features L e e 54
6.4 Name Mangling e e e e e e e 56
6.5 Compiler Support for Threads e e 57
6.6 Startup e e e e e e e e e e e e e 62
DUIM - Dylan User Interface Manager 65
7.1 GTKBack-end e e e 65

8 Topics
8.1 Method Dispatch
8.2 Debugging . . .

8.3 Porting toa New Target Platform L

8.4 The PPML library
9 Glossary
10 Indices and tables
API Index

Index

67
67
70
71
75

83

85

87

91

Open Dylan Hacker’s Guide Documentation, Release 0.1

Contents:

CONTENTS 1

Open Dylan Hacker’s Guide Documentation, Release 0.1

2 CONTENTS

CHAPTER
ONE

COPYRIGHT

Portions copyright © 1995-1999 Harlequin, Ltd.

Portions copyright © 1995-2000 Functional Objects, Inc.

Portions copyright © 2011 Dylan Hackers.

Companies, names and data used in examples herein are fictitious unless otherwise noted.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Other brand or product names are the registered trademarks or trademarks of their respective holders.

Open Dylan Hacker’s Guide Documentation, Release 0.1

4 Chapter 1. Copyright

CHAPTER
TWO

HOW TO CONTRIBUTE TO OPEN DYLAN

The first thing you’ll need is a source checkout of the Git repository. The Open Dylan sources are hosted on GitHub,
along with sources for the opendylan.org web site and many other repositories. If you don’t yet have a GitHub account
and ssh keys, now is a good time to get them.

To checkout the main “opendylan” repository:

git clone --recursive git@github.com:dylan-lang/opendylan

You’ll want to fork this repository so you can push changes to your fork and then submit pull requests.
Aside from dylan-lang there are two other GitHub oranizations that may be of interest:
¢ dylan-foundry is Bruce Mitchener’s large collection of Dylan libraries.

* dylan-hackers contains repositories of historical interest, such as old Harlequin Dylan documents and gwydion,
the CMU implementation of Dylan which is no longer maintained.

Looking for Ideas?

If you’re looking for ideas on how you can contribute to Open Dylan or what others might find useful, please see our
list of projects in the Open Dylan wiki or check out the list of bugs labeled Easy. If you have something in mind that
isn’t there, feel free to talk with us or add it to the list.

Making Changes

* Fork the repository. You will need to have a GitHub account to do this.

 Create a topic branch with git checkout -t -b your-contribution.

» Commit your changes to your branch, putting each distinct fix in a separate commit.
* Push your changes to your fork on GitHub.

* Submit a pull request with your changes.

Guidelines

* You almost always want to branch from the master branch.

» Update documentation as necessary. Also, if appropriate, update the release notes, samples and other supporting
materials.

https://github.com/dylan-lang/opendylan
https://github.com/dylan-lang/website
https://github.com/dylan-lang
https://github.com/dylan-foundry
https://github.com/dylan-hackers
https://github.com/dylan-hackers/gwydion
https://github.com/dylan-lang/opendylan/wiki
https://github.com/dylan-lang/opendylan/labels/Easy
http://opendylan.org/community/

Open Dylan Hacker’s Guide Documentation, Release 0.1

* We suggest following this note about git commit messages.
* Follow the style guide for new code. When working in existing code, follow the existing style.
* Do not make a lot of style or whitespace fixes in the same commit as other changes.

* Use 2 spaces for indentation, never tabs. If you use emacs, dylan-mode does a decent job of indenting code.

Testing

In the near future, we will have our test suites working more reliably. We will also document the processes involved
with updating and running tests. In the meantime, each library usually has a “tests” subdirectory with a test suite
library named ““*-tests”.

Licensing

All materials in this repository are licensed under the terms expressed in the current License.txt file.
We are not interested in incorporating any source code using proprietary or copyleft-style licenses.

Open Dylan is under the collective ownership of the Dylan Hackers.

6 Chapter 2. How to contribute to Open Dylan

http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
http://opendylan.org/documentation/style-guide/index.html
https://github.com/dylan-lang/dylan-mode
https://github.com/dylan-lang/opendylan/blob/master/License.txt

CHAPTER
THREE

WRITING DOCUMENTATION

We are working on a tool to automatically generate skeletal documentation from source code, but until then, we are
documenting the Open Dylan libraries manually using Sphinx to build the HTML pages. Sphinx uses reStructured Text
markup with some extensions of its own, and we have created additional extensions to document Dylan language
entities.

The documentation — a number of RST files — is in the OpenDylan documentation directory. Consult the Sphinx
web-site for details about reStructuredText markup and Sphinx extensions to it, and see the Dylan sphinx-extensions
documentation repository for details about the Dylan language extensions. (You may use the rst2html tool to
generate an HTML page from an . rst file.)

Guidelines

Gender

Try to avoid all gender-specific pronouns. In preference, use third person plural pronouns such as “they”, “their”,
“them”.

Tense

Use simple present tense unless there is a clear need to do otherwise. Specifically, don’t use future tense to describe
what a function will do, describe what it does.

Generating Documentation

dylan—-compiler can output skeletal documentation for a library once it has been compiled. Prior to compiling the
project, it will not output anything.

To generate documentation, once you’ve loaded and compiled your project, simply:

export —-format rst interface-reference

The generated documention will need cleaning up and will not include anything from comments in the source.

We hope to improve this tool in the future.

http://sphinx-doc.org/
https://github.com/dylan-lang/opendylan/tree/master/documentation
https://github.com/dylan-lang/sphinx-extensions/tree/master/sphinxcontrib/dylan/domain
https://github.com/dylan-lang/sphinx-extensions/tree/master/sphinxcontrib/dylan/domain

Open Dylan Hacker’s Guide Documentation, Release 0.1

Doctower

Doctower is a tool written by Dustin Voss and is available on GitHub.

This tool doesn’t yet generate RST output, so the documentation from it will not integrate cleanly with Sphinx and our
other documentation.

We don’t currently use this tool for any of the Open Dylan documentation.

Example documentation

Here is an example of documentation to get a feel for how it works. Use the “View page source” link at the top of the
page to see it in RST markup form.

Skip Lists

A skip-list is a data type equivalent to a balanced (binary) tree.

skip-1list Library
The skip list library may be found in the “skip-list” repository.

skip-1list Module
The skip-list module exports a number of symbols. Two new symbols are of interest:

e<skip-list>
*element-sequence

The skip-list module also adds to several generic methods. One of the new methods is:
*element

<skip-1list> Open Primary Class
A skip-list is a data type equivalent to a balanced (binary) tree. All keys must be comparable by some kind of
ordering function, e.g., <.

Superclasses <stretchy-collection>, <mutable-explicit-key-collection>
Init-Keywords

* key—-test — The collection’s key-test function; should return #t if two keys should be
considered equal. Defaults to ==.

* key—order — A function that accepts two keys and returns #t if the first key sorts before
the second. Defaults to <.

* size — Preallocates enough memory to hold this number of objects. Optional.
* capacity — Sets the maximum capacity of the skip list. Optional.

* probability — The probability to create a new level of the list. Equivalent to the fan-out
of a tree. Defaults to 0.25.

* max-level — The list will not grow beyond this number of levels. Defaults to a value
based on the size and capacity keywords.

e level — The list starts with this number of levels. Defaults to a value based on the size
and capacity keywords.

8 Chapter 3. Writing Documentation

http://github.com/dylan-lang/doctower
http://github.com/dylan-lang/skip-list
http://opendylan.org/books/drm/Equality_and_Comparison#less_than
http://opendylan.org/books/drm/Equality_and_Comparison#identity
http://opendylan.org/books/drm/Equality_and_Comparison#less_than

Open Dylan Hacker’s Guide Documentation, Release 0.1

In general, a skip list operates like a stretchy mutable key collection. But a skip list can also act as
an ordered stretchy mutable key collection where the iteration order is the key order. To take advan-
tage of this, the library defines forward-by-key—-iteration-protocol, element-sequence, and
element-sequence-setter.

element-sequence Generic function
Parameters
* list — A skip list.
Values
* sequence - An instance of <sequence>.

One of the useful features of skip lists is that they can be ordered. However, most of the useful operations that
can be performed on ordered collections, such as sort, are only defined for sequences. To solve this problem, I
add element-sequence and element-sequence-setter. The client may call the former to obtain a
sequence, operate on it, and call the latter to fix the results in the skip list. The setter ensures that no elements
have been added or removed from the skip list, only reordered.

element (<skip-list>) Method
A specialization of element.

Parameters
* collection — Aninstance of <skip-1ist>.
* key — The key of an element. An instance of <object>.

* default (#key) — A value to return if the element is not found. If omitted and element
not found, signals an error.

Values

* object — The element associated with the key.

3.4. Example documentation 9

http://opendylan.org/books/drm/Collection_Classes#sequence
http://opendylan.org/books/drm/Collection_Operations#element
http://opendylan.org/books/drm/Object_Classes#object

Open Dylan Hacker’s Guide Documentation, Release 0.1

10 Chapter 3. Writing Documentation

CHAPTER
FOUR

JAM-BASED BUILD SYSTEM

This document describes the Jam-based build system for Open Dylan.

Introduction

The purpose of the Open Dylan build-system is to coordinate the final stages in the building of a Dylan library
project. The Open Dylan compiler takes a Dylan library in the form of Dylan source files, and directly generates x86
or PPC machine language object files (in either COFF or ELF format, depending on the target platform). These object
files need to be linked together to construct either an executable object file, or a loadable dynamically-linked library
(also called a shared library). This link needs to be performed by an external tool such as the Microsoft or GNU linker.
The build-system component, controlled by a user-specified script file, directs the execution of these external
tools.

Why Jam-based?

Use of the Jam scripting language increases the flexibility of Open Dylan for users, and makes it more maintainable
by removing hard-coded assumptions spread throughout various layers of the compiler. Previous versions of the Open
Dylan build-system component permitted users to choose either the Microsoft or GNU Binutils linker on the
Win32 platform, and always used the GNU Binutils ELF linker on Linux platforms. New versions of these tools
require modifications that go beyond the current flexibility of the build-system component, as will new Open
Dylan target platforms.

Though the logic of build-system (and a former companion library, 1 inker—-support) was hard-coded, it did
allow a limited amount of parameterization using script files. A typical parameterization, from the Microsoft linker
script, looked like this:

#

linkdll

link /NODEFAULTLIB /INCREMENTAL:NO /PDB:NONE /NOLOGO \
/ENTRY:$ (mangled-dllname)D11@12 -debug:full —-debugtype:cv \
/nologo /dll /out:$(full-dll-name) kernel32.1lib \
@$ (dllname) .1link $ (objects) $(c-libs) /base:$(base) \
/version:$ (image-version) $(linkopts)

Though these script files were poorly documented and insufficiently flexible, they did inspire the introduction of a real
scripting language to direct the final stages of compilation in Open Dylan.

Jam is a build tool designed by Christopher Seiwald, founder of Perforce Software. It is similar in some ways to
make, the traditional Unix build tool. However, instead of using only simple declarative rules to define build targets
and the dependencies between them, Jam contains a full scripting language, allowing build script authors to define

11

http://www.perforce.com/resources/documentation/jam
http://www.perforce.com/

Open Dylan Hacker’s Guide Documentation, Release 0.1

high-level build instructions that match particular applications. The Jam program also includes Jambase, a library of
rules (functions) for building executables and libraries from C, C++, and Fortran sources.

The original Jam tool is a standalone program written in C and YACC. Peter Housel re-implemented the Jam language
interpreter and build logic as a reusable Dylan library for use in the Open Dylan build-system.

Choosing Build Scripts

Normally you can simply use the build script supplied with Open Dylan that corresponds to the external linker you
will be using. The supplied build scripts include the following:

x86-win32-vc6-build. jam Build script for Microsoft Visual C++ 6.0.
x86-win32-vc7-build. jam Build script for Microsoft Visual C++ .NET.
x86-1inux-build. jam Build script for x86 Linux systems using gcc.

The default build script is plat form—name-build. jam. You can select a different build script from the Link
page of the Environment Options dialog in the IDE, or using the ~build-script option on the console compiler
or console environment command-line.

Build scripts are written using the Jam script language, as described in the Jam manual page. Most Open Dylan
build scripts include the mini-jambase. jam file, which contains excerpts from the Jambase file included with
Perforce Jam and described in the Jambase Reference. They can also make use of additional built-in rules defined by
the Open Dylan build system, as described in Additional Built-In Jam Rules and Built-In Jam Variables.

How the Compiler Uses the Build System

When you compile a library, the Open Dylan compiler constructs a new build directory and places the generated
object files in it. It also constructs a text file called dylanmakefile.mkf to be read by the build system. This
file contains information imported from the original LID or HDP project file, as well as information generated during
compilation. Here is a sample dylanmakefile.mkf, in this case the one generated for the build-system
component itself:

comment : This build file is generated, please don't edit
library: build-system
base—address: 0x63F20000
major-version: O
minor-version: O
library-pack: 0
compilation-mode: tight
target-type: executable
files: library

paths

variables

build

Jjam-build
used-projects: functional-dylan

dummy

..\functional-dylan\

io

dummy

..\io\

system

dummy

..\system\

12 Chapter 4. Jam-based Build System

https://swarm.workshop.perforce.com/view/guest/perforce_software/jam/src/Jam.html
https://swarm.workshop.perforce.com/files/guest/perforce_software/jam/src/Jambase
https://swarm.workshop.perforce.com/view/guest/perforce_software/jam/src/Jambase.html

Open Dylan Hacker’s Guide Documentation, Release 0.1

file-source-records

dummy

..\file-source-records\

release-info

dummy

..\release-info\

dfmc-mangling

dummy

..\dfmc-mangling\

Jam

dummy

..\ jam\
all-c-libraries: advapi32.1lib

shell32.1lib

External files are used to communicate with the build system in order for the information to persist between invocations
of the compiler. On the Win32 platform, dylanmakefile.mkf files are also copied into the 1ib directory on
installation so that other libraries can link against the actual DLL (whose name might not be identical to the library
name).

When Open Dylan needs to link a project, it calls the build-system, passing the name of the build directory and a
list of targets to be built. The build system reads the dylanmakefile.mkf file and builds the targets accordingly.

The Open Dylan compiler’s project manager expects the build script to define the following pseudo (NotFile)
targets:

exports Describe exports.

unify-dl1l Describe unify-dIl.

d1l1l Link the project as a dynamically-linked library.

unify-exe Describe unify-exe.

exe Link the project as an executable program.

release Describe release.

clean-all Remove build products in the top-level project, and in all of the non-system libraries that it uses.

clean Remove build products in the top-level project.

Automatically-invoked Jam Rules

When the build system reads a dylanmakefile.mkf file, it invokes several of the Jam rules (functions) defined
in the user’s build script. These rules in turn register the necessary targets and their dependencies with the Jam build
mechanism.

All of the rules described below take image as their first parameter; this is a list whose first element is the library
name (from the Library: keyword of the .mk f file) and whose optional second component is the base name of the
executable or shared library (from the Executable: keyword of the .mk £ file).

DylanLibrary *imagex : *versionx ; Link a Dylan library as a shared library or executable image.
This is always the first rule invoked for a given library, and it is usually charged with establishing the library
target and setting global and target-specific variables.

The version argument normally contains two components, the first obtained from the Ma jor-version: key-
word of the .mkf file, and the second from the Minor-version: keyword.

4.5. Automatically-invoked Jam Rules 13

Open Dylan Hacker’s Guide Documentation, Release 0.1

DylanLibraryLinkerOptions ximagex : *options* ; Add the given options to the link command
line of the shared library and executable images. The link options provided in the Linker—-options: key-
word of the .mkf file are expanded using the usual Jam variable expansion rules before being passed to this
rule. (This allows Linker-options: keywords in LID and HDP files to refer to platform-specific variables
suchas $ (guilflags)).

DylanLibraryBaseAddress ximagex : *addressx ; Set the base address of the shared library. The
compiler-computed base addresses are probably only usable on the Win32 platform.

DylanLibraryCLibraries *imagex : «librariesx ; Link C (or other externally-derived) libraries
into the shared library. The link options provided in the C-1ibraries: keyword of the .mkf file are ex-
panded using the usual Jam variable expansion rules before being passed to this rule.

DylanLibraryCObjects *imagex : *objectsx ; Link C (or other externally-derived) object files into
the shared library.

DylanLibraryCSources *imagex : *sources* ; Link C source files into the shared library.

DylanLibraryCHeaders ximagex : +headersx ; This rule normally does nothing. The

C-header-files: HDP/LID file is normally used to ensure that files of various sorts (not just C
header files) are copied into the build directory.

DylanLibraryC++Sources ximagex : *sources* ; Link C++ source files into the shared library.

DylanLibraryRCFiles ximagex : *rcfilesx* ; Link Win32 resource files into the shared library and
executable.

DylanLibraryJamIncludes *imagex : *includesx* ; Include other Jam files into the build defini-

tion. This is typically used via the jam-includes: keyword in the HDP/LID file. It is useful for setting up
extensions to library or include search paths.

DylanLibraryUses ximagex : =xlibraryx : *dirx ; Link other Dylan libraries into the shared li-
brary. The library argument gives the name of the other library, and the dir argument gives the name of the other
library’s build directory. If dir is sy stem, then the library is an installed system library.

Additional Built-In Jam Rules

The build system defines the following additional built-in rules.

IncludeMKF xincludesx* ; Read each of the given .mkf files and invoke Jam rules as described in
Automatically-invoked Jam Rules.

DFMCMangle xnamex* ; Mangle the given name according to the Open Dylan compiler’s mangling rules. If name
has a single component, it is considered to be a raw name; if there are three components they correspond to the
variable-name, module-name, and library-name respectively.

Built-In Jam Variables

By default, the Jam build system is provided with some values. Some of these are derived from the base Jam imple-
mentation and are documented in the Jam manual page while others are Open Dylan extensions.

. The build directory.
Open Dylan extension.
COMPILER BACKEND The name of the compiler back-end currently in use. Typically one ¢, harp or 11vm.

Open Dylan extension.

14 Chapter 4. Jam-based Build System

https://swarm.workshop.perforce.com/view/guest/perforce_software/jam/src/Jam.html

Open Dylan Hacker’s Guide Documentation, Release 0.1

JAMDATE The current date, in ISO-8601 format.
NT True on Windows.

0S The OS of the build host, not the target. This will typically be something like 1inux, freebsd, darwin or
win32.

OSPLAT The CPU architecture of the build host, not the target. This will typically be something like x86 or x86_64.

PERSONAL_ROOT The root of the destination build path, when the ~-personal-root compiler option or the
OPEN_DYLAN_USER_ROOT environment variable is set.

Open Dylan extension.

SYSTEM_ BUILD_SCRIPTS The path where the installed build scripts can be found.
Open Dylan extension.

SYSTEM_ROOT The path where the installation of Open Dylan can be found.
Open Dylan extension.

TARGET_PLATFORM The Open Dylan identifier for the target platform. This is something like x86-1inux or
x86_64-darwin.

Open Dylan extension.

UNIX True on non-Windows platforms, like Linux, FreeBSD and macOS.

Editing Jam Files

There is an Emacs major mode for editing Jam files.

4.8. Editing Jam Files 15

https://github.com/emacsmirror/jam-mode

Open Dylan Hacker’s Guide Documentation, Release 0.1

16 Chapter 4. Jam-based Build System

CHAPTER
FIVE

DFMC, THE DYLAN FLOW MACHINE COMPILER

Notes, Warnings and Errors

e Status of this Library
* Philosophy
* Program Condition Hierarchy
* Reporting a Program Condition
— Source Locations
* Defining a new Program Condition
* PPML, Pretty Print Markup Language
* Filtering of Program Conditions
* How Warnings Are Displayed and Recorded
* Responding to a Program Condition
» Future Work
* The DFMC-CONDITIONS API Reference
— Definers for new Program Conditions
Program Conditions
Program Condition Slots
Signaling Program Conditions
Preserving Program Conditions
Recovery and Restarting
Subnotes
Printing Program Conditions
Unclassified API

The compiler provides a framework for handling notes, warnings and errors as they’re encountered and created during
the compilation process.

This code can be found in the dfmc-conditions library. Initial skeletal API documentation for this library can be found
at The DFMC-CONDITIONS API Reference.

Conceptually, all notes, warnings and errors are subtypes of <condition>, so we will often refer to them collectively
as program conditions or instances of <program—-condition>.

Status of this Library

This library is interesting (to some) as it is in a half-completed state and many things are not yet fully implemented or
used. We will try to note these things below when we discuss them.

17

https://github.com/dylan-lang/opendylan/tree/master/sources/dfmc/conditions
http://opendylan.org/books/drm/Condition_Classes#condition

Open Dylan Hacker’s Guide Documentation, Release 0.1

Philosophy

The Open Dylan compiler tries hard not to abort compilation when an error is noted. This leads to many things
that might be fatal errors elsewhere being represented as serious warnings here. For example, an undefined variable
reference does not abort compilation, but if the code containing that reference is executed it causes a crash at run time.

This was part of a very exploratory development model under the Open Dylan IDE, where many errors could be
corrected while an application was running.

This workflow isn’t commonly used with Dylan today, so we may revise this philosophy and how it applies to the
compiler’s handling of program conditions, or at least make it configurable.

Similarly, a key element to how program conditions are currently used today is that when we store values on them, we
store them as the raw object so that they’re readily accessible from within the debugger, rather than only storing the
string representations.

Program Condition Hierarchy

The root of the condition hierarchy is <program-condition>. This is an abstract class and one of the subclasses
such as <program-note>, <program-error>or <program-restart> should be subclassed instead.

Reporting a Program Condition
The typical way to report that a program condition has arisen is to use note. There are other mechanisms, such as
raise, restart, simple-note and simple—raise, butthese are not in common usage.

For proper error reporting, you will want to try to report as accurate a source location as you possibly can. This can
be tricky at first, so look at other similar warnings if you need the assistance.

The actual code for noting a program condition is pretty straightforward, once you’ve identified the location to emit
the program condition, and the type of program condition to emit.

note (<wrong-type-in-assignment>,
variable—name: the-name,
type: binding-type,
rhs: rhs-value,
source—location: fragment-source-location (fragment));

Source Locations

There are a couple of useful rules to follow for getting source locations for noting a program condition during compi-
lation.

¢ If you’re in C-FFI, you’re probably working with fragments, and so fragment-source-location is the
right function.

e If you're in dfmc-definitions, then you probably also want fragment—-source-location.

* If you’re in conversion, you may be dealing with either fragments or model objects. For fragments, you want
fragment-source-location. For model objects, you want model-source-location.

e If you're in dfmc-optimization, then you likely want dfm-source—location if you're working with
an object that is part of the control flow or data flow graphs, like any computation or temporary. However,
in some cases, you’ll still be working with model objects, so keep an eye out for when you need to use
model-source—-location.

18 Chapter 5. DFMC, The Dylan Flow Machine Compiler

Open Dylan Hacker’s Guide Documentation, Release 0.1

Defining a new Program Condition
Depending on where you are defining your new program condition within the Program Condition Hierarchy, you will
need to use the appropriate program condition definer:

* performance-note-definer

* portability-note-definer

* program—-condition—-definer

* program—-error—-definer

* program-note—-definer

* program-restart-definer

* program-warning-definer

* run-time-error-warning-definer

* serious—-program-warning-definer

* style-warning-definer

An example definition looks like:

define program-warning <ambiguous-copy-down-method>
slot condition-method, required-init-keyword: meth:;
slot condition-other-methods, required-init-keyword: other—-methods:;
format-string "Multiple applicable copy-down methods for %s, picking one at random";
format—-arguments meth;
end;

An interesting thing to note here is that the other-methods are being recorded by this <program—note> even though
they are not used within the formatted output. This is because the additional values can be useful when viewing the
condition within the debugger or by other programmatic processing such as filtering.

PPML, Pretty Print Markup Language
When conditions are stored, their slots are converted to PPML objects. Many objects within the compiler are already

configured to be able to generate PPML via the many specializations of as (class == <ppml>, ...) thatcan
be found within the dfmc-debug-back—end (see print-condition.dylan).

Slots are converted to PPML representations via code that is autogenerated by the various definer macros which create
a specialization on convert-condition-slots-to—ppml.

Filtering of Program Conditions

This is functionality that has not been completed and is currently not entirely in use.

To be written.

How Warnings Are Displayed and Recorded

To be written.

5.1. Notes, Warnings and Errors 19

https://github.com/dylan-lang/opendylan/blob/master/sources/dfmc/debug-back-end/print-condition.dylan

Open Dylan Hacker’s Guide Documentation, Release 0.1

Responding to a Program Condition

In Dylan, the condition system allows for responses to conditions and can restart a computation with new information.
While parts of dfmc—conditions are designed to permit this, this functionality, has never been completed and is
not yet working.

Future Work

Look at cleaning up unused API and things that are no longer necessary.

obsolete-condition? is probably obsolete.

format-condition and related code including <detail-Ilevel> are probably no longer necessary with
the code in dfmc—-debug-back-end and the specialization on print—-object present there.

The specialization on print—object can probably go away.
simple-noteand simple—raise can go away.

There is a comment in dfmc/conversion/convert .dylan that the presence of dfm—context—id is
a hack until true source locations are available. Should we remove context—1id and the supporting code? (On
a related note, does that implementation of dfm—context—-id even work?

Complete other parts of the implementation:

Program condition filtering.
Program restarts.

Make <program-error> distinct from a serious warning. This would also need a change to
dfmc-debug-back-end and a specialization on condition-classification.

Use more of the various subclasses of <program—note> like the style, performance and portability notes.
This requires getting the filtering to work.

The implementation doesn’t use limited collection types where it can.

The DFMC-CONDITIONS API Reference

Definers for new Program Conditions

program—-condition-definer Macro

Macro Call
define [modifier*] program-condition *class-namex (xsupercla
*slot—-specx
format-string *stringx;
format-arguments *slotx, ...;
filter »filters;

end program-note;

Parameters
* modifier — One or more class adjectives. bnf
* class—name — A valid Dylan class name. bnf

* superclasses — One or more Dylan class names to be used as the superclasses for the
newly created program condition.

20

Chapter 5. DFMC, The Dylan Flow Machine Compiler

Open Dylan Hacker’s Guide Documentation, Release 0.1

* slot-spec — A slot specification.
* format-string - A format string valid for use with format.

* format—-arguments — One or more parameters which will be passed to format along
with the format-string. The parameter values will be drawn from the corresponding slots.

* filter — A Dylan expression to be used as the value for program-note-filter on
the new class. This should either be #£f or an instance of <function> which returns a
boolean value.

Discussion

This is not typically used outside of the dfmc-conditions library. It is used for creating a
new direct subclass of <program-condition>. Most often, program—note-definer
or a similar more specific definer macro would be used instead.

Any additional slot specifications will be modified slightly:
* The constant adjective will be removed if present.
* The type constraint for the slot will be a type union with <ppm1I>.
program-note-definer Macro

Macro Call

define [modifier*] program-note xclass-namex

xslot-s

format-string *stringsx;
format-arguments *slotx, ...;
filter «filters;

end program-note;

define [modifier*] program-note xclass-namex (*superclassesx)
xslot—-specx
format-string xstringsx;
format-arguments =*slotx, ...;

filter «xfilters;
end program-note;

Discussion Create a new <program-note> subclass.
performance-note-definer Macro

Discussion Create a new <performance—note> subclass. See program—-note—-definer
for details.

portability-note-definer Macro

Discussion Create a new <portability-note> subclass. See program-note-definer
for details.

program—error—-definer Macro

Discussion Create a new <program-error> subclass. See program—note—-definer for
details.

program-restart-definer Macro

Discussion Create a new <program—-restart> subclass. See program—-note—-definer for
details.

program-warning-definer Macro

5.1. Notes, Warnings and Errors 21

http://opendylan.org/books/drm/Function_Classes#function

Open Dylan Hacker’s Guide Documentation, Release 0.1

Discussion Create a new <program—-warning> subclass. See program—-note—-definer for
details.

run-time-error-warning-definer Macro

Discussion Create a new <run-time-error-warning> subclass. See
program-note-definer for details.

serious-program-warning—definer Macro

Discussion Create a new <serious-program-warning> subclass. See
program-note—definer for details.

style-warning-definer Macro

Discussion Create anew <style-warning—note> subclass. See program-note-definer
for details.

program—-condition-definer—definer Macro

Discussion This is not commonly used outside of dfmc-conditions. Itis creating new program-
conditioner definer macros.

Program Conditions

<program-condition> Open Abstract Class
Superclasses <format-string—condition>
Init-Keywords
* compilation-stage — Defaults to the value of xcurrent—-stagex.
* program-note-creator — Defaults to the value of xcurrent-dependent *.

* source-location — Defaults to #£. Every effort should be made to supply a valid value
for this keyword.

Discussion

The root of the hierarchy is <program-condition>. All errors, warnings, etc, about code
in a program being compiled should be reported as instances of this class.

This class should only be used for type declarations and as the superclass for mixin properties.
For instantiable classes, it’s best to subclass one of <program—-error>, <program—note>,
or <program-restart> instead.

<program-notes> Type
Supertypes <sequence>
<program-note> Open Primary Abstract Class
Superclasses <warning>, <program—condition>
Init-Keywords
* context-id - Aninstance of <string>.

* subnotes — A sequence of subnotes, allowing hierarchical explanations to be constructed.
See Subnotes.

Discussion

22 Chapter 5. DFMC, The Dylan Flow Machine Compiler

http://opendylan.org/books/drm/Collection_Classes#sequence
http://opendylan.org/books/drm/Condition_Classes#warning
http://opendylan.org/books/drm/Collection_Classes#string

Open Dylan Hacker’s Guide Documentation, Release 0.1

When a context-id has been supplied, this is used to give an indication of the logical context of
the source that the note is about, typically to give a concise textual hint, allowing for example
(where "process—foo" is the context-id:

foo.dylan:180:Warning in process-foo: Bogus call to bar.

<program—error> Open Abstract Class
Superclasses <program-note>

Discussion A <program—error> is a language error. Examples would be (most) syntax errors,
inconsistent direct superclasses, or a reference to an undefined name.

<program-restart> Open Primary Abstract Class
Superclasses <program-condition>, <restart>
Init-Keywords
* default -

Discussion A <program-restart>isa <restart> meant to be used as part of the recovery
protocol for some <program-condition>.

<program-warning> Open Abstract Class
Superclasses <program-note>

Discussion A <program-warning> is a note about something that might be a mistake in program,
but the compiler is able to compile it without intervention.

<run-time-error-warning> Open Abstract Class
Superclasses <program-warning>

Discussion Run-time-error warnings are given when the compiler can prove that executing the code
will lead definitely lead to a run-time error, whether or not that error is handled. These warnings
should be hard for the user to suppress. It should be possible for a user to treat these warnings
as errors; that is, stop the compilation process because of one.

<serious-program-warning> Open Abstract Class
Superclasses <program-warning>
<style-warning> Open Abstract Class
Superclasses <program-warning>

Discussion Style warnings are given when the compiler detects code in a style that is legal (strictly
speaking), but not desirable. The display of style warnings can be inhibited globally, or on a
class-by-class basis.

<performance-note> Open Abstract Class
Superclasses <program—note>

Discussion Performance notes are given when the compiler is prevented from doing an optimization
that should be reasonable or expected in the current context. Typical reasons would be that it has
insufficient type, sealing, or program flow information.

<portability-note> Open Abstract Class

Superclasses <program-note>

5.1. Notes, Warnings and Errors

23

http://opendylan.org/books/drm/Condition_Classes#restart
http://opendylan.org/books/drm/Condition_Classes#restart

Open Dylan Hacker’s Guide Documentation, Release 0.1

Discussion

Portability notes are given when the compiler detects something that is valid in the Open Dylan
compiler, but is not part of portable Dylan or could have undefined effects in Dylan.

It should be possible to turn these warnings into errors, to support a standards-conforming ver-
sion of the compiler.

Program Condition Slots

condition-compilation-stage Generic function
Signature condition-compilation-stage (object) => (value)
Parameters
* object — An instance of <program-condition>.
Values
¢ value — An instance of <object>.
condition-context-id Generic function
Signature condition-context-id (object) => (value)
Parameters
* object — An instance of <program-note>.
Values
e value — An instance of <object>.
condition-program—-note-creator Generic function
Signature condition-program-note-creator (object) => (value)
Parameters
* object — An instance of <program-condition>.
Values
* value - An instance of <object>.
condition-source-location Generic function
Signature condition-source-location (object) => (value)
Parameters
* object — An instance of <program-condition>.
Values

¢ value - An instance of <object>.

Signaling Program Conditions

note Open Generic function
Signature note (class #key #all-keys) => ()

Parameters

24 Chapter 5. DFMC, The Dylan Flow Machine Compiler

http://opendylan.org/books/drm/Object_Classes#object
http://opendylan.org/books/drm/Object_Classes#object
http://opendylan.org/books/drm/Object_Classes#object
http://opendylan.org/books/drm/Object_Classes#object

Open Dylan Hacker’s Guide Documentation, Release 0.1

e class — Aninstance of subclass (<program—condition>).

Discussion The primary program condition signaling interface is note, which calls make on the
condition class and signals it, possibly returning. It can be used for any program condition, but
is mainly oriented towards <program-note>.

Example

note (<inaccessible—-open-definition>,
binding: form-variable-binding(form),
source—-location: form-source-location (form));

note (subclass (<program—condition>)) Method
maybe—-note Macro
raise Open Generic function
Signature raise (class #key #all-keys) => ()
Parameters
* class — Aninstance of subclass (<program—-condition>).

Discussion This function is analogous to the standard Dylan e rror function and is guaranteed to
not return.

raise (subclass (<program—-error>)) Method
restart Open Generic function
Signature restart (class #key #all-keys) => ()
Parameters
* class — Aninstance of subclass (<program-restart>).

restart (subclass (<program-restart>)) Method

Preserving Program Conditions

Program conditions are tracked in each library. They are stored in a table that is associated with each
<library-description> via library-conditions—table. There are implementations of another
generic function, remove-dependent-program-conditions which is commonly invoked during retraction.
(What retraction is for isn’t clear to me at this point.)

add-program-condition Generic function
Signature add-program-condition (condition) => ()
Parameters
* condition — An instance of <condition>.

Discussion Records a program condition. This does not usually need to be invoked directly outside
of dfmc-conditions where it is usually invoked during the filtering of a program condition.

add-program-condition (<condition>) Method

Discussion Runtime errors that are not <program-condition> are not currently tracked. This
method doesn’t record them.

add-program—-condition (<program—-condition>) Method

5.1. Notes, Warnings and Errors 25

http://opendylan.org/books/drm/Constructing_and_Initializing_Instances#make
http://opendylan.org/books/drm/Operations_on_Conditions#error
http://opendylan.org/books/drm/Condition_Classes#condition

Open Dylan Hacker’s Guide Documentation, Release 0.1

Discussion

Preserves a program condition by storing it in the 1 ibrary-conditions—table for the
current library being compiled.

library-conditions—table Generic function
Signature library-conditions-table (library) => (table)
Parameters
* library — An instance of <object>.
Values
* table — An instance of <table>.
remove-program—-conditions—from! Generic function
Signature remove-program-conditions-from! (table key stages) => ()
Parameters
* table - An instance of <object>.
* key — An instance of <object>.

e stages — An instance of <object>.

Recovery and Restarting

condition-block Macro

*error—-recovery-modelx Variable

Subnotes
This is a very rarely used capability within the program condition system and isn’t currently well supported by the
compiler output to standard out and standard error.

Any <program-note> can have additional notes attached to it. These notes are useful for attaching extra data to a
note, like possible options or the sets of conflicting items.

An example usage of subnotes is:

note (<ambiguous—-copy—-down-method>,
meth: m,
other-methods: others,
source-location: m.model-source-location,
subnotes: map (method (m)
make (<ambiguous—copy-down—-method-option>,
meth: m,
source—-location: m.model-source-location)
end,
others));

Note: Subnotes are not displayed by the default printing of program conditions by the command line compiler. They
can be found in the condition log file that is created during the build process. (_build/build/foo/foo.loq)

subnotes Generic function

26 Chapter 5. DFMC, The Dylan Flow Machine Compiler

http://opendylan.org/books/drm/Object_Classes#object
http://opendylan.org/books/drm/Object_Classes#object
http://opendylan.org/books/drm/Object_Classes#object
http://opendylan.org/books/drm/Object_Classes#object

Open Dylan Hacker’s Guide Documentation, Release 0.1

Signature subnotes (object) => (value)
Parameters
* object — An instance of <program-note>.
Values
e value - An instance of <program-notes>.
note-during Macro
accumulate-subnotes—-during Macro

*subnotes—queuex Thread Variable

Printing Program Conditions

*detail-levelx Thread Variable
Type <detail-level>

Discussion

Note: This is currently ignored.

<detail-level> Type
Equivalent one-of (#"terse", #"normal", #"verbose")
Discussion

A simple, three-tiered approach to the amount of detail a condition presents.

Note: This is currently ignored.

Operations format-condition
format-condition Generic function
Signature format-condition (stream condition detail-level) => ()
Parameters
* stream - An instance of <stream>.
* condition — An instance of <program—-condition>.
* detail-level — Aninstance of <detail-level>.

Discussion This calls format to write to the st ream. The format string and arguments come from
the condition’s condition-format-string and condition-format-arguments
respectively.

print-object (<program-condition>, <stream>) Method
Signature print-object (condition, stream) => ()
Parameters
* condition — An instance of <program—-condition>.

* stream— An instance of <stream>.

5.1. Notes, Warnings and Errors

27

http://opendylan.org/books/drm/Operations_on_Conditions#condition-format-string
http://opendylan.org/books/drm/Operations_on_Conditions#condition-format-arguments

Open Dylan Hacker’s Guide Documentation, Release 0.1

Discussion

This calls format—condition with a detail-level of #"terse™".

This is provided for integrating program condition printing with the usual mechanisms for for-

matted output.

Note: This is not actually called often at all as there is a more specific specialization on
<program-note> defined in dfmc-debug-back-end.

Unclassified API

$record-program—note Constant
$signal-program—-error Function
Signature $signal-program-error (¢) => ()

Parameters

e ¢ — Aninstance of <condition>.

$signal-program—note Function
Signature $signal-program-note (c) => ()

Parameters

e ¢ — Aninstance of <condition>.

<ignore-serious—-note> Class
Superclasses <program-restart>
Init-Keywords
* format-string -
* note -

<program-note—-filter> Constant

convert-condition-slots—to-ppml Generic function

Signature convert-condition-slots-to-ppml (condition) => ()

Parameters

e condition — An instance of <condition>.

Discussion Converts all slots on a condition to their PPML representation.
cally autogenerated by the various program condition definer macros.

add-program—condition.

convert—condition-slots-to-ppml (<condition>) Method
convert—-condition-slots-to—-ppml (type—union (<simple-condition>,
convert—condition-slots—to—ppml (<program—-note>) Method
convert—condition-slots-to-ppml (<program-restart>) Method
convert—condition-slots-to-ppml (<program-warning>) Method

convert—condition-slots-to-ppml (<serious—program-warning>) Method

This is typi-
It is called from

<simple-error>,

28 Chapter 5. DFMC, The Dylan Flow Machine Compiler

<simple-war:

http://opendylan.org/books/drm/Condition_Classes#condition
http://opendylan.org/books/drm/Condition_Classes#condition
http://opendylan.org/books/drm/Condition_Classes#condition

Open Dylan Hacker’s Guide Documentation, Release 0.1

convert—-condition-slots-to-ppml (<program—error>) Method
convert—condition-slots-to-ppml (<run-time—-error-warning>) Method
convert—-condition-slots-to-ppml (<style-warning>) Method
convert—condition—-slots—to—ppml (<performance—note>) Method
convert—condition-slots-to-ppml (<portability-note>) Method
convert—condition-slots-to-ppml (<ignore-serious—note>) Method
convert-slots—to-ppml Macro
dfmc-continue Thread Variable
dfmc-restart Thread Variable
do-with-program-conditions Function
Signature do-with-program-conditions (body) => (#rest results)
Parameters
* body — An instance of <object>.
Values
e #rest results - Aninstance of <object>.
interesting-note? Generic function
Signature interesting-note? (note) => (interesting?)
Parameters
* note — An instance of <program—-note>.
Values

* interesting? — Aninstance of <boolean>.

Discussion True if the note is interesting to the user, according to the yet-to-be-defined compiler
policy object. Uninteresting conditions are suppressed, either by not printing messages for them
or not logging them at all. Because all errors and restarts are serious, they are also interesting.

interesting-note? (<program—note>) Method
Parameters
* note — An instance of <program—-note>.
Values
* interesting? — Always returns #t.
interesting-note? (<performance—-note>) Method
Parameters
* note — An instance of <performance—-note>.
Values
* interesting? — Always returns #f£.

make-program-note-filter Generic function

Signature make-program-note-filter (#key file-name from to in class action) => (filter)

Parameters

5.1. Notes, Warnings and Errors

29

http://opendylan.org/books/drm/Object_Classes#object
http://opendylan.org/books/drm/Object_Classes#object
http://opendylan.org/books/drm/Simple_Object_Classes#boolean

Open Dylan Hacker’s Guide Documentation, Release 0.1

e file—name (#key)— Aninstance of <string>.
* from (#key)— Aninstance of <integer>.
* to (#key)— Aninstance of <integer>.
e in (#key)— Aninstance of <string>.
e class (#key) — Aninstance of subclass (<condition>).
* action (#key) — An instance of <function>.
Values
e filter — Aninstance of <program-note—filter>.
obsolete-condition? Open Generic function
Signature obsolete-condition? (condition) => (obsolete?)
Parameters
* condition — An instance of <program—-condition>.
Values
* obsolete? — Aninstance of <boolean>.
obsolete-condition? (<program—-condition>) Method
Parameters
* condition — An instance of <program—-condition>.
Values
* obsolete? — Always returns #£f.

Discussion

Note: This is never used.

present-program—-error Generic function
Signature present-program-error (condition) => ()
Parameters
* condition — An instance of <condition>.
present-program—-error (<condition>) Method
present-program—error (<program—note>) Method
present-program-note Generic function
Signature present-program-note (condition) => ()
Parameters
* condition — An instance of <condition>.
present-program-note (<condition>) Method
present-program-note (<program-note>) Method
program-note—class—= Function

Signature program-note-class-= (class) => (pred)

30 Chapter 5. DFMC, The Dylan Flow Machine Compiler

http://opendylan.org/books/drm/Collection_Classes#string
http://opendylan.org/books/drm/Number_Classes#integer
http://opendylan.org/books/drm/Number_Classes#integer
http://opendylan.org/books/drm/Collection_Classes#string
http://opendylan.org/books/drm/Function_Classes#function
http://opendylan.org/books/drm/Simple_Object_Classes#boolean
http://opendylan.org/books/drm/Condition_Classes#condition
http://opendylan.org/books/drm/Condition_Classes#condition

Open Dylan Hacker’s Guide Documentation, Release 0.1

Parameters
* class — Aninstance of subclass (<condition>).
Values
e pred — An instance of <function>.
program—-note—file—name—= Function
Signature program-note-file-name-= (file-name) => (pred)
Parameters
e file—-name — An instance of <string>.
Values
* pred — An instance of <function>.
program—-note—filter Open Generic function
Signature program-note-filter (class) => (filter)
Parameters
¢ class — Aninstance of subclass (<condition>).
Values
e filter — Aninstance of <program-note-filter>.
program—-note-filter (subclass (<program—note>)) Method
program—note—filter (subclass (<condition>)) Method
program-note-filter (subclass (<program-warning>)) Method
program—-note-filter (subclass (<serious—-program-warning>)) Method
program—note—-filter (subclass (<run-time—-error-warning>)) Method
program—note—filter (subclass (<style-warning>)) Method
program—-note-filter (subclass (<performance—-note>)) Method
program—-note-filter (subclass (<portability-note>)) Method
program-note—-filter-setter Open Generic function
Signature program-note-filter-setter (filter class) => (filter)
Parameters
e filter — Aninstance of <program-note—filter>.
e class — Aninstance of subclass (<program—condition>).
Values
e filter — Aninstance of <program-note-filter>.
program—note—-filter-setter (<program—note-filter>, subclass (<program—-condition>)) Method
program—-note-in Function
Signature program-note-in (form) => (pred)
Parameters

e form - An instance of <string>.

5.1. Notes, Warnings and Errors 31

http://opendylan.org/books/drm/Function_Classes#function
http://opendylan.org/books/drm/Collection_Classes#string
http://opendylan.org/books/drm/Function_Classes#function
http://opendylan.org/books/drm/Collection_Classes#string

Open Dylan Hacker’s Guide Documentation, Release 0.1

Values
* pred — An instance of <function>.
program-note-location-between Function
Signature program-note-location-between (from to) => (pred)
Parameters
e from - An instance of <integer>.
* to - Aninstance of <integer>.
Values
* pred — An instance of <function>.
report—-condition Open Generic function
Signature report-condition (condition) => ()
Parameters
* condition — An instance of <condition>.
serious—-note? Generic function
Signature serious-note? (note) => (serious?)
Parameters
* note — An instance of <program-note>.
Values
* serious? — Aninstance of <boolean>.
Discussion

True if this note is serious — that is, requires terminating the current processing and picking a
restart. The default behavior is that notes are not serious, but the policy object should allow up-
grading them, with options like “all warnings are errors” for making <program-warning>
serious, or “strict Dylan” for making <portability-note> serious.

Errors are always serious, by definition, because the compiler can’t just skip them. Restarts are
always serious, as much as such a definition make sense for them.

serious—-note? (<program-note>) Method
Parameters
* note — An instance of <program-note>.
Values
* serious? — Always returns #f£.
serious—-note? (<program-error>) Method
Parameters
* note — An instance of <program—-error>.
Values
* serious? — Always returns #t.

serious—note? (<serious—-program-warning>) Method

32 Chapter 5. DFMC, The Dylan Flow Machine Compiler

http://opendylan.org/books/drm/Function_Classes#function
http://opendylan.org/books/drm/Number_Classes#integer
http://opendylan.org/books/drm/Number_Classes#integer
http://opendylan.org/books/drm/Function_Classes#function
http://opendylan.org/books/drm/Condition_Classes#condition
http://opendylan.org/books/drm/Simple_Object_Classes#boolean

Open Dylan Hacker’s Guide Documentation, Release 0.1

Parameters
* note — An instance of <serious-program-warning>.
Values
* serious? — Always returns #t.
simple-note Generic function
Signature simple-note (class format-string #rest args) => ()
Parameters
¢ class — An instance of subclass (<program—note>).
* format-string - Aninstance of <string>.
* args (#rest)— An instance of <object>.
simple-raise Generic function
Signature simple-raise (class format-string #rest args) => ()
Parameters
* class - Aninstance of subclass (<program-error>).
e format-string - Aninstance of <string>.
* args (#rest) — An instance of <object>.
with-program—-conditions Macro
with-simple—abort-retry-restart Macro

Not yet fully updated:

Compiler Design (Old)

Adding a DFM computation

What you have to do to add a new node class to the DFM:

¢ Add it to flow—graph/computation.dylan, and ensure that you export it from
flow-graph/flow-graph-library.

* Create the converters to generate it. Likely in conversion, but some nodes are only created by optimizations.
e Make sure all the back ends handle it. This includes, at least:

— c-back-end

— debug-back-end — the printer

— all native back ends

¢ In addition, it would be good to add any invariant checks to f1ow-graph/checker.dylan.

5.2. Compiler Design (Old) 33

http://opendylan.org/books/drm/Collection_Classes#string
http://opendylan.org/books/drm/Object_Classes#object
http://opendylan.org/books/drm/Collection_Classes#string
http://opendylan.org/books/drm/Object_Classes#object

Open Dylan Hacker’s Guide Documentation, Release 0.1

DFM block constructs
bind-exit

First, let’s look at an example of bind-exit.

block (exit) exit(42); 13 end; =>

[BIND]

t2 := [BIND-EXIT entry-state: &tl body: L1 exit-to: LO]
Ll:

td = 742

tl2 := exit entry-state: &tl value: t4

t6 := "13

end-exit-block entry-state: &tl

LO:

t7 := [MERGE t2 t6]

return t7

(That’s before register assignment, to make the difference in the temporaries used in the merge node clear.)

The <bind-exit> node establishes the place the exit jumps to, an <entry-state>. This is communicated to <exit> and
<end-exit-block> through the temporary t1. The temporary returned by the <bind-exit> is set by the exit procedure.

(The printing code shows up one inconsistency: the temporary generated by the <bind-exit> node is actually not live
after that point. It’s live only if the exit procedure is taken. On the other hand, the entry-state is live after that point.
Perhaps which temporary is the generated one from a <bind-exit> node should be exchanged.)

The merge node combines the two temporaries that could contain the result of the <merge> node — t2 by exiting, t6
by falling through. The <end-exit-block> node exists for at least two purposes: to possibly bash the exit procedure
or entry state in order to prevent calls outside of its dynamic scope and to stop a thread in the execution engine. It
references the entry state in order that it can be found from the <bind-exit> node.

Before we see the compiled code, here’s the DFM code after register allocation:

block (exit) exit (42); 13 end; =>

[BIND]

t2 := [BIND-EXIT entry-state: &t0 body: L1 exit-to: LO]
Ll:

tl = 742

t3 := exit entry-state: &t0 wvalue: tl

t2 := ~13

end-exit-block entry-state: &tO

LO:

t2 := [MERGE t2 t2]

return t2

And this is the C code:

block (exit) exit (42); 13 end; =>
D L4988I () {
D TO;
D T2;
D T1;
D T3;

TO = dNprimitive_make_bind_exit_frame () ;

if (setjmp (dNprimitive_frame_destination(T0))) {
T2 = dNprimitive_frame_return_value (TO0);
goto LO;

34 Chapter 5. DFMC, The Dylan Flow Machine Compiler

Open Dylan Hacker’s Guide Documentation, Release 0.1

Ll:
Tl = I(42);
dNprimitive_nlx(T0, T1);
LO:
return (T2) ;

}

The only gotcha (other than how setjmp works in C) is that the emission engine knows that there’s no point in gener-
ating code for the stuff that follows an <exit> node; it’s a primitive form of dead code elimination. So that’s why the
t2 := 713 and <end-exit-block> nodes are not emitted.

The call to dNprimitive_nlx unwinds all <unwind-protect> frames on the way back to the entry state marked by TO.
Eventually, (unless some cleanup calls another exit procedure) it will longjmp to the site of the setjmp. The second
argument to dNprimitive_nlx is shoved into the dNprimitive_frame_return_value of the entry state.

On the other hand, if we omit the call to the exit procedure (or if there’s some control flow path which falls through,
or if it isn’t inlined, as it was above), the generated code is:

block (exit) 13 end; =>
D L1502 () {
D TO;
D T1;

TO = dNprimitive_make_bind_exit_frame () ;
if (setjmp (dNprimitive_frame_destination(T0))) {
Tl = dNprimitive_frame_return_value (TO);
goto LO;
}
Ll:
Tl = I(13);
/+ invalidate TO %/
LO:
return (T1) ;

}

Note that the call just falls through from the assignment to T1 to the return; no jump need take place.

The comment about invalidating reflects something I think we should do, but haven’t done yet, which is ensure that
the exit procedure is bashed when we leave the block. Bashing a single slot should be sufficient.

unwind-protect

Now, let’s consider the DFM code for an unwind-protect:

block () xxx() cleanup yyy() end; =>

[BIND]

[UNWIND-PROTECT entry-state: t0 body: L1 cleanup: L2 next: LO]
Ll:

tl = "xxx

t2 := [CALLx tl1l()]
end-protected-block entry-state: tO
LO:

return t2

L2:

t3 = "yyy

[CALLx t3()]

end-cleanup-block entry-state: tO

5.2. Compiler Design (Old) 35

Open Dylan Hacker’s Guide Documentation, Release 0.1

I think this code is pretty straight-forward, at least in terms of the data flow graph. Note that t2 is live in the code
outside the block statement.

block () xxx() cleanup yyy () end; =>
D L2437 () {
D TO;
D T1;
D T2;
D T3;

TO = dNprimitive_make_unwind_protect_frame () ;
if (setjmp (dNprimitive_frame_destination(TO0)))
goto L2;
Ll:
Tl = dNxxx;
T2 CALLO (T1);
L2:
T3 = dNyyy;
CALLO (T3);
dNprimitive_continue_unwind() ;
LO:
return (T2) ;

}

The dNprimitive_continue_unwind just returns in this case. If the cleanup clause were invoked by an exit
procedure, it would have set a flag in the frame indicating that it continues non-local-exiting. The important thing to
see is that the decision about whether to fall through from the cleanup clause into the code outside the block is made
by dNprimitive_continue_unwind, based on dynamic information.

Final notes

Finally, note that a block with both an exit procedure (bind-exit) and a cleanup clause (unwind-protect) is simply a
bind-exit wrapped around an unwind-protect.

Optimizations

Lots of optimizations can be done. Off the top of my head:
* Code following an <exit> is dead; it should be dead-code eliminated in the DFM.

e If an <exit> is inlined and there are no <unwind-protect> nodes between it and the <bind-exit>, it
can be turned into a control transfer.

e If there are no <exit> nodes for a given <entry-state>, the <bind-exit> node can be removed.

An invalid optimization that had been suggested was to merge nested <unwind-protect> nodes without interven-
ing <bind-exit> nodes with a test in the merged cleanup to determine whether the inner cleanup is still active.
This isn’t valid because then the inner cleanup is no longer protected by the outer cleanup.

DFM local assignment

We really want the DFM to be a single assignment form. That is, all temporaries should be defined and then never
mutated. We want this because it makes many optimizations (common sub-expression elimination, inlining, etc)
significantly easier. See the usual set of SSA papers for details; I can dig up references.

On the other hand, Dylan has assignment to locals, and we model locals with temporaries. Since the DFM doesn’t
have cycles (loops), we could replace assignments fo variables which aren’t closed over with new temporaries, in the

36 Chapter 5. DFMC, The Dylan Flow Machine Compiler

Open Dylan Hacker’s Guide Documentation, Release 0.1

same way as SSA code is usually generated. But all the interesting cases in Dylan are when assigned variables are
closed over, especially because they’re assigned to in loop bodies.

Instead, based on Keith’s suggestion, I map our Dylan-esque DFM into one that matches how ML, at the language
level, with references (mutable variables): all temporaries which are assigned to are replaced with temporaries referring
to boxed values.

The current approach:

I introduced three primitives:

make-box t => box // create a box, containing t
get-box-value box => t // return the value inside the box
set-box-value! box t => t // set the value inside the box

There is a new compiler pass (eliminate-assignments) which traverses a DFM graph and does the rewriting.

Here’s an example of what happens:

begin let a = 13; a := 42; a end; => // before
[BIND]
t0 ~13
tl = ™42
Qa := tl1
return tO

begin let a = 13; a := 42; a end; => // after
[BIND]
t0 := ~13
tl := [PRIMOP primitive-make-box (t0)]
t2 = ™42
[PRIMOP primitive-set-box-value! (tl, t2)]
t3 := [PRIMOP primitive-get-box-value(tl)] // tail call

return t3

The eliminate-assignments pass should happen before any of the inferesting optimizations, and should never need to
be done twice on the same piece of code.

What remains to be done:
We probably want to turn these primitives into DFM computations before trying to do any optimizations on them.

make-box currently allocates the boxed cell in the heap. It should really allocate the cell either a closure or stack
frame, depending on whether the box has dynamic extent. If the temporary the box is bound to (tl in the example
above) is only used as with get-box-value and set-box-value!, then we know that the box has the same extent as that
temporary. I’'m don’t think that all optimizations will preserve that property, but it will probably be maintained most
of the time.

When we have temporaries which aren’t closed over, most of the time we should be able to do SSA-like elimination
of assignments, rewriting them by introducing new temporaries. For example, assignment inside a conditional can
produce something like this

begin let a = 1; if (p?) a := 2 else end; a end; =>
[BIND]
t2 = "1
t8 := [PRIMOP primitive-make-box (t2)]
t9 = "p?
if (t9) goto L1l else goto L2
Ll:
tl3 = "2
tll := [PRIMOP primitive-set-box-value! (t8, t13)]
LO:

5.2. Compiler Design (Old) 37

Open Dylan Hacker’s Guide Documentation, Release 0.1

[MERGE t11 t14]

t10 := [PRIMOP primitive-get-box-value (t8)] // tail call
return t10

L2:

tld := "g#f

goto LO

but that should be easy to turn into

[BIND]

tl = "p?

if (tl) goto L1 else goto L2
Ll:

t2 = "2

LO:

t4 := [MERGE t2 t3]
return t4

L2:

t3 = "1

goto LO

This sort of optimization, in the absence of cycles, is pretty easy. It may be more work making it happen for loops
built up from tail calls, but still not as bad as SSA conversion in general.

DFM multiple values

To represent multiple values, there’s a new temporary class in the DFM, <multiple-value-temporary>. Multiple values
temporaries are not interchangeable with other temporaries; maybe we should introduce a <simple-temporary> class
for non-multiple-value temporaries, but we can do that later. In the debugging print code, MV temporaries print with
a * in front of them.

A multiple value temporary is the result of any computation which can produce multiple values, notably a call.

In order to produce efficient code, we have imposed the requirement that at most one MV temporary is live at a time
(per thread). This allows us to allocate space for all MV temporaries ahead of time, as part of the calling convention,
in the multiple value area. It is generally best to think of the multiple value area, which is used to pass multiple values
across calls, as a single multiple valued register, which we allocate to the live MV temporary.

When there really is more than one live MV temporary, we must spill and unspill uses. One of the important optimiza-
tions is to reduce these spills when the number of values in a MV temporary is known, by extracting them into normal
temporaries and repackaging them as an MV temporary when needed as one.

A multiple value temporary has slots which describe the number of required values and whether there are rest values.
Types need to be incorporated here, just as with other temporaries. There’s also a slot for a normal temporary, which
is used when spilling the multiple value temporary.

To manipulate multiple values, there are five new computation classes:
<values>
super: <computation> slots: fixed-values, rest-value

Creates a <multiple—-value-temporary> from a set of single value temporaries. For
now, a <values> node comes from a converter for the function macro values; in the future,
there should be only one <values> node created directly, and the rest created by inlining the
function values from the Dylan library. (A similar change needs to be made for <apply>.)

values (1, 2, 3) =>
[BIND]

38 Chapter 5. DFMC, The Dylan Flow Machine Compiler

Open Dylan Hacker’s Guide Documentation, Release 0.1

t0 = "1
tl = "2
t2 = "3
*t3 := [VALUES t0 tl t2]

return *t3

<extract-single-value>
super: <computation> slots: multiple-values, index, rest-vector?

Produces a single-valued temporary from an MV temporary. The index is used to select which
multiple value is extracted; the indices are numbered from 0. If rest-vector? is true, a vector
of the values from index on is returned, rather than just the index. (Perhaps that should be a
different <computation> class.)

These very commonly follow calls, extracting the single value. They should also appear based
on optimizations of let bindings.

f(g()) =>
[BIND]
t0 := ~f
tl = "g
*t2 := [CALLx t1()]
t3 := xt2 [0]
xtd4 := [CALLx t0(t3)] // tail call

return *t4

<multiple-value-call>
super: <function-call>

Like an <apply> with no fixed arguments and a MV temporary as the single (last) argument.
Constructed from let declarations which bind multiple values. (This could be used for all
lets, but I wanted to wait with that until the multiple value optimizations were in place.)

The most important optimization with these nodes is to upgrade the calls to <simple-call> or
<apply> with the shape of the MV temporary argument is know. If it’s not known, the simplest
code generation strategy is to extract all of the temporary values and transform the call into an

<apply>.

begin let (a, b) = £(); g(a, b) end =>

[BIND]

t3 := 7 [XEP lambda 741 [743] (a, b)
[BIND]
t0 = "g
xtl := [CALLx tO(a, b)] // tail call
return *tl

end lambda]

t0 = ~f

*tl := [CALLx tO()]

*t2 := [MV-CALLx t3(xtl)] // tail call

return *t2

<multiple-value-spill> <multiple-value-unspill>
super: <temporary-transfer>

These instructions turn an MV temporary into a single-value temporary and vice-versa, for the
purpose of maintaining the property that a single MV temporary is live at a time. As much as
possible, we should try to avoid these instructions in generated code, which can be done when
we know we’re dealing with a fixed number of values.

5.2. Compiler Design (Old)

39

Open Dylan Hacker’s Guide Documentation, Release 0.1

These computations are only generated by the mandatory compiler pass
spill-multiple-values, which should run after all optimizations have happened. (The
reason that it should run afterwards is the spill code can defeat other optimizations and other
optimizations can get rid of the need to spill.)

block () f() afterwards g() end =>
[BIND]
t0 := ~f
*tl := [CALLx tO0 ()]
t3 := [MV-SPILL *tl]
t2 = "g
[CALLx t2()]
xt4 := [MV-UNSPILL t3]

return *t4

The reason the spill is needed is that the call to g tramples over the multiple value area.

In the C run time, there’s an extra data structure, MV, as follows:

typedef struct _mv {
int count;
D value [VALUES_MAX] ;
P MV;

There’s one global such thing (Preturn_values), and one per bind-exit or unwind-protect frame, used for the return
value that’s being passed around. The ones that live in those frames should probably be shortened to some small
number of values (2?7 4? 8?) and evacuate to the heap if more multiple values are stored; it’s pretty rare, I expect, for
a large number of values to appear in an unwind-protect frame, or to be passed back with an exit procedure.

The C code generated for all of these is pretty stupid right now, calling out to primitives in all cases, so I won’t bother
to present it. I want to get to the task of optimizing multiple values soon. I think that a little bit of optimization will go
a long way here.

In the native run-time, we’ll pass the first few multiple values and (if there is one) the count in registers. Tony can
describe that far better than I can.

define compilation-pass macro
NOTE: this is currently not used at all - it had been dropped before going open source, but in general I (hannes) believe
it is a good idea (and plan to revive it), thus I keep the documentation.

I’'ve now replaced the old mechanism for specifying compilation passes in the DFM compiler (setting the vector
compilation-passes in compile.dylan) with a declarative system, based around a macro, define compilation-pass.

The macro is exported by dfmc-common, so every module should have it. The basic idea is that you put a compilation-
pass definition in the same place as you define the main entry point for a compiler-pass; the definition includes things
about the pass, such as when its run, how it is called, and if it should cause other passes to run.

First, a simple example:

define compilation-pass eliminate-assignments,
visit: functions,
mandatory?: #t,
before: analyze-calls;

This defines a pass named eliminate-assignments, which runs before analyze-calls is run; it is possible to use arbitrarily
many before: options. The mandatory option declares that the pass is part of optimization level 0; that is, it’s always
run.

40 Chapter 5. DFMC, The Dylan Flow Machine Compiler

Open Dylan Hacker’s Guide Documentation, Release 0.1

The visit: functions option says that the function is called for every function in the form being compiled. The default
is visit: top-level-forms, which corresponds to the previous behavior.

define compilation-pass try-inlining,
visit: computations,
optimization: medium,
after: analyze-calls,
before: single-value-propagation,
triggered-by: analyze-calls,
trigger: analyze-calls;

The visit: computations option says that every computation (in the top-level and all nested lambdas) is passed to the
pass’s function. The after: option is like before: in reverse.

The trigger: option runs the named pass if the pass being defined reports that it changed anything. If the triggered pass
has already run, then it is queued to run again; if the triggered pass is disabled or of a higher optimization level than
currently being used, it’s not run. Triggered-by: is trigger: in reverse.

A pass function reports that it changed something by returning any non-false value.
Full catalog of options:

visit: What things to pass to the pass’s function: top-level-forms Just the top-level function. functions
Every function. computations Every computation in every function.

optimization: What level of optimization to run this pass for? (Choices: mandatory, low, medium,
high.)

mandatory?: Always run this pass; overrides optimization:.
before: Run this pass before the named one. after: Run this pass after the named one.

trigger: If this pass changed something, run the named pass. triggered-by: If the named pass changes
something, run this pass.

print-before?: Print the DFM code before calling the pass. print-after?: Print the DFM code after the pass
is done. print?: Same as print-before?: #t and print-after?: #t.

check-before?: Call ensure-invariants before calling the pass. check-after?: Call ensure-invariants after
the pass is done. check?: Same as check-before?: #t and check-after?: #t.

back-end: Turn pass on for the named back end. (Default: all) exclude-back-end: Turn pass off for the
named back end. (Default: none.)

disabled?: Turn pass off; overrides everything else.
Convenience functions:
trace-pass(pass-name) untrace-pass(pass-name)
Turns on (or off) printing and checking (both before and after) for the pass.
untrace-passes()
Calls untrace-pass for all traced passes.
Global state:
The thread-variable xback—-end« is used with the options back-end: and exclude-back-end:.

The thread-variable xt race-compilation-passesx will print a message about each pass as it runs, and report
when one pass triggers another.

5.2. Compiler Design (Old) 41

Open Dylan Hacker’s Guide Documentation, Release 0.1

Compiler Internals (Old)

Introduction

This chapter is an overview of the libraries involved during compilation, information was gathered while hacking
on the compiler. It focuses only on DFMC, the Dylan Flow Machine Compiler, located in sources/dfmc of the
opendylan repository.

But first look how to get there: let’s consider the command-line compiler, invoked with

dylan-compiler -build hello-world

There is a fairly long call chain to perform the compilation, starting with command-line parsing in
sources/environment/console/command-line.dylan, which looks like this:

do-execute-command (..., <build-project-command>)

(defined in sources/environment/commands/build.dylan)
build-project

(defined in sources/environment/dfmc/projects/projects.dylan)
compile-library
parse—and-compile

(defined in sources/project-manager/projects/compilation.dylan)
parse-project-sources

(defined in sources/dfmc/management/definitions-driver.dylan)
compile-project-definitions

(defined in sources/dfmc/browser-support/glue-routines.dylan)
compile-library-from-definitions

(defined in sources/dfmc/management/world.dylan called here

under the name ° dfmc-compile-library-from-definitions”™ due

to a prefixed import.).

To explain these long call chains, we need some more understanding of the different libraries of the compiler:
* environment is the public API
¢ project-manager is a bunch of hacks for
— finding the project source (via the registry)
— calling the compiler and linker (to create a dll/so and executable) afterwards.
¢ dfmc/browser-support and environment/dfmc are the glue from environment to DFMC.

The big picture is pretty simple: management drives the different libraries, some are the front-end (reader, macro-
expander) translating into definitions; some intermediate language (conversion, optimization, typist) which work on
the flow-graph; others are back-end, including linker. There is some support needed for the actual runtime, which is
sketched in modeling (parts of which are put into the dylan runtime library), namespace (which handles namespaces
and defines the dylan library and its modules).

First we need to introduce some terminology and recapitulate some conventions:
* the unit of compilation is a single dylan library
* the metadata of a library is stored in DOOD, the dylan object-oriented database

¢ loose (development) vs tight (production): loose mode allows runtime updates of definitions, like adding generic
function into a sealed domain, subclassing sealed classes - production mode has stricter checks

* batch compilation: when invoked from command line, or building a complete library

* interactive compilation: IDE feature to play around, adding a single definition to a library

42 Chapter 5. DFMC, The Dylan Flow Machine Compiler

Open Dylan Hacker’s Guide Documentation, Release 0.1

DFMC is well structured, but sadly some libraries use each other, which they shouldn’t (typist, conversion, optimiza-
tion).

In the remainder of this guide, we will focus on a simple example, which prints He1l1lo x times:

define method hello-world (x :: <integer>) => ()
do (curry (format-out, "Hello %d\n"), range(to: x))
end

dfmc-management

The library dfmc-management drives the compilation process, prints general information about what is happening at
the moment (progress, warnings) and takes care of some global settings like opening and closing source records, etc.

The main external entry point is compile-library-from-definitions in world.dylan. This requires that the
source has already been parsed (really? but it calls compute-library-definitions itself!).

It then calls in sequence compute-library-definitions, ensure-library-compiled,
ensure-library-glue-linked, ensure-library-stripped and ensure-database-saved,
apart from console output (warnings, stats).

The very first method, compute-library-definitions,callsensure-library-definitions-installed,
which calls update-compilation-record-definitions, which mainly calls
compute—-source-record-top-level-forms. This passes the compilation record to
read-top-level-fragment to get a fragment and then calls top-level-convert-forms.

The reader library defines the read-top-level-fragment, the definitions library the
top-level-convert-forms. Thus, a fragment is read and converted into definitions.

The method ensure-library—-compiled computes, finishes and checks the data models. Afterwards the code
models are generated (the control flow graph), then type inference is done and the optimizer is run. Finally the
heaps are generated. These are methods defined in compilation-driver.dylan, calling out to the modeling,
conversion, flow-graph, typist and optimizer libraries.

Finally the glue is emitted (in back-end-driver.dylan) and the database is saved, which contains metadata of
each library (like type information, code models, etc.).

Some global warnings for libraries are defined and checked for in the management library.

The unused file interface.dylan compares module and binding definitions, in order to judge whether the public
API of a library/module has changed between two versions. Usage of this would allow lazy recompilation: only
recompile if the API has changed of a linked library.

dfmc-reader

This library reads the Dylan source, tokenizes it, annotates source locations, and builds a parse tree. The parser is in
parser.dylgram, which uses app/parser—-compiler to generate infix-parser.dylan. The API used
is read-top-level-fragment and re-read-fragments.

Error handling is on the token level, thus a mismatched end is noticed. Other sorts of errors are invalid token, integer
too large, character too large, ratios not being supported, end of input (while more tokens were required).

Every <fragment>, the base class of the abstract syntax tree, has a compilation-record and a source-position.

So, for the above hello-world method, read-top—-level-fragment returns the following parse tree:

<body-definition-fragment>:
fragment-macro: <simple-variable-name-fragment>
fragment-name: #"method-definer"

5.3. Compiler Internals (Old) 43

Open Dylan Hacker’s Guide Documentation, Release 0.1

fragment-modifiers: #()
fragment-body-fragment:
<simple-variable—name-fragment>:
fragment-name: #"hello-world"
<parens—-fragment>:
fragment-left-delimiter: <lparen-fragment>
fragment-nested-fragments:
<simple-variable-name-fragment>:
fragment-name: #"x"
<colon-colon-fragment>
<simple-variable-name-fragment>:
fragment-name: #"<integer>"
fragment-right-delimiter: <rparen-fragment>
<simple-variable-name-fragment>:
fragment-name: #"do"
<parens—-fragment>:
fragment-left-delimiter: <lparen-fragment>
fragment-nested-fragments:
<simple-variable—-name-fragment>:
fragment-name: #"curry"
<parens—fragment>:
fragment-left-delimiter: <lparen-fragment>
fragment—-nested-fragments:
<simple-variable-name-fragment>:
fragment-name: #"format-out"
<comma-fragment>
<string-fragment>:
fragment-value: "Hello %d\n"
fragment-right-delimiter: <rparen-fragment>
<comma-fragment>
<simple-variable-name-fragment>:
fragment-name: #"range"
<parens—fragment>:
fragment-left-delimiter: <lparen-fragment>
fragment-nested-fragments:
<keyword-syntax—-symbol-fragment>:
fragment-value: #"to"
<simple-variable-name-fragment>:
fragment-name: #"x"
fragment-right-delimiter: <rparen-fragment>
fragment-right-delimiter: <rparen-fragment>
<semicolon-fragment>

NB: the type hierarchy for <body-definition-fragment> is: <definition-fragment>, <macro-call-fragment>,
<compound-fragment>, <fragment>, <object>

dfmc-definitions

Once the abstract syntax tree is generated (by the reader), it’s time to convert this into definitions, which are the
names in dylan. There are several top-level definitions in dylan, namely: binding, class, constant, (copy-down),
domain, function, generic, macro, method, module, namespace (library) and variable. Every definition has its own
class, inheriting from <top-level-form> (defined in common/top-level-forms.dylan). A top level form at least
contains information about its compilation record, source location, parent form, sequence number and dependencies
and referenced variables. Additional information available are adjectives, the word defined, its library, original library,
top level methods.

As a side note, dependency tracking is also defined in common/top-level-forms.dylan.

44 Chapter 5. DFMC, The Dylan Flow Machine Compiler

Open Dylan Hacker’s Guide Documentation, Release 0.1

The main entry point for the definition library is top—level—-convert (parent, fragment), defined in
top-level-convert.dylan.

The building of definition objects relies heavily on the macro-expander, especially on procedural macros described in
D-Expressions: Lisp Power, Dylan Style. Open Dylan extends the definitions with compiler, optimizer, primitive and
shared-symbols, mainly used internally in the compiler.

Looking into define-method.dylan, we can see a class <method-definition>. This is built by
the parser, more specifically there is a define &definition method-definer, which has two rules
to match fragments, whereas the second rule is the error case. The first matches any define method
syntax and calls do-define-method with the arguments. The method do-define-method defers the
work to helper methods parse-method-adjectives and parse-method-signature, and instantiates a
<method-definition> object.

For our hello-world example, do—define-method creates a single object:

<method-definition>
private-form-body: <body-fragment>
fragment-constituents: <prefix-call-fragment>
fragment—-arguments:
<prefix-call-fragment>
fragment—arguments:
<simple-variable-name-fragment>
fragment-name: #"format-out"
<string-fragment>
fragment-value: "Hello %d\n"
fragment-function: <simple-variable-name-fragment>
fragment-name: #"curry"
<prefix-call-fragment>
fragment—-arguments:
<keyword-syntax—-symbol-fragment>
fragment-value: #"to"
<simple-variable-name-fragment>
fragment-name: #"x"
fragment-function: <simple-variable-name-fragment>
fragment-name: #"range"
fragment-function: <simple-variable-name-fragment>
fragment-name: #"do"
private-form-signature: <method-requires-signature-spec>
private-spec-argument-next-variable-specs: <next-variable-spec>
private-spec-variable-name: <simple-variable-name-fragment>
fragment-name: #"next-method"
private-spec-argument-required-variable-specs: <typed-required-variable-spec>
private-spec-type-expression: <simple-variable-name-fragment>
fragment-name: #"<integer>"
private-spec-variable-name: <simple-variable-name-fragment>
fragment-name: #"x"
private-form-signature—-and-body-fragment: <sequence-fragment>
<parens-fragment>, <simple-variable-name-fragment>, <parens-fragment>, <semicolon-fragment>
private-form-variable-name-or-names: <simple-variable-name-fragment>
fragment-name: #"hello-world"

It is noteworthy that still no intra-library information is present, this is top-level Dylan code without any context. All
macros are expanded.

Excursion into run-time and compile-time

Some objects are defined in the compiler, but are injected into the Dylan world. How does this happen?

5.3. Compiler Internals (Old) 45

http://people.csail.mit.edu/jrb/Projects/dexprs.pdf

Open Dylan Hacker’s Guide Documentation, Release 0.1

In the Dylan library you see // BOOTED : comments here and there. The source location of well-known basic types
and functions is dylan:dylan—-user:boot—-dylan—-definitions.

There is no definition of this specific method.

The method boot-definitions—-form? (in dfmc-definitions) checks exactly for this name. The method
top-level-convert—-forms behaves differently if boot-definitions—form? returns true, namely it calls
booted-source-sequence (in boot-definitions.dylan) which grabs the boot-record and returns it sorted as a
vector.

But what is a boot-record after all? Well, its definition is all in boot-definitions.dylan, with the explanation “records
the set of things that must be inserted into a Dylan world at the very start. Some things are core definitions, such as
converters and macros, and these are booted at the definition level. The rest are expressed as source to be fed to the
compiler.”

The constant xboot-recordsx is filled by do-define-core-*. These are called by dfmc-modeling. Namely, primi-
tives (which names and signatures are installed), macros, modules, libraries, classes.

Be aware that the actual implementation of the primitives is in the runtime (either
sources/lib/run-time/run—-time.c or the runtime-generator generates a runtime.o containing those
definitions), but some crucial bits, like the adjectives (side—-effect-free, dynamic—extent, stateless
and opposited) are in dfmc-modeling and are used in the optimization!

The core classes are emitted from modeling with actual constructors. Be aware that the runtime layout is also recorded
in run-time.h.

The dylan library and module definitions are in modeling/namespaces.dylan.

A noteworthy comment is that a compiler (comp-0, generation 0) loads the Dylan library (dylan-0), which contains
the definitions (defs-0). When compiling itself (comp-1), first a fresh Dylan library (dylan-1) is built, which contains
still the old booted definitions (defs-0). It emits new definitions (defs-1) and a new boot-record when dumping dfmc-
definitions. Now the next generation compiler (comp-1) will use these new definitions in the next Dylan (dylan-2)
library. Beware of dragons.

dfmc-macro-expander

The deep magic happens here.

dfmc-convert

Converts definition objects to model objects. In order to fulfill this task, it looks up bindings to objects from
other libraries. Also converts the bodies of definitions to a flow graph. Does some initial evaluation, for example
limited(<vector>, of: <string>) gets converted to a <slimited-vector—type> instance. Thus,
it contains a poor-mans eval.

Also, creates init-expressions, which may be needed for the runtime. Since everything can be dynamic, each top-level
form may need initializing. This happens when the library is loaded.

Also sets up a lexical environment for the definitions, and checks bindings.

Here, type variables are now recorded into the lexical environment, the type variables are passed around while the
signature is checked.

After Dylan code is converted, it is in a representation which can be passed to a backend to generate code. Modeling
objects have corresponding compile and run time objects, and are prefixed with an ampersand, e.g., <¢obJject>.

46 Chapter 5. DFMC, The Dylan Flow Machine Compiler

Open Dylan Hacker’s Guide Documentation, Release 0.1

dfmc-modeling

Contains modeling of runtime and compile time objects. Since some calls are attempted at compile time rather than
at runtime, it provides these compile time methods with a mechanism to override the runtime methods (define
&override-function). An example for this is “instance?, compile time methods are prefixed with a *,
while compile and runtime class definitions are prefixed with &, like define &class <type>.

Also, DOOD (a persistent object store) models and proxies for compile time definitions are available in this library, in
order to load definitions of dependent libraries.

dfmc-flow-graph

The flow graph consists of instances of the <computation> class, like <if>, <loop-call>, <assignment>,
<merge>. The flow graph is in a (pseudo) static single assignment (SSA) form. Every time any algorithm alters the
flow graph, it disconnects the deprecated computation and inserts new computations. New temporaries are introduced
if a binding is assigned to a new value. Subclasses of <computation> model control flow, <temporary> (as
well as <referenced-object>) model data flow.

Computations are a doubly-linked list, with special cases for merge nodes, loops, if, bind-exit and unwind-protect.
Every computation may have a computation-type field, which is bound to a <t ype-variable>. It also may have a
temporary slot, which is its return value. Several cases, single and multiple return values, are supported. The temporary
has a link to its generator, a list of users and a reference to its value.

Additional (data flow) information is kept in special slots, test in <if>, arguments of a <call>, etc. These
are all <referenced-object>, or more specially <value-reference>, <object-reference>, etc.
<object-reference> contains a binding to its actual value.

<temporary> and <environment> classes are defined in this library.

join-2x1 etc. are the operations on the flow graph.

dfmc-typist

This library contains runtime type algebra as well as a type inference algorithm.

Main entry point is type-estimate, which calls type-estimate-in-cache. Each library contains a type-
cache, mapping from method definitions, etc. to type-variables.

Type variables contain an actual type estimate as well as justifications (supporters and supportees), used for propaga-
tion of types.

converts types to <t ype—estimate> objects

type—-estimate-function-from-signature calls type-estimate-body if available (in-
stead of wusing types of the signature), call chain is type-estimate-call-from-site ->
type-estimate-call-stupidly-from-fn-> function-valtype

contains hard-coded hacks for make, element, element-setter (in type—-estimate-call-from-site)

typist/typist-inference.dylan:poor-mans-check-type-intersection if #f (the temp), optimizer has determined that type
check is superfluous

dfmc/typist-protocol.dylan: 151 - does not look sane!

define function type-estimate=?(tel :: <type-estimate>, te2 :: <type—-estimate>)
=> (e? :: <boolean>, known? :: <boolean>)

// Dylan Torah, p. 48: tel = te2 iff tel <= te2 & te2 <= tel

let (sub?-1, known?-1) = type-estimate-subtype? (tel, te2);

let (sub?-2, known?-2) = type-estimate-subtype?(tel, te2);

5.3. Compiler Internals (Old) 47

Open Dylan Hacker’s Guide Documentation, Release 0.1

dfmc-optimization

This library contains several optimizations: dead code removal, constant folding, common subexpression elimination,
inlining, dispatch upgrading and tail call analysis.

Main entry point from management is really-run-compilation-passes. This loops over all lambdas in the
given code fragment, converts assigned variables to a <cell> representation, renames temporaries in conditionals,
then runs the “optimizer”. This builds an optimization queue, initially containing all computations. It calls do-
optimize on each element of the optimization-queue, as long as it returns #£. (The protocol is that if an optimization
was successful, it returns #t, if it was not successful, # £). For different types of computations different optimizations
are run. Default optimizations are deletion of useless computations and constant folding. <bind> is skipped, for
<function-call> additionally upgrade (analyzes the call, tries to get rid of gf dispatch) and inlining is done.
<primitive-call> are optimized by analyze—-calls.

constant folds (constant-folding.dylan):

// The following is because we seem to have a bogus class hierarchy
// here 8(

// We mustn't propagate a constraint type above its station, since
// the constraint is typically local (true within a particular

// branch, say).

& ~instance? (c, <constrain-type>)

optimization/dispatch.dylan: gf dispatch optimization

optimization/assignment: here happens the “occurrence typing” (type inference for instance?)...
<constrain—-type> is only for the instance? and conditionals hack

48 Chapter 5. DFMC, The Dylan Flow Machine Compiler

CHAPTER
SIX

THE RUNTIME

Originally written by:
Tony Mann, Jonathan Bachrach at Harlequin, Ltd.
4 December 1995

Object Representation

Harlequin’s implementation achieves dynamic typing of Dylan objects by associating the type with an object based on
tagging.

In many circumstances, the Dylan compiler can statically determine the type of an object. This knowledge can be
used to select an alternative representation which is more efficient than the canonical representation. For example,
the canonical representation of a double float object in Dylan is as a pointer to heap-allocated storage which contains
the IEEE bit pattern of the double float in addition to a reference to the Dylan class object <double-float>. The
compiler may choose to represent the value as a direct bit pattern, wherever this does not violate the semantics of the
program.

Tagging Scheme

All Dylan values are represented as data of the same size, the size of a pointer. The bit pattern of these values contains
tag bits which indicate whether the value is actually a pointer, or whether it is a direct value. Since there are three
major groups (integers, characters and everything else), the representation for all platforms is to use two bits.

Tag Bits | Type

00 Heap Allocated
01 Integers

10 Characters

11 Unused

Integers and Characters

Integers and characters are represented as direct values, using the tag bits as the only indication of type. The tagging
scheme uses the least significant two bits. With this scheme, a character or integer is converted to its untagged repre-
sentation by arithmetic right shifting by two bits. Similarly the conversion from an untagged to a tagged representation
is to shift left and add in the tag bits.

Operations on these values (e.g., addition, or other arithmetic operations) are always performed on the untagged
representation. This is sub-optimal, because it is possible to perform arithmetic operations directly on the tagged
values. It is planned to improve this mechanism at a later date, along with a revision of the tagging scheme.

49

http://opendylan.org/books/drm/Number_Classes#double-float

Open Dylan Hacker’s Guide Documentation, Release 0.1

Boxed Objects

Apart from integers and characters, all Dylan objects are indirectly represented as boxed values (that is, they are point-
ers to heap allocated boxes). The runtime system is responsible for ensuring that these boxed values are appropriately
tagged, because the runtime system provides the allocation service, and must ensure appropriate alignment.

Boxed objects are dynamically identified by their first slot, which is an identification wrapper. This identification
wrapper (itself a boxed Dylan object) contains a pointer to the class of the object it is wrapping, as well as some
encoded information for the garbage collector about which slots should be traced.

Dylan Object Wrapper Class
Wrapper slot b Wrapper slot - Wrapper slot
Dataslot 1 Class Meta class
Dataslot 2 Tracing data Class name

Boxed Objects

Note that two indirections are necessary to find the class of an object. In practice, this is a rare operation, because
almost all dynamic class testing within Dylan is implicit, and the implementation can use the wrapper for these implicit
tests. Note that there is potentially a many-to-one correspondence between wrapper objects and class objects.

The Dylan compiler builds literal boxed objects statically whenever it can. In practice, this will include most function
objects apart from closures, virtually all wrappers, and most class objects, as well as strings, symbols, and literal
vectors and lists.

Variably Sized Objects

Variably sized objects, such as strings, vectors and arrays, are boxed objects which contain a repeated slot. The
repeated slot is implemented as a variably sized data area preceded by a normal slot containing the size of the variably
sized data represented as a tagged integer. The size slot is used at the Dylan language level to determine the size of
the array. There is also a special encoding for it in the tracing data of the wrapper so that the memory manager knows
how to trace the repeated data. For example, an instance of the <byte-string> “foo” is represented as in:.

Function Objects

Dylan provides two built-in classes of functions: <generic-function> and <method>. These both obey the
same general purpose calling convention, but also support specialized calling conventions (described below) which
the compiler may use depending on the detail of its knowledge about the function being called, and the circumstances.
Slots in the function object point to the code which implements each convention.

50 Chapter 6. The Runtime

http://opendylan.org/books/drm/Collection_Classes#byte-string
http://opendylan.org/books/drm/Function_Classes#generic-function
http://opendylan.org/books/drm/Function_Classes#method

Open Dylan Hacker’s Guide Documentation, Release 0.1

III’EIEIII

<byle-string=-wrapper

g5ize=3

repeated data = "foo”

Fig. 6.1: An Instance of <byte-string>

All functions also have a slot which encodes the number of required parameters the function accepts, and whether the
function accepts optional or keyword parameters. Another slot in each function object contains a vector of the types
which are acceptable for each required parameter. These slots are used for consistency checking of the arguments.

Generic functions have further slots which support the method dispatching process — including a slot which contains
a vector of all the methods belonging to the generic function, and a slot which contains a cache of sorted applicable
methods for combinations of arguments which have been processed before.

Methods may be closures, in which case a slot in the method object contains the environment for the method, which
is represented as a vector of closed-over variables. If the variable is known actually to be constant, then the constant
value is stored directly in the vector. Alternatively, if there is any possibility of an assignment to the variable, then
the value is stored with an extra indirection to a value cell, which may be shared between many closures with related
environments.

Calling Convention

Some terminology

Arguments passed to a function at the implementation level fall into 2 different groups. Language parameters cor-
respond to the explicit arguments in the source code. Implementation parameters correspond to the house-keeping
information used by the implementation.

The overall calling convention consists of several specific conventions with different properties, described below. Each
convention is implemented by a separate entry point. There are partial orderings between the entry points for these
conventions, depending on how specific each one is. The code which implements a control flow from one entry point
to the next may be obliged to rearrange parameters (e.g. on the stack). This process is called stack fixing.

The register model

Three registers are used within the calling convention to support the passing of implementation parameters: Note that
for the C backend, global (or thread-local) variables might be used instead of real registers to pass these parameters.

Register | Purpose

arg-count | number of args passed

function the <function> object being called
mlist the next-method list (# £ for direct-entry)

6.2. Calling Convention 51

http://opendylan.org/books/drm/Collection_Classes#byte-string
http://opendylan.org/books/drm/Function_Classes#function

Open Dylan Hacker’s Guide Documentation, Release 0.1

The argument passing conventions

For each of the conventions, arguments are pushed onto the stack in reverse order (i.e. the rightmost argument is
pushed first). The leftmost (or leftmost few) arguments are passed in registers. This has a possible disadvantage
from the opposite ordering in terms of the need for temporary variables to hold interim results for order-of-evaluation
reasons. In practice, the disadvantages will be small because:

* Many arguments to functions are expected to be simple expressions (like constants or variable references) - so
order of evaluation does not normally matter.

* On a RISC implementation, we won’t want to push each argument anyway - instead it will be more efficient to
allocate enough stack space for the call, and store each argument when it’s available. This works well with a
conservative GC - but it might be poor with a total GC.

This calling convention has the following advantages:

* required arguments can always be found at a known offset from a stack or frame pointer for any of the calling
conventions

 optional arguments appear in the same order in memory as they would if vectored up as #rest parameters
* Stack allocating the optional arguments as vectors is almost trivial.

For the native code implementation, the callee is responsible for popping any arguments from the stack. This is always
possible (even with dynamically sized optional args), because the argcount is available to say how many arguments
were passed. This is not possible for the C backend - and this is the only substantial difference from the C arg passing
convention.

Calling Convention Goals
Internal entry points should be as efficient as possible. I.e. there should not be any constraints on them because Dylan
is a dynamic language.

1. There must be a consistent convention for all functions at the external entry point, so that functions can be called
without the caller having any knowledge of what they are.

2. The code which is executed at external entry points should be shared by all functions with similar properties /
lambda-lists.

3. The design should make the path from the external entry point to the internal entry point as simple as is reason-
ably possible.

The External Entry Point Convention

All Dylan function objects support the external convention. Each function object has an XEP slot containing the code
to support this convention. External entry points are used for all unoptimized, normal calls to functions. This includes
direct calls to methods and generic functions. Of course, whenever the compiler can use a more efficient entry point
instead, then it will.

The registers are used as follows:

Register | Purpose

argcount number of arguments
function the function object
mlist not used

If the function has a complex lambda list (with #rest or #key), then the external entry code will be one of a standard
set of stack fixing functions. This stack fixer will make use of information in the function register to determine which
keys to look for, whether the arg-count is legal, whether the arguments have appropriate types etc. The stack fixer will

52 Chapter 6. The Runtime

Open Dylan Hacker’s Guide Documentation, Release 0.1

then tail jump to the internal entry point (again, found from the function object). This mechanism requires 2 transfers
of control (caller -> stack-fixer -> callee).

For example, consider the following Dylan code:

define method funcl (a, b, #rest optionals, #key keyl, key2)
end method;
funcl(l, 2, key2: 99);

For the call to func1l, above, the parameters are described in the following table:

XEP Parameters for the Call to funcl

XEP Parameters Values

language parameters | 1, 2, #"key2", 99
argcount 4

function generic function funcl ‘

Internal Entry Point Convention

The IEP convention uses a fixed number of language parameters, corresponding to each of the parameters of the
function (5 in the case of funcl, above, corresponding to a, b, optionals, keyl, key2). In addition, there are two
implementation parameters:

* mlist, a list of the next applicable methods to call if the function is a method called from a generic function (this
parameter is used to support calls to next-method). If the function is not being called from a generic function,
the value is #f (false).

* function, the Dylan function object being called (as for the XEP).

The implementation parameters are not obligatory for all IEP code. It is only necessary to pass mlist if the function
contains a call to next-method. It is only necessary to pass function if the function is a closure (because the value
is used by the IEP code to locate the environment of the closure). If the IEP is called from the XEP code, both the
implementation parameters will always be set, even though they may not be necessary. For the same call to funcl,
above, the parameters are described in * <runtime.htm#12946>°_.

IEP Parameters for the Call to funcl

IEP Parameters Values

language parameters | 1, 2, optionals, #£, 99
mlist #£

function generic function funcl

Note that the language parameters now correspond to the formal parameters of the function, whereas, for the XEP,
they corresponded to the supplied arguments.

The value of optionals in the set of language parameters is the Dylan vector # [#"key2", 991 which corresponds
to all the optional arguments. The language parameter corresponding to key1 is # £, because the keyword #"key1"
was not supplied. However, the language parameter corresponding to key?2 is 99, because #"key2" was supplied
with that value.

The Method Entry Point Convention

All <method> objects support the method entry point convention. Each method object has an MEP slot containing
the code to support this convention. When a method is called by a generic function (or via next method), the caller
uses a dedicated entry point (available from the function object). If the method accepts #key or #rest parameters,
then the method is called with a (possibly stack-allocated) vector representing the optional args. This vector appears
as a single extra required argument.

6.2. Calling Convention 53

http://opendylan.org/books/drm/Function_Classes#method

Open Dylan Hacker’s Guide Documentation, Release 0.1

If the method accepts #key parameters, then the method entry point will process the supplied keywords - stack fixing
them so that they appear as required arguments. It will then tail-call the internal entry point.

If the method does not accept #key, then the method entry point is the same as the internal entry point.

Special Features

Introduction to bind-exit and unwind-protect

The following sections describe the implementation for the native code compiler, only.

Bind-exit and unwind-protect are represented on the stack as frames which contain information about how to invoke
the relevant continuation. Unwind-protect frames are also chained together, and the current environment of existing
unwind-protects is available in $current-unwind-protect-frame.

There are primitives to build each type of frame, and also to remove unwind-protect frames (bind-exit frames just have
to be popped - so that is done inline). The primitive which removes unwind-protect frames in the fall-through case
is also responsible for invoking the cleanup code (which is called as a sub-function in the same function frame as its
parent).

There are also primitives to do non-local exits (NVLX). These are passed the address of the bind-exit frame for the
destination, and also the multiple values to be returned. As part of the NLX, any intervening unwind-protects are
invoked and their frames are removed. Multiple-values are saved around the unwind-protects in the bind-exit frame of
the destination.

unwind-protect

An unwind-protect frame (UPF) looks as follows:

Offset | Value

8 address of start of cleanup code
4 frame pointer

0 previous unwind-protect frame

The compiler compiles unwind-protect as follows:

let frame = primitive-build-unwind-protect-frame (tagl);
do-the-protected-forms-setting-results—-as-for-a-return();
primitive-unwind-protect-cleanup();
goto (tag—-finished);
tagl:

do-the-cleanup-forms () ;

end-cleanup(); // inlined as a return instruction
tag-finished:

If the protected body exits normally, then primitive-unwind-protect-cleanup is called (in the runtime system). This
causes the unwind-protect frame to be unlinked from the chain, and the cleanup code to be invoked, as a subroutine
call within the same function frame as the protected body. The cleanup code finishes by executing a return instruction.
The runtime system ensures that any multiple values are restored, and returns control to the compiled code, which then
executes the code following the unwind-protect.

If the cleanup code is invoked because of an NLX, then the runtime function finds the ultimate destination bind exit
frame (BEF) from the UPF. The runtime function then passes this BEF to another runtime function (as for bind-exit)
to test whether there are any further intervening cleanups, or to transfer control to the ultimate destination if not.

54 Chapter 6. The Runtime

Open Dylan Hacker’s Guide Documentation, Release 0.1

bind-exit
A bind-exit frame (BEF) looks as follows:
Offset | Value
52 continuation address
48 frame pointer
44 current unwind-protect frame
4 space for stack-allocated vector for up to 8 multiple values
0 pointer to saved multiple values as a vector

The compiler compiles bind-exit as follows:

let frame = primitive-build-bind-exit-frame (tagl);

let closure = make-bind-exit-closure (frame);
do-the-bind-exit-body-setting-results—-as—-for—-a-return();
tagl:

During an NLX, multiple-values will be saved in the frame if an intervening unwind-protect is active. The frame itself
contains space for 8 values. If more values are present, then they will be heap allocated.

When an NLX occurs, the transfer of control is implemented by a call into the runtime system, passing the pointer to
the BEF as a parameter. The runtime function first checks whether there is an intervening cleanup, by testing whether
the target dynamic environment in the BEF matches the current global dynamic environment. If there is no intervening
cleanup, then control is transferred to the destination of the BEF. Alternatively, if there is an intervening cleanup, then
the ultimate destination field of the current UPF is set to the destination BEF, and the cleanup code is invoked within
a loop which repeatedly tests for further intervening unwind-protect frames until no more are found.

Multiple Values

The current implementation of multiple values supports Common Lisp semantics. It is about to be replaced by a new
version which supports the new Dylan semantics.

Harlequin’s current implementation uses a register to return a single Dylan value, as this is the only value that is used
by almost all callers. In addition, each function returns a count of the number of values being returned. This count
can be examined by the caller, if required, to determine how many values were returned. If a function is returning
more than one value, the additional values are stored in a global (thread-local) area, where the caller may retrieve
then, if desired. On RISC architectures, the multiple value count is returned in a register. For the x86 architecture,
the direction flag register is set / unset to specify whether single / multiple values are being returned, respectively. If
multiple values are being returned, then the count of the values is stored in a global (thread-local) location.

Documentation for the new version will be available shortly. Until then, here’s an overview:

Functions which return a fixed number of return values just return those values, without returning a count. The first
few values will be returned in registers (an architecture-specific number), and remaining values will be returned in a
thread-local overspill area. If a function always returns zero values, then no code need be executed to indicate this
fact.

Functions which return a dynamically-sized number of values return their values as above, but also return a count of
the number being returned in a register. If a function dynamically happens to return zero values, then the return count
will be set to zero, but the value #f will be returned as if it were the first return value.

If the caller of a function can statically determine the number of return values (i.e. at compile-time), then it need
perform no checks. However, if the caller has no knowledge of the function being called, then it must check the
properties of the callee function object to determine whether the static or dynamic convention is being used, and may
then need to read either the dynamic return value count, or the static count in the properties of the function object.

6.3. Special Features 55

Open Dylan Hacker’s Guide Documentation, Release 0.1

This design has some interesting implications for tail-call optimization. A function can simply tail another function
only if both the following rules apply:

1. The callee is known to return at least as many values as the caller, and they have appropriate types.

2. If the caller returns a dynamically-sized number of values, then the callee must too.

Name Mangling

In Dylan, unlike C, identifier names are case insensitive. Dylan also permits additional characters to appear in names.
As a further complication, Dylan provides multiple namespaces, and the namespaces are controlled within a two-tier
hierarchy of modules and libraries.

In order to make it possible to link Dylan code with tools designed to support more traditional languages, the Dylan
compiler transforms the names which appear in Dylan programs to C compatible names, via a process called mangling.

The library, module and identifier names are each processed, according to the following rules:
1. All uppercase characters are converted to lowercase.

2. Any character which appears on the left-hand side of the table is mapped to the new character sequence accord-

ingly.
Old | New | Comment
- _ dash
! X exclamation
$ D dollar
% P percent
® T times
/ S slash
< L less
> G greater
? 0 question mark
+ A plus
& B
A C caret
_ U underscore
@ 0]
= E
~ N

Finally, the fully mangled name is created by concatenating the mangled names together, along with other special
markers.

Example 1:

Kexecute_componentQYPtestworksVtestworks

K = constant (methods are constants)
execute_componentQ = method name (Q = ?)

Y = module separator

Ptestworks = module name (P = %)

\Y = library separator

testworks = library name

Example 2:

56 Chapter 6. The Runtime

Open Dylan Hacker’s Guide Documentation, Release 0.1

Kstream_sizeYstreams_protocolVcommon_dylanMioMOI

K = constant

Stream_size = method name

Y = module separator

streams_protocol = module name

\Y = library separator

common_dylan = library name

M = method separator

io = library which defines this method
M = method separator

0 = 0th method in stream_size generic
I = Internal Entry Point (IEP)

The Dylan mangling scheme takes care to omit some elements of the name when possible to help abbreviate the names.
The usual things that are omitted are:

* The module marker and name when the module name is the same as the library name.

* The name of the library where the method is defined (between the method separators). This is omitted when it
is the same as the library which defines the generic function.

We’ll see this in our next example:

Krun_test_applicationVtestworksMMOI

K = constant

run_test_application = method name

(module marker and name omitted when same as library name)

\Y library separator

testworks = library name

M method separator

library name omitted as this is defined in the same library as the generic)
= method separator

Oth method in run_test_application generic

= Internal Entry Point (IEP)

(
M
0
I

Bindings within the Dylan library are given special shortened forms. In this case, instead of the library separator V,
the library name and then the Y module separator, we would see the library separator V and then then special dylan
module separator K. Some modules within the dy 1an library are given special single letter abbreviations. For example
the dylan module’s name is just d and the internal module is 1.

Examples:
* KLempty_listGVKd
* Kcondition_format_arguments_vectorVKiI

See the source for more detail.

Compiler Support for Threads

Dylan Portability Interface

The Threads Library is designed for implementation using different threads APIs from common operating systems,
including Unix and Windows. Harlequin’s implementation of the library is designed to be directly portable onto these
operating systems. This portability is achieved by using primitive operations defined within our runtime system. Each
primitive operation must be implemented specially for each operating system.

6.5. Compiler Support for Threads 57

https://github.com/dylan-lang/opendylan/blob/master/sources/dfmc/mangling/mangling.dylan

Open Dylan Hacker’s Guide Documentation, Release 0.1

The set of portable primitive operations is collectively called the portability layer. The Dylan compiler has special
knowledge of the portability layer via primitive function definitions and some specialized emit methods for flow-graph
node types which are specific to threads.

Portability and Runtime Layers

The design assumes that each of the concrete classes of the Threads Library (<thread>, <simple—lock>,
<recursive-lock>, <semaphore> and <notification>) corresponds with an equivalent lower-level fea-
ture provided directly by either the operating system or the runtime system. The Dylan objects which are instances of
these classes are implemented as containers for handles corresponding to low-level (non-Dylan) objects. The Dylan
objects contain normal Dylan slots too, and these are directly manipulated by the Dylan library. However, the slots
containing the low-level handles may only be manipulated via primitive function calls. For each of the classes, prim-
itive functions are defined to both create and destroy the low-level handles, as well as to perform the basic functions
of the class, such as wait-for and release. The platform-specific implementation of these primitive functions is free to
choose any representation for these handles, provided that it is the same shape as a Dylan slot (which is equivalent to
C’s void *).

As with all Dylan objects, the container objects defined by the threads library are subject to automatic memory man-
agement, and possible relocation by the garbage collector. The contents of the container slots will be copied during
such a relocation — but the values they contain will not be subject to garbage collection or relocation themselves.

The portability layer provides no direct support for the dynamic-bind operation. The library implements a dynamic
variable as a thread-local variable via the high-level Dylan constructs define thread variable and block ... cleanup to
manage the creation and deletion of new bindings.

The portability layer includes support for conditional update of atomic variables, as well as assignment. The imple-
mentation mechanism for these is not defined, but it is hoped that many platforms will provide direct hardware support
for this operation. Where hardware support is not available, the low-level implementation may choose to use a lock to
protect conditional updates and assignments, as a fall back option. It is assumed that atomic variables may always be
read as normal variables.

Implementations of Dylan Thread Interfaces shows the expected mapping between the concrete Dylan classes and
low-level operating system features, for three of the most popular general-purpose operating systems.

Implementations of Dylan Thread Interfaces

Dylan Interface Unix Implementation | Win32 Implementation

<thread> thread thread

<simple-lock> mutex critical region

<recursive-lock> mutex critical region

<semaphore> semaphore semaphore

<notification> condition variable event

dynamic variable thread-local variable thread-local variable

conditional-update! | mutex exchange instruction (using a guard value as a lock);

Dylan Types for Threads Portability

Three Dylan types merit discussion for their use with portability primitives: <thread>,
<portable-container>. Objects that are instances of the <thread> and <portable-container>
classes have slots which contain lower-level objects that are specific to the Dylan runtime or operating system.

<thread>

[Class]

58 Chapter 6. The Runtime

Open Dylan Hacker’s Guide Documentation, Release 0.1

A Dylan object of class <thread> contains two OS handles. One of these represents the underlying OS thread, and
the other may be used by implementations to contain the current status of the thread, as an aid to the implementation
of the join state.

<portable-container>
[Class]

The <portable-container> class is used by the implementation as a superclass for all the concrete synchro-
nization classes (<simple—-lock>, <recursive-lock>, <semaphore>, and <notification>). Each
<portable-container> object contains an OS handle, which is available to the runtime for storing any OS-
specific data. Subclasses may provide additional slots.

Various classes of Dylan objects are passed through the portability interface, and hence require description in terms
of lower level languages. Correspondence Between Dylan Types and C Types maps the layout of these Dylan objects
onto their C equivalents, which are used by runtime-specific implementations of the portability layer.

In general, all Dylan types can be thought of as equivalent to the C type D, which is in turn equivalent to the C type
voidx. Of course, runtime-specific implementations of the portability layer must have access to relevant fields of the
Dylan objects on which they operate. The type definitions in Correspondence Between Dylan Types and C Types give
implementations access to fields needed for specific types. These definitions are not necessarily complete descriptions
of the Dylan objects, however. The objects may contain additional fields that are not of interest to the portability layer,
and subclasses may add additional fields of their own.

Correspondence Between Dylan Types and C Types

Dylan Type C Type C Type Definition

<object> D typedef void* D;

<integer> DINT platform specific (size of void*)

<function> DFN typedef D(*DFN)(D, int, ...);

<simple—-object-vectgrSOV* typedef struct _sov { * *D class; * *DINT size; D data[|; } SOV;

<byte-string> B_STRING* | typedef struct _bst { * *D class; * *DINT size, char data[]; }
B_STRING;

false—-or (<byte-stringB) NAME typedef void* D_NAME;

<portable-container> CON- typedef struct _ctr { * *D class; * *void* handle; } CONTAINER;

TAINER*

<thread> D_THREAD? typedef struct _dth { * *D class; * *void* handlel; void* handle2;

} D_THREAD;

Compiler Support for the Portability Interface

The Compiler Flow Graph

The front end of the compiler parses Dylan source code and produces an intermediate representation, the Implicit
Continuation Representation (ICR). The ICR is a directed acyclic graph (DAG) of Dylan objects. A leaf in the ICR
represents a basic computational object, such as a variable (of class <variable-leaf>) or a function (of class
<function-leaf>). A node in the ICR represents an operation such as assignment (class <assignment>),
conditional execution (class <if>), or a reference to a leaf (class <reference>).

In mapping Dylan code to the ICR, the compiler uses a set of converters, which perform syntactic pattern matching
against fragments of Dylan code and generate the ICR corresponding to the matched code. For example, when the
compiler encounters a top-level variable definition (introduced by the Dylan define variable construct), the converter
for define variable creates a new instance of <global-variable-1leaf> in the ICR to represent this variable and
to record data such as its name, initial value, and typing information.

6.5. Compiler Support for Threads 59

http://opendylan.org/books/drm/Object_Classes#object
http://opendylan.org/books/drm/Number_Classes#integer
http://opendylan.org/books/drm/Function_Classes#function
http://opendylan.org/books/drm/Collection_Classes#simple-object-vector
http://opendylan.org/books/drm/Collection_Classes#byte-string

Open Dylan Hacker’s Guide Documentation, Release 0.1

The back end of the compiler traverses the flow graph and emits code in the target language for compiler output.
Methods in the back end specialize on node and leaf classes to enable them to produce the appropriate output.

Compiler Support for Atomic and Fluid Variables

The portability layer provides support for atomic variable access and for Dylan fluid variables (implemented as thread-
local variables). Atomic variables and thread variables are directly represented in the flow graph, where they are subject
to dataflow analysis. The variables themselves appear as leaves in the graph.

Because both atomic and fluid variables need special treatment when they are accessed, the back end must
emit output that is different from that for accessing other kinds of variables. The compiler defines two spe-
cialized classes of leaf for the ICR, <atomic—-global-variable-leaf> (corresponding to atomic vari-
ables) and <fluid-global-variable-leaf> (corresponding to fluid variables). These are subclasses of
<global-variable-leaf> and therefore inherit general characteristics of leaves that represent variables.

ICR leaves representing both atomic and fluid variables are created by the converter for define variable. When
the compiler encounters a definition of an atomic variable (introduced by the define atomic-variable con-
struct), the converter for define variable creates an instance of <atomic—-global-variable-leaf>
in the ICR. When the compiler encounters a definition of a fluid variable (introduced by the define
fluid-variable construct), the converter creates an instance of <fluid-global-variable—-leaf>.

The operations of reading, writing, and conditionally updating atomic variables and of reading and writing fluid
variables are not represented by primitive functions. Instead, they are represented directly in the flow graph. They are
implemented by specializing methods on the leaf classes that represent atomic and fluid variables.

Compiler Support for Primitives

When the compiler constructs the flow graph, it represents a function call as a node in the ICR. Just as the compiler
distinguishes atomic and fluid variables by means of specialized leaf classes, so it distinguishes calls to primitive
functions of the portability interface by means of a specialized node class.

A function call is an operation on several components: the function object, the arguments, and the destination for
returned values. When the compiler encounters a regular Dylan call, which typically appears as a call to a generic
function, it represents the call in the ICR as a node of class <combination>.

However, the compiler contains a table of the primitive functions in the portability interface. Before creating an ICR
node to represent a function call, the compiler looks up the function being called in the table of primitives. If the
function appears in the table, the compiler creates an ICR node of class <primitive-combination>.

When the back end traverses the flow graph, methods specialized on the node class <primitive-combination>
emit calls to primitive functions.

Support for Dylan Language Features

Interfacing to Foreign Code

It is intended that threads created by the Dylan library may inter-operate with code written in other languages with no
special constraints. Dylan is interfaced with other languages via a Foreign Language Interface (FLI), which acts as a
barrier between Dylan conventions and the neutral conventions of the platform. The FLI is responsible for:

1. mapping between Dylan and foreign data types,
2. converting between Dylan and foreign calling conventions

3. maintaining the Dylan dynamic environment

60 Chapter 6. The Runtime

Open Dylan Hacker’s Guide Documentation, Release 0.1

4. maintaining any support necessary for garbage collection (such as ensuring that all Dylan values can be traced).

The first and second of these require no significant extensions to support multiple threads, since these are inherently
computations which have no effect on any thread other than the one performing the computation.

There is a requirement that the dynamic environment for each thread is stored in a thread-local variable. Since the
environment is stored in this way, its value is preserved across calls into foreign code, and it will still be valid if the
foreign code calls back into Dylan. The techniques described in [MG95] for maintaining the dynamic environment
across foreign calls are therefore directly appropriate to a multi-threaded implementation too.

If an object is passed to foreign code with dynamic extent, then it is sufficient to ensure that the object is referenced
from the current stack, which the garbage collector will scan conservatively. In a multi-threaded implementation, the
garbage collector will scan all the stacks conservatively, so there is no requirement to maintain a thread-global data
structure.

If an object is passed with indefinite extent, then it must be recorded in a table. The table may be maintained by
the runtime system, by means of suitable primitive functions to add and remove references. There are potentially
synchronization problems associated with multiple threads manipulating a global data structure — but the runtime
system implementation is free to choose whether to have separate tables for each thread, or whether to have a global
table with an associated lock to guard accesses. Either technique is possible — but Harlequin have not yet implemented
this feature.

One further consideration is the interaction of the Dylan threads library itself with foreign components:

If foreign code is not designed for multiple threads (for instance, because it uses global data structures, and doesn’t
synchronize updates), then the code may fail if it is invoked from multiple Dylan threads. However, this problem is
not related to the Dylan implementation, since it would fail if called from multiple threads created by any means. The
solution is to modify the foreign component to make it thread safe.

If foreign code is designed for use with multiple threads, then it is valid for it to use the synchronization facilities of the
Dylan library (by calling back into Dylan, to invoke the Threads Library synchronization functions). Alternatively, it
may use its own methods for synchronization, provided that these are not incompatible with the methods provided by
the operating system. This is valid whenever it has been possible to implement the runtime system support for threads
directly in terms of operating system features, and it is anticipated that this will always be true if the operating system
supports threads. Typically, foreign code is expected to make direct use of operating system threads facilities.

However, a problem may arise if a thread is created in foreign code, and the new thread then calls back into Dylan.
In this case, the Dylan thread library itself will not be able to find an existing <thread> object corresponding to the
current thread, and the fluid variables for the current thread will not have been correctly initialized. Worse still, the
garbage collector may not have enough information to locate the roots of the thread. Harlequin have not yet allowed
for this in their implementation, but they have an anticipated solution.

It is possible to detect that a thread has never been executing on the Dylan side of the FLI before because it will have
an uninitialized (zero) value for its thread-local dynamic environment variable. This can be checked at a call-in in
the stub function which implements the FLI. Once such a thread has been detected, appropriate initialization steps
can be taken. A function in the runtime system can be called to register the stack of the thread for root tracing; the
dynamic environment can be set to point to a suitable value on the stack; finally a new Dylan <thread> object can
be allocated and initialized with primitive—-initialize-current—thread (as for the first thread).

Finalization

As has been discussed, the Dylan synchronization objects are implemented as wrappers around lower-level operating
system structures. The Dylan objects are subject to garbage collection, and their memory will be automatically freed
by the garbage collector at an undefined point in the program. But the low-level structures are not Dylan objects and
must be explicitly freed when the Dylan container is collected (primitive functions are provided for this purpose).
However, the core language of Dylan provides no finalization mechanism to invoke cleanup code when objects are
reclaimed. Harlequin’s implementation of the Threads Library strictly requires this, but it is not yet implemented. It is
intended to provide finalization support for Dylan with a new garbage collector which is currently under development.

6.5. Compiler Support for Threads 61

Open Dylan Hacker’s Guide Documentation, Release 0.1

Startup

When a Dylan library (either a shared library/DLL or executable) is loaded, a number of initialization tasks need to
take place:

* The Dylan run-time facilities, including the garbage collector and the main thread’s thread environment block
(TEB), need to be initialized if they haven’t already been.

* The final addresses of any <symbo 1> objects referenced by the library need to be resolved, and data locations
that reference symbols need to be patched to point to the resolved addresses. This is part of the “for-system”
initialization.

* Top-level forms in each of the library’s source files need to be evaluated. This is the “for-user” initialization.

The following describes how Dylan libraries are initialized under the different compiler back-ends.

LLVM

Initialization for programs compiled by the LLVM back-end relies on constructor functions, provided on most plat-
forms to support (among other things) C++ constructors. The LLVM linker makes use of two different constructor
priorities, system (priority 0) and user (priority 65535).

The first constructor generated at system priority within the _glue.bc file generated for the dylan library is a
call to _Init_Run_Time, a C function defined in sources/lib/run—-time/llvm-runtime—init.c to
initialize the garbage collector and other system facilities needed by the Dylan run-time.

For each compile unit that requires it, a constructor at system priority is generated to do for-system initialization:

* When <symbo 1> resolution is required, a call to primitive-symbol-fixup is generated, passing a table
of symbols to resolve and reference addresses to patch.

o If there are any system initializers in the compile unit, calls to these are also generated. These normally only
occur when a class definition depends on non-static values.

The remaining for-user initialization is done in the per-library startup glue function, named _Init_mangled-library-
name, where mangled-library-name is the Dylan library name transformed by name mangling. This function, gener-
atedin _glue.bcbyemit-gluefilein sources/dfmc/llvm-linker/llvm-gluefile.dylan, does
the following:

1. Checks a flag to see if the library initialization has already been done, and exits if it has

2. Sets the initialization flag

3. Calls the library startup glue functions of all libraries (except for the Dylan library) referenced by this one.
4

. Calls the library’s self-init function, named _Init_mangled-library-name_X, which in turn calls each of the
for-user init functions for each compile-unit in the library. These contain the code generated for all of the
top-level forms.

5. For the Dylan library only, the self-init function also calls the $install-boot-symbols function defined
in sources/dylan/symbol-table.dylan. ()

The startup glue function for the Dylan library is called from a global constructor at user priority. This ensures that
the $install-boot-symbols is performed before other libraries’ symbol resolution begins.

For executables, execution begins at the usual main entry point. The main function, generated in _main.bc by
emit-gluefilein sources/dfmc/1llvm-linker/llvm-gluefile.dylan, simply stores its argc and
argv arguments in xrargc and xrargv+ runtime variables and calls the library startup glue function.

62 Chapter 6. The Runtime

http://opendylan.org/books/drm/Simple_Object_Classes#symbol
http://opendylan.org/books/drm/Simple_Object_Classes#symbol

Open Dylan Hacker’s Guide Documentation, Release 0.1

HARP (Win32)

When a Win32 DLL compiled by the Open Dylan HARP back-end is loaded, execution starts at
mangled-library-nameD11@12, where mangled-library-name is the Dylan library name transformed by
name mangling. This entry point, generated for each library by emit-executable-entry-points
in sources/dfmc/harp-native-cg/linker.dylan, stores the address of the library’s glue func-
tion, named _ Init_mangled-library-name, into the _init_dylan_library variable and branches to
_DylanDl1lEntry@12.

A DIlIMain entry point receives three arguments: the module handle of the DLL, a reason code, and a flag that in-
dicates whether the DLL was loaded statically or dynamically. The _DylanD11Entry@12 routine, generated in
sources/harp/x86-windows-rtg/ffi-barrier.dylan, looks at the reason code to determine what to
do:

* For process attach, the routine:
1. Stores the module handle in a DLL-local _module_ hInstance variable.

2. Allocates and initializes the TEB and GC-TEB, and initializes the garbage collector by calling
dylan_init_memory_manager and dylan_mm_register_thread (DxDYLAN.d11 only).

3. Calls_dylan_initialize (described below)

* For thread attach, the routine clears the TLV vector slot of the TEB (DxDYLAN.d11 only).

For thread detach, the routine:

1. Deregisters the thread by calling dylan_mm_deregister_thread_from_teb (DxDYLAN.d1l
only).

2. Dealocates the TEB (DxDYLAN.d11 only)
* For process detach,

1. Deregisters the main thread by calling dylan _mm deregister_thread_ from_teb
(DxDYLAN.d11 only).

2. Deinitializes the garbage collector by calling dylan_shut_down_memory_manager
(DxDYLAN.d11 only).

The _dylan_initialize function (generated in sources/harp/native-rtg/ffi-barrier.dylan):
1. Calls the runtime’s init_dylan_data function, which:
(a) Calls primitive_fixup_unimported_dylan_data
(b) Calls primitive_fixup_imported_dylan_data
(c) Callsprimitive_register_traced_roots
2. Sets the FFI barrier state to $inside-dylan.

3. Calls dylan_init_thread_local (which tail-calls the dylan_init_thread C function defined in
sources/lib/run-time/exceptions.c)passingapointertothe call_init_dylan function. This
function in turn is called as an MPS trampoline.

4. Resets the FFI barrier state to Soutside—-dylan.

The call_init_dylan function retrieves the value of the _init_dylan_library variable (pointing to a
library startup glue function) and performs an indirect call.

Similarly, an Win32 executable starts execution at mangled-library-nameExe. This routine, which is also gen-
erated by emit-executable-entry-points, stores the address of _Init_mangled-library-name in the
_init_dylan_library variable and branches to dylan_main.

6.6. Startup 63

https://msdn.microsoft.com/en-us/library/windows/desktop/ms682583%28v=vs.85%29.aspx

Open Dylan Hacker’s Guide Documentation, Release 0.1

64 Chapter 6. The Runtime

CHAPTER
SEVEN

DUIM - DYLAN USER INTERFACE MANAGER

We have a lot to learn about hacking on DUIM, so there isn’t much to document yet as we haven’t learned yet.

GTK Back-end

The GTK+ back-end is usable on both macOS and Linux. It is based on GTK+ 3.x. On macOS, it assumes that the
Quartz back-end is being used rather than X11.

The bindings for GTK+ are largely generated from gobject-introspection meta-data. Some portions are hand-edited
however or entirely done by hand, like the Cairo bindings. Most of the special cases for hand-editing are put into the
binding generator (gir-dylan), but not all.

Getting GTK+ 3.x with Quartz on macOS

Building GTK+ 3.x with Quartz on macOS must be done in a specific way. This currently can not be done with
Homebrew.

Follow the directions on the GTK+ wiki, but make sure to build GTK+ 3.x rather than 2.x. To do this, you’ll want to
use the moduleset meta—gtk—osx—gtk3 rather than meta-gtk-osx—-core.

Once you have a build, be sure to add the appropriate directories to your path.

We have not yet integrated GTK+’s macOS integration module, so the menu bar will not (yet) be integrated with the
system menu bar when running a DUIM application.

Note: GTK+ will be built as a 64 bit binary. This means that your Dylan code will also have to be built as a 64 bit
binary. Doing this requires a build of Open Dylan from the master branch. Once you have a current build of Open
Dylan, set the OPEN_DYLAN_TARGET_PLATFORM environment variable to x86_64—-darwin and your builds will
be 64 bit.

Debugging Information

To enable more debugging information, uncomment the following line in
sources/duim/gtk/gtk—-debug.dylan:

xrdebug-duim-functionx := dbg;

You can then output debugging information with either of the following functions:

* ignoring (msg)

65

https://github.com/dylan-foundry/gir-dylan
https://wiki.gnome.org/GTK+/OSX/Building

Open Dylan Hacker’s Guide Documentation, Release 0.1

e duim-debug-message (format, args)

Additional debug information can be obtained via the GTK_DEBUG and GDK_DEBUG environment variables.

66 Chapter 7. DUIM - Dylan User Interface Manager

https://developer.gnome.org/gtk3/3.8/gtk-running.html#GTK-Debug-Options
https://developer.gnome.org/gtk3/3.8/gtk-running.html#GDK-Debug-Options

CHAPTER
EIGHT

TOPICS

Method Dispatch

Method dispatch is a critical area for compile time and runtime optimization in Dylan. Since nearly everything appears
to involve a method dispatch including slot access, it is very important that the compiler be able to optimize much of
this away.

Method dispatch has support in both the compiler and the runtime. The runtime portion also has data structures that
are defined in the compiler (leading to dependencies between the compiler and the runtime).

Runtime portions, including compiler support, can be found in these files:
* sources/dylan/discrimination.dylan
* sources/dylan/dispatch-caches.dylan
* sources/dylan/dispatch-prologue.dylan
* sources/dylan/dispatch.dylan
* sources/dylan/new-dispatch.dylan
* sources/dylan/slot-dispatch.dylan
* sources/dfmc/modeling/functions.dylan
Compiler support for method dispatch optimization can be found in:

* sources/dfmc/optimization/dispatch.dylan

Publications

One paper has been written about the implementation of dispatch in Open Dylan:

* Partial Dispatch: Optimizing Dynamically-Dispatched Multimethod Calls with Compile-Time Types and
Runtime Feedback (by Jonathan Bachrach and Glenn Burke - Technical Report 2000 pdf)

Generic Function Representation

In Dylan, a generic function looks like (from sources/dfmc/modeling/functions.dylan):

define abstract primary &class <generic—function> (<function>)
lazy &slot function-signature :: false-at-compile-time-or (<signature>),
init-value: #f,
init-keyword: signature:;
&slot %$gf-cache, init-value: #f;

67

https://github.com/dylan-lang/opendylan/tree/master/sources/dylan/discrimination.dylan
https://github.com/dylan-lang/opendylan/tree/master/sources/dylan/dispatch-caches.dylan
https://github.com/dylan-lang/opendylan/tree/master/sources/dylan/dispatch-prologue.dylan
https://github.com/dylan-lang/opendylan/tree/master/sources/dylan/dispatch.dylan
https://github.com/dylan-lang/opendylan/tree/master/sources/dylan/new-dispatch.dylan
https://github.com/dylan-lang/opendylan/tree/master/sources/dylan/slot-dispatch.dylan
https://github.com/dylan-lang/opendylan/tree/master/sources/dfmc/modeling/functions.dylan
https://github.com/dylan-lang/opendylan/tree/master/sources/dfmc/optimization/dispatch.dylan
http://people.csail.mit.edu/jrb/Projects/pd.pdf
https://github.com/dylan-lang/opendylan/tree/master/sources/dfmc/modeling/functions.dylan

Open Dylan Hacker’s Guide Documentation, Release 0.1

lazy &slot debug-name :: <object>,

init-value: #f,

init-keyword: debug-name:;
lazy &computed-slot generic-function-methods :: <list>,

init-value: #();
// If we start using this it should probably be made lazy, as it would
// only be used for creating the runtime object, not compilation.
&slot discriminator, init-value: #f;

// Compile-time slots.

slot “generic-function-properties :: <integer>, init-value: 0;

lazy slot signature-spec :: <signature-spec>,
required-init-keyword: signature-spec:;

lazy slot %generic-function-domains :: <list> = #();

slot parameters-dynamic-extent,
init-value: #f,
init-keyword: dynamic-extent:;
slot “generic-function-cache-info = #f£;
metaclass <function-class>;
end &class <generic—function>;

There are 2 subclasses of <generic-function>: <sealed-generic-function> and
<incremental-generic-function>. A sealed generic function adds no slots, while an incremental
generic function maintains some extra data to support adding further methods.

At the moment, we’ll focus on sealed generic functions.

And in the generated C, a sealed generic function looks like:

typedef struct {

D wrapper;
Xep_;
function_signature_;
Pgf_cache_;
debug_name_;
generic_function_methods_;
discriminator_;
} _KLsealed_generic_functionGVKe;

sllvilivilvilviv]

_KLsealed_generic_functionGVKe Ksize_in_wordsVKi = {
&KLsealed_generic_functionGVKeW,
&gf_xep_1,
&KDsignature_LobjectG_object_rest_value_1VKi,
&KPfalseVKi,
&K342,
&K632,
&RSINGULAR_Labsent_engine_nodeG

by

Incremental generic functions look similar, but contain some additional data after the discriminator.

The types in the generated C are just D which is what the Dylan compiler’s C back-end likes to generate. More
specific types for some values are available but not emitted by the C back-end. (Improvements in this area are worth
considering as they would improve the debugging experience.)

Runtime Dispatch

Much of the technical report by Bachrach and Burke remains accurate with respect to the basics of dispatch.

68 Chapter 8. Topics

http://opendylan.org/books/drm/Function_Classes#generic-function

Open Dylan Hacker’s Guide Documentation, Release 0.1

Discriminators at Runtime

The initial discriminator of a generic function is $absent-engine-node (or in C,
RSINGULAR_absent_engine_node). When this is encountered when performing a dispatch,
gf-dispatch-absent is invoked, which calls handle-missed-dispatch. The initial dispatch engine state
will then be calculated in calculate—dispatch-engine and dispatch will proceed.

In this way, dispatch data is built incrementally at runtime as it is needed and can take advantage of data available at
runtime. In fact, dispatch can start out being monomorphic and grow to linear and then hash-based discriminators as
the number of relevant methods changes at runtime.

For example, when growing a linear discriminator (grow—linear-class-keyed-discriminator), it can be
upgraded to become a hashed discriminator.

The logic for creating a new discriminator starts in compute-discriminator-for—-arg (defined in
sources/dylan/discrimination.dylan).

Discriminator Structure

The classes that dictate the in-memory layout of the discriminators are defined within the compiler in
sources/dfmc/modeling/functions.dylan.

Of particular interest are the <linear-by-class-discriminator> and
<hashed-by-class—-discriminator>. These, along with some variants for dealing with singleton
dispatch, define a repeated slot for storing their data:

repeated &slot class-keyed-discriminator-table-element,

init-value: #f,

size—getter: class—keyed-discriminator-table-size,
size—-init-keyword: size:,

size—-init-value: 0;

For these discriminators, the keys and values are stored in alternating sequence:

keyl, valuel, key2, value2

This allows for a compact representation within memory without extra allocations for pairs of values, a hash table, etc.

The code for iterating over this data can be found in the functions linear-class-key-lookup and
hashed-class-key-lookup as found within sources/dylan/new-dispatch.dylan. That file also contains the code
for adding new methods to the discriminator.

Compile Time Optimization

Discuss the impact of sealing and other things here.

Analysis
Performance Highlighting
The compiler records dispatch decisions as they’re made within the optimizer. This work is performed within

sources/dfmc/optimization/dispatch.dylan (look for calls to color—dispatch). It is worth noting that the dispatch
decisions are compacted by compact-coloring—info in sources/dfmc/management/compilation-driver.dylan.

8.1. Method Dispatch 69

https://github.com/dylan-lang/opendylan/tree/master/sources/dylan/discrimination.dylan
https://github.com/dylan-lang/opendylan/tree/master/sources/dfmc/modeling/functions.dylan
https://github.com/dylan-lang/opendylan/tree/master/sources/dylan/new-dispatch.dylan
https://github.com/dylan-lang/opendylan/tree/master/sources/dfmc/optimization/dispatch.dylan
https://github.com/dylan-lang/opendylan/tree/master/sources/dfmc/management/compilation-driver.dylan

Open Dylan Hacker’s Guide Documentation, Release 0.1

In the IDE, Open Dylan supports performance highlighting to indicate how much optimization the compiler was able
to apply. This is performed within sources/environment/deuce/dylanworks-mode.dylan by examining the results from
source—-record-colorization—info.

This information is also available in .el files within the build directory that can be used with the dylan-mode
in emacs. The generation of the .el files is performed by project-dump—-emacs—-dispatch-colors in
sources/project-manager/projects/implementation.dylan.

The available dispatch decisions that are recorded for highlighting are:
* #"not-all-methods—known"
e $"failed-to-select-where-all-known"
* #"lambda-call"
* #"inlining"
e #"slot-accessor—-fixed-offset"
e #"eliminated"
e #"dynamic—extent"
¢ #"bogus—-upgrade"

Link to documentation on both of these features, perhaps embed some screenshots.

Dispatch Profiler

There is a dispatch profiler in sources/lib/dispatch-profiler but no one knows how to use it.

Future Work

* Learn more about partial dispatch and possibly enable it.
* Look at the effectiveness of call site caching.
* Can the hashing in the megamorphic hashed by-class discriminator be tuned better?

¢ Learn more about and document things mentioned in this document but that aren’t understood well (like dispatch
profiling).

¢ Much more documentation.

Debugging

Debugging a Compiler Crash or Internal Error

When the compiler generates an internal error or directly crashes, using gdb or lldb is a great way to find out more
about what has gone wrong.

See Debugging with GDB or LLDB for general information on debugging applications written with Open Dylan.

An internal error from the compiler will often look something like this:

Internal error: ELEMENT outside of range: -5

70 Chapter 8. Topics

https://github.com/dylan-lang/opendylan/tree/master/sources/environment/deuce/dylanworks-mode.dylan
https://github.com/dylan-lang/opendylan/tree/master/sources/project-manager/projects/implementation.dylan
https://github.com/dylan-lang/opendylan/tree/master/sources/lib/dispatch-profiler
http://opendylan.org/documentation/getting-started-cli/debugging-with-gdb-lldb.html

Open Dylan Hacker’s Guide Documentation, Release 0.1

To find out what is happening, run the compiler under gdb or Ildb, and set a breakpoint on
Kdisplay_conditionYcommand_linesVenvironment_commandsI. Doing so will allow you to see the
stack trace at the time of the internal error.

Dumping DFM Output

DFM is a relatively readable intermediate language used by the compiler. It can be useful for debugging the compiler,
but also for optimizing Dylan code in general since it shows (for example) where the compiler wasn’t able to optimize
method dispatch.

The main point you need to know is to add the —~dfm flag when you invoke dylan—compiler. This will generate
DFM output files in your _build/build/ directory.

Porting to a New Target Platform

Warning: This is a work in progress, as we work through doing a new port.

Naming Your Target
A target name typically consists of the CPU type and the OS name, separated by a hyphen. Due to using the hyphen
as a separator, the CPU type and OS name should not include a hyphen.
Example target names are:

e arm-linux

* ppc-darwin

* x86-win32

e x86_64-1inux
CPU types are typically:

e #"arm"

* #"ppc"

« #"x86"

« #"x86_64"
OS names are typically:

e #"linux"

e #"darwin"

* #"freebsd"

e #"win32"

Warning: Some existing targets are poorly named. We may attempt to rename #"win32" to #"windows" in
the future.

8.3. Porting to a New Target Platform 71

Open Dylan Hacker’s Guide Documentation, Release 0.1

Warning: We do not yet have a strategy in place for targets which are not for a particular CPU and OS type.
Examples of these would be emscripten, the JVM, and Google’s Native Client.

New Registry

The registry is how we map library names to the actual project files that should be built to provide that library. This
lets us provide per-platform implementations of libraries as required.

The registry can be found within sources/registry.

The easiest way to do this is to copy an existing directory and modify it as needed. If you are doing a port to a Unix-like
platform, this should be pretty straightforward to copy from one of the Linux definitions.

System Library

New LID and definitions
You will need to create a new .1id file to point to the per-platform files for the new target. You will also need a
x—operating-system.dylan file to provide a couple of definitions.

There are plenty of examples of this within sources/system for the currently supported target platforms.

Magic Numbers

The system library requires some magic numbers for accessing struct members defined within the standard C library.

To do this, compile sources/system/dump-magic—numbers. c for your target platform and execute it on the
target. This will generate a Dylan file that you can add to the system library.

C Back-End

If the new processor type is a 64 bit processor, you will want to update the C back-end appropriately:
e Edit sources/dfmc/c-back-end/c-back—-end.dylan
» Update the definition of back—end-word-size

You will also need to do a couple of edits to the C run-time:

e Edit sources/lib/run—-time/run—time. *, looking for usages of __x86_64___

Warning: We should improve this code within the C run-time.

Additionally, there are some mappings involving ~ OPEN_DYLAN_TARGET_PLATFORM in
sources/lib/run-time/Makefile. in that will need to be updated.

LLVM Back-End

The per-platform configurations for the LLVM back-end can be found within
sources/dfmc/llvm-back-end/llvm-targets.dylan.

When adding a new CPU type, add a new abstract back-end for the CPU with the appropriate data layout and word
size.

72 Chapter 8. Topics

Open Dylan Hacker’s Guide Documentation, Release 0.1

When adding a new OS type, add a new abstract back-end for the OS.

After that, you can create the new target back-end that inherits from the appropriate CPU and OS specific abstract
back-ends. You may need to override the data layout if a different ABI is required.

Warning: Someone should document how to correctly determine the appropriate data layout to use.

Be sure to invoke register-back-end correctly with your new back-end class.

Additionally, as with the C back-end, there are some mappings involving OPEN_DYLAN_TARGET_PLATFORM in
sources/lib/run-time/Makefile. in that will need to be updated.

This isn’t completely written yet.

Build Scripts

Build scripts are partially documented within Jam-based Build System. The existing build scripts can be found within
sources/jamfiles.

You will want to copy an existing one and make whatever changes are required. When targeting a Unix-like platform,
much of the logic is already shared within sources/jamfiles/posix-build. jam.

You should also add your new build script to sources/jamfiles/Makefile.in so that it gets installed.

Autoconf

The configure.ac script handles detecting a target platform and setting some appropriate variables within the
build system. There is a large block that deals with checking the $host (set up by AC_CANONICAL_TARGET) and
configuring things appropriately.

After updating configure.ac, be sure to re-run autogen. sh to create an updated configure script before
re-running configure.

Performing a Cross-Build

In the examples below, we will use arm-1inux as the example.

Preparing the Garbage Collector

Currently, most ports of Open Dylan will probably be using the Boehm garbage collector rather than MPS. An easy
way to get the required files is to install the Boehm GC on the target platform and then copy the include and library
files back to the build machine being used to perform cross-compilation.

If you intend to start with MPS, you will need to ensure that the MPS has been ported to the target platform first. This
is an undertaking that is outside the scope of this document.

Building the Run-Time
You can cross-compile the run-time by going to sources/lib/run-time and running make install, how-
ever, you will need to pass some special flags to make:

CC This should point to your cross-compiler, along with any special compilation flags that are required, such as the
include paths for the garbage collector, or target CPU flags.

8.3. Porting to a New Target Platform 73

Open Dylan Hacker’s Guide Documentation, Release 0.1

OPEN_DYLAN_TARGET_PLATFORM This should be the name of the target platform for which you are cross-
compiling.

OPEN_DYLAN USER_INSTALL This points to the path to the installation of Open Dylan which you will be using
to perform cross-compilation.

An example command line might look like:

make CC="arm-linux-gnueabihf-gcc -I/path/to/gc/include" \
OPEN_DYLAN_TARGET_PLATFORM=arm—-linux \
OPEN_DYLAN_USER_INSTALL=/opt/opendylan-current \
clean install

Creating a Custom Build Script

When cross-compiling, it is best to set up a custom Jam build script which can be passed to the dylan-compiler.
This will allow you to customize important parts of the build configuration.

An example custom script might look like:

CC = /opt/arm-linux/tools/arm-bcm2708/gcc-linaro-arm-linux—-gnueabihf-raspbian/bin/arm-11
GC_CFLAGS = -I/opt/arm-linux/gc/include -DGC_USE_BOEHM -DGC_THREADS ;
GC_LFLAGS = -L/opt/arm-linux/gc/lib -lgc ;

include $(SYSTEM_BUILD_SCRIPTS)/arm—-linux-build. jam ;

This just overrides the default values for some variables and then includes the system-provided build script for
arm-linux.

Cross-Building a Test Application

Assuming that you’ve cross-compiled and installed a copy of the run-time into the version of Open Dylan that you’re
using for cross-compilation, this is an easy step:

OPEN_DYLAN_TARGET_PLATFORM=arm-linux \
dylan-compiler -build-script path/to/custom-build.jam \

-build hello-world

This should create a build of the hello-world application in the _build directory. This directory can be copied
to the target machine and executed. Hopefully it runs correctly. If not, now is the time to start debugging.

Cross-Building the Dylan Compiler

This is no different from building the hello-world application except that now you are building
dylan-compiler:

OPEN_DYLAN_TARGET_PLATFORM=arm-linux \
dylan-compiler -build-script path/to/custom-build.jam \

-build dylan-compiler

Building without a Cross-Compiler

When you don’t have an actual cross-compiler when porting to a new platform, the recommended solution is to use a
shared file system and custom compiler scripts.

 Set up a file system that is shared between the build host and the target host.

74 Chapter 8. Topics

nux—-gnueabih:

Open Dylan Hacker’s Guide Documentation, Release 0.1

* On the build host, create a script for running the C compiler via ssh on the target host.

* Use this custom script to build the run-time library.

 Set up a custom build script as described above and use it to compile a test application and the Dylan compiler.

The PPML library

Program notes need to be stored and later displayed in browsers. This presents us with two problems. At the point of
creation we have no way of knowing the column width that will be used when the note is displayed. There may even
be more than one width if we want to be smart when a browser window is resized. A second problem arises if we store
a program note in the form of a condition string + arguments and the arguments are context sensitive. We could just
save everything as a string, but then the logical structure of the message is lost. An alternative is to store the text in a
more structured form. This is the purpose of the <ppmI > class and its derivatives. The interface is based on Oppen’s

1980 TOPLAS paper.

A PPML document, represented as <ppml> is a tree of PPML tokens. The tokens available and their associated

constructor functions are:
e <ppml-block> (ppml-block)

* <ppml-break>(ppml-break)

* <ppml-browser—aware—-object> (ppml-browser—aware—ob ject)

e <ppml-separator-block> (ppml-separator-block)

e <ppml-string>(ppml-string)

* <ppml-suspension>(ppml-suspension)

Structure is provided through instances of <ppml-block>and <ppml-separator-block> asthey can contain

subnodes of PPML.

Constructing a PPML Document

Constructing a PPML document is typically done by using the various constructor functions:

define compiler-sideways method as

=> (ppml :: <ppml>)
let sig = model-signature (0);
if (sig)

else
ppml-string (o.”function—name)
end;
end method;

(class == <ppml>, o :: <&generic-function>)

ppml-block (vector (ppml-string (o.”function—-name),
ppml-break (),
as (<ppml>, sig)))

Printing a PPML Document

Given a PPML document, the best way to print it is via ppmI-print:

‘ppml—print(ppml, make (<ppml-printer>, margin: 100));

8.4. The PPML library

75

Open Dylan Hacker’s Guide Documentation, Release 0.1

The PPML module

PPML Tokens and Constructors

<ppml> Abstract Class
Superclasses <object>
Discussion The abstract base class for all PPML tokens.
<ppml-block> Class
Superclasses <ppml>
Init-Keywords
* break-type — An instance of <ppml-break-type>.
* constituents — An instance of <ppml-sequence>.
* offset — An instance of <nat>.

Discussion

To add structure to the output, we can package up a sequence of tokens into a block. There are a
couple of attributes associated with a block. The offset indicates how much to indent subsequent
lines of the block if a break is necessary. When a block is longer than a line then we have a
number of options. We can display as much on each line as possible, only breaking when really
necessary. Alternatively, we can break the block at each break point, e.g.:

aaa aaa bbb
bbb ccc ddd
ccc
ddd

The choice of layout depends on whether the break-type attribute of the block is
#"consistent" or #"inconsistent". The third alternative is # " £it". This suppresses
all breaks and truncates the output if it won’t fit on a line.

The size of the block is cached in the block for efficiency.

ppml-block Function

Signature ppml-block (constituents #key offset type) => (ppml)
Parameters

¢ constituents — An instance of <ppml-sequence>.

* offset (#key) — An instance of <nat>.

* type (#key) — An instance of <ppml-break-type>.
Values

* ppml — An instance of <ppml-block>.

Discussion Construct a <ppml-block>.

<ppml-break> Class

Superclasses <ppml>
Init-Keywords

* blank-space — An instance of <nat>.

Chapter 8. Topics

http://opendylan.org/books/drm/Object_Classes#object

Open Dylan Hacker’s Guide Documentation, Release 0.1

* offset — An instance of <nat >.

Discussion A <ppml-break> indicates a position in the output where it is permissible to break
the output if it won’t fit on a single line. If we don’t need to break the line then we output

blank-space spaces. If we do need to break then we indent offset spaces relative to the current
line indent.

ppml-break Function
Signature ppml-break (#key space offset) => (ppml)
Parameters
* space (#key)— An instance of <nat>.
* offset (#key) — An instance of <nat>.
Values
e ppml — An instance of <ppml-break>.
Discussion Construct a <ppml-break>.
<ppml-browser—aware—object> Class
Superclasses <ppml>

Init-Keywords
* object — An instance of <object>.

Discussion The browser “knows” about some of the objects manipulated by the compiler, e.g. the
various kinds of definition, and so we store these directly. Furthermore we recompute the ppml

representation of the object every time token-size is called as the representation may depend on
browser settings.

ppml-browser—aware—object Function
Signature ppml-browser-aware-object (0) => (ppml)
Parameters

* o — Aninstance of <object>.

Values

e ppml — An instance of <ppml-browser—aware—object>.
Discussion Construct a <ppml-browser—-aware—ob ject >.

<ppml-separator-block> Class

Superclasses <ppml-block>

Init-Keywords

* separator — An instance of <ppml-sequence>.

Discussion

When constructing blocks representing collections it is wasteful to explicitly store the separators
between elements. The <ppml-separator-block> class captures this common case.
The default value for the

separator is vector (ppml-string(","),
ppml-break (space: 1)).

ppml-separator-block Function

8.4. The PPML library 77

http://opendylan.org/books/drm/Object_Classes#object
http://opendylan.org/books/drm/Object_Classes#object

Open Dylan Hacker’s Guide Documentation, Release 0.1

Signature ppml-separator-block (constituents #key separator offset type left-bracket right-bracket)
=> (ppml)

Parameters
* constituents — An instance of <ppml-sequence>.
* separator (#key) — An instance of <ppml-sequence>.
* offset (#key) — An instance of <nat>.

e type (#key) — An instance of <ppml-break—-type>. The default value is
#"inconsistent".

* left-bracket (#key)— Aninstance of false—or (<ppml>).
* right-bracket (#key)— An instance of false-or (<ppml>).
Values
e ppml — An instance of <ppml>.
Discussion Construct a <ppml-separator—-block>.
<ppml-string> Class
Superclasses <ppml >
Init-Keywords
* string— An instance of <byte-string>.
Discussion The simplest ppml token is just a string.
ppml-string Function
Signature ppml-string (str) => (ppml)
Parameters
e str - Aninstance of <byte—-string>.
Values
* ppml — An instance of <ppml—-string>.
Discussion Construct a <ppml-string>.
<ppml-suspension> Class
Superclasses <ppml >
Init-Keywords
¢ cache-token? — An instance of <boolean>. The default value is #t.
* pair — Either an instance of <ppml>ora <pair> of <function> and its arguments.

Discussion Sometimes it is more space efficient to delay the construction of the <ppm1> equivalent
of an object until we need to print it. The <ppml-suspension> class supports this. It
contains either a <ppml> token, or a pair of a function and its arguments. When we need a
token and encounter the pair we apply the function to its arguments. This should return an
instance of <ppml>. Optionally we can overwrite the pair by the result.

ppml-suspension Function
Signature ppml-suspension (fun #rest args) => (ppml)

Parameters

78 Chapter 8. Topics

http://opendylan.org/books/drm/Collection_Classes#byte-string
http://opendylan.org/books/drm/Collection_Classes#byte-string
http://opendylan.org/books/drm/Simple_Object_Classes#boolean
http://opendylan.org/books/drm/Collection_Classes#pair
http://opendylan.org/books/drm/Function_Classes#function

Open Dylan Hacker’s Guide Documentation, Release 0.1

e fun — An instance of <function>.

* args (#rest) — An instance of <object>.
Values

e ppml — An instance of <ppml-suspension>.

Discussion Construct a <ppml-suspension>.

Conversion to PPML

as (class == <ppml>, <object>) Method
Parameters
* class — The class <ppmI>.
* object — An instance of <object>.
Values
* ppml — An instance of <ppml>.

Discussion Returns the result of calling print-object on the object as PPML. (It does this by
using "$=" along with format-to-string.

as (class == <ppml>, <byte-string>) Method
Parameters
* class — The class <ppmI>.
* object — An instance of <byte-string>.
Values
* ppml — An instance of <ppml>.
Discussion Returns the quoted string value as PPML.
as (class == <ppml>, <symbol>) Method
Parameters
* class — The class <ppmI>.
* object — An instance of <symbol>.
Values
* ppml — An instance of <ppml>.
Discussion Returns the string value of the symbol as PPML.
as (class == <ppml>, <collection>) Method
Parameters
* class — The class <ppmI>.
* object — An instance of <collection>.
Values
* ppml — An instance of <ppml>.

Discussion Returns PPML representing the collection as a comma-separated list surrounded by
#(...).

8.4. The PPML library 79

http://opendylan.org/books/drm/Function_Classes#function
http://opendylan.org/books/drm/Object_Classes#object
http://opendylan.org/books/drm/Object_Classes#object
http://opendylan.org/books/drm/Collection_Classes#byte-string
http://opendylan.org/books/drm/Simple_Object_Classes#symbol
http://opendylan.org/books/drm/Collection_Classes#collection

Open Dylan Hacker’s Guide Documentation, Release 0.1

as(class == <ppml>, <explicit-key-collection>) Method
Parameters
* class - The class <ppmI>.
* object — An instance of <explicit-key-collection>.
Values
* ppml — An instance of <ppml>.
Discussion Returns PPML representing the collection.
as (class == <ppml>, <vector>) Method
Parameters
* class — The class <ppmI>.
* object — An instance of <vector>.
Values
* ppml — An instance of <ppml>.

Discussion Returns PPML representing the vector as a comma-separated list surrounded by
#0...1.

as(class == <ppml>, <list>) Method
Parameters
* class - The class <ppmI>.
* object — An instance of <1ist>.
Values
* ppml — An instance of <ppml>.

Discussion Returns PPML representing the list as a comma-separated list surrounded by # (. . .).

Printing / Formatting

format-to-ppml Generic function
Signature format-to-ppml (string #rest args) => (ppml)
Parameters
* string— An instance of <byte-string>.
* args (#rest)— An instance of <object>.
Values
* ppml — An instance of <ppml>.

Discussion We insert breaks at the places where arguments are inserted in the format string. This
will hopefully give us reasonable output, but not always as good as we could do by hand. We
separate out the processing of the format string so that we can share the constant components of
the resulting ppml-block if the same format expression is used multiple times.

ppml-format-string Generic function

Signature ppml-format-string (string) => (f)

80 Chapter 8. Topics

http://opendylan.org/books/drm/Collection_Classes#explicit-key-collection
http://opendylan.org/books/drm/Collection_Classes#vector
http://opendylan.org/books/drm/Collection_Classes#list
http://opendylan.org/books/drm/Collection_Classes#byte-string
http://opendylan.org/books/drm/Object_Classes#object

Open Dylan Hacker’s Guide Documentation, Release 0.1

Parameters
* string— An instance of <byte-string>.
Values
* £ — Aninstance of <function>.
Discussion Used by format—-to—ppml.
ppml-print Generic function
Signature ppml-print (t pp) => ()
Parameters
* t — An instance of <ppml>.
* pp — An instance of <ppml-printer>.
Discussion This is the best way to display PPML.
ppml-print—one—-1line Generic function
Signature ppml-print-one-line (t pp) => ()
Parameters
¢ t — An instance of <ppml >.
* pp — An instance of <ppml-printer>.

Discussion This prints in the same way as ppmI-print, but will limit the output to a single line.
It does this by internally using a line-break-type of #"fit".

<ppml-printer> Class
Superclasses <ob ject>
Init-Keywords
* margin — An instance of <nat>.

* newline-function — An instance of <function>, taking no arguments. The default
value writes a newline to * standard-output *.

* output—-function — An instance of <function>, taking a single <string> argu-
ment. The default value writes to xstandard-output *.

* terse—-depth — An instance of <integer>. The default value is 100.
Discussion

When outputting ppml we need to keep track of the space left on the current line and the current
margin. We store these values in a <ppml-printer> object, along with the functions used to
display text and line breaks.

The terse-depth is used to limit recursion amongst <ppml—-bIlock> instances. Once printing
has recursed through terse-depth blocks, it will change the break-type to #" £it " to abbreviate
things.

Type Aliases and Constants

<nat> Type

Equivalent 1imited (<integer>, min: 0)

8.4. The PPML library 81

http://opendylan.org/books/drm/Collection_Classes#byte-string
http://opendylan.org/books/drm/Function_Classes#function
http://opendylan.org/books/drm/Object_Classes#object
http://opendylan.org/books/drm/Function_Classes#function
http://opendylan.org/books/drm/Function_Classes#function
http://opendylan.org/books/drm/Collection_Classes#string
http://opendylan.org/books/drm/Number_Classes#integer

Open Dylan Hacker’s Guide Documentation, Release 0.1

<ppml-break-type> Type

Equivalent one—-of (#"consistent", #"inconsistent", #"fit")
<ppml-sequence> Type

Equivalent <sequence>

Discussion

Note: This should be 1imited (<sequence>, of: <ppml>).

$line-break Constant
Value ppml-break (space: 999)

Discussion A way to force a line break by making a break with a space larger than the column width.

82 Chapter 8. Topics

http://opendylan.org/books/drm/Collection_Classes#sequence

CHAPTER
NINE

GLOSSARY

canonical sources only meaningful in reference to a particular compiler database or compilation context. The set of
sources from which the information in the database was derived.

compilation context the in-memory representation of an open compiler database. Consists of a connection to a disk
database, a reference to the owning project, and a collection of caches for pre-loaded/pre-computed information.

compiler database a file or set of files containing information derived from compiling a project. A project can have
multiple compiler databases, corresponding to different target machines, compiler settings, or even different
versions of the project sources. The project manager is responsible for managing the collection of project
databases and telling the compilation system which database to use.

component a native DLL or EXE file.

DFMC the Dylan Flow Machine Compiler, the intermediate representation on which type inference and optimization
(dispatch, inline, dynamic extent, common subexpression elimination, constant folding, dead code removal) is
done. Source of data and control flow elements is in dfinc/flow-graph.

execution context the compiler-derived information about a process, such as the namespaces of known runtime com-
ponents, installed definitions, etc. Initialized from the compilation contexts of the preloaded runtime compo-
nents and subsequently updated by interactive execution.

HARP Harlequin Abstract RISC Machine, the native back-end of Open Dylan. On this representation register allo-
cation etc is done: input DFM, output: assembly. Source is in harp subdirectory.

interactive execution a mechanism for exploratory programming by which the user can execute Dylan forms in an
existing process. May allow “out of language” operations such as addition of new variables to existing modules,
redefinition of classes, constants, overriding sealing restrictions, etc. Forms to be executed can come from a
project or from an interactor.

project a development environment object representing a Dylan program under development. It corresponds to a
Dylan library, but it exists before the compiler is ever invoked. It is used by the compiler only to identify a
library in interactions with the project manager.

project manager the part of the development environment charged with managing projects. The project manager is a
client of the compilation system, i.e. it is the project manager which is expected to invoke many of the functions
in this APL

runtime component a runtime manager object representing a component loaded into a tethered process.

interactor a mechanism by which a user can type in source records for interactive execution without modifying
project sources.

runtime manager the part of the development environment charged with controlling the runtime. The compilation
system is a client of the runtime manager, i.e. the compilation system will invoke runtime manager functions as
needed to effect interactive execution.

83

Open Dylan Hacker’s Guide Documentation, Release 0.1

source record smallest unit of source suitable for compilation. Consists of a stream of characters and a module name.
Contains complete top-level forms (i.e. top-level forms may not be split across source records).

tether a runtime manager object representing a debuggable process on the runtime. Sometimes referred to as an
“access-path”, but I'm staying away from that term because it seems to be used differently in different docu-
ments.

84 Chapter 9. Glossary

CHAPTER
TEN

INDICES AND TABLES

* genindex

¢ search

85

Open Dylan Hacker’s Guide Documentation, Release 0.1

86 Chapter 10. Indices and tables

A

accumulate-subnotes-during (macro), 27
dfmc-conditions:dfmc-conditions:add-program-corddeHwdl 28

(generic function), 25

API INDEX

(method), 29

dfmc-conditions:dfmc-conditions:

dfmc-conditions:dfmc—-conditions:

dfmc—conditions:dfmc—conditions:add—program—coﬂng?gﬁggcondition>)

(method), 25

dfmc-conditions:dfmc-conditions:

convert—-condition-:

convert—condition-:

convert—-condition-:

dfmc—conditions:dfmc—conditions:add—program—coﬂg¥g?éﬁg§program—condition>)

ppml:

ppml:

ppml:

ppml:

ppml:

ppml:

ppml:

C

(method), 25
ppml:as (class <ppml>,
<byte-string>) (method), 79

ppml:as (class == <ppml>,
<collection>) (method), 79
ppml:as(class == <ppml>,

<explicit-key-collection>)
(method), 79

ppml:as (class == <ppml>, <list>)
(method), 80

ppml:as (class == <ppml>,
<object>) (method), 79

ppml:as (class == <ppml>,

<symbol>) (method), 79
ppml:as(class <ppml>,
<vector>) (method), 80

condition-block (macro), 26

condition-compilation-stage (generic func-

tion), 24

condition-context—-id (generic function), 24

condition-program-note-creator

condition-source-location (generic function),

function), 24

24

(generic

dfmc-conditions:dfmc-conditions:
(method), 28
dfmc-conditions:dfmc-conditions:
(method), 29
dfmc-conditions:dfmc-conditions:
(method), 28
dfmc-conditions:dfmc-conditions:
(method), 29
dfmc-conditions:dfmc-conditions:
<simple-error>,

convert—condition-—:

convert—-condition-:

convert—-condition-:

convert—condition-—:

convert—-condition-:

<simple-warning>)) (method), 28

convert-slots—-to—ppml (macro), 29

D

+rdetail-level=«* (variable), 27
<detail-level> (type), 27
dfmc-continue (variable), 29
dfmc-restart (variable), 29

do-with-program-conditions (function), 29

E

rerror—-recovery-model«* (variable), 26
element (<skip-1list>) (method), 9
element-sequence (generic function), 9

F

dfmc-conditions:dfmc-conditions:convert—-€ordat+oondlotentgenepiv function), 27

dfmc-

dfmc—

dfmc-

dfmc-

(generic function), 28
conditions:dfmc-conditions
(method), 28
conditions:dfmc-conditions
(method), 29
conditions:dfmc-conditions
(method), 29

conditions:dfmc-conditions

format-to-ppml (generic function), 80

dfmc-conditions:dfmc-conditions:

dfmc-conditions:dfmc-conditions:

:convert-condition-slots—-to-ppml (<condition>)

:convert—g@8g5§é9§é§%gggzggggpmgéﬁgggpre—serious—note>)

interesting-note?

:convert—condityggﬁﬁ%gﬁﬁﬁEQTE@ml(<performance—note>)

interesting-note? (-

:convertfcondityggﬁ%agg@ftofppml(<portability7note>)

87

Open Dylan Hacker’s Guide Documentation, Release 0.1

dfmc-conditions:dfmc—conditions

(method), 29

L

$line-break (constant), 82
library-conditions-table (generic
26

M

make-program-note-filter (generic
29
maybe—-note (macro), 25

N

<nat> (type), 81

dfmc-conditions:dfmc-conditions
(generic function), 24

dfmc-conditions:dfmc-conditions
(method), 25

note—during (macro), 27

O

dfmc-conditions:dfmc-conditions
(generic function), 30

dfmc-conditions:dfmc-conditions
(method), 30

P

<performance—note> (class), 23
<portability-note> (class), 23
<ppml-block> (class), 76
<ppml-break-type> (type), 81
<ppml-break> (class), 76

<ppml-browser—-aware-object> (class), 77

<ppml-printer> (class), 81
<ppml-separator-block> (class), 77
<ppml-sequence> (type), 82
<ppml-string> (class), 78
<ppml-suspension> (class), 78
<ppml> (class), 76
<program-condition> (class), 22
<program-error> (class), 23
<program-note-filter> (constant), 28
<program-note> (class), 22
<program-notes> (type), 22
<program-restart> (class), 23
<program-warning> (class), 23

:note(sub%fég

:interestppyinptéit {paregr fimcnion) 8)

ppml-print-one-1line (generic function), 81

ppml-separator-block (function), 77
ppml-string (function), 78
ppml-suspension (function), 78
function),
(generic function), 30
dfmc-conditions
(method), 30
dfmc-conditions
(method), 30
dfmc-conditions
(generic function), 30

function),

dfmc-conditions:dfmc-conditions:

(method), 30

dfmc-conditions:dfmc-conditions:
:note

(method), 30

<stream>) (method), 27

dfmc-conditions:dfmc-conditions:
:dfmc-conditions:
:dfmc-conditions:

:dfmc—conditions:

19B#85LdRRERIEITTSRYY tion>y

present-program-er

present-program—er:

present-program-er

present—program—nof

present-program—not

present—-program—nof

program-condition-definer (macro), 20
program-condition-definer-definer

(macro), 22
. obsolet pr ogéa error definer (macro), 21
FobsoLe ep Ogré 1R8te- class—= (function), 30

ogram—-note-definer (macrg), 21

A pr
.obsoletepcondlt1on°é<?£?gram con?%%%ﬁgh)3l

dfmc-conditions:dfmc-conditions:

rogram—not name-—
(generic function), 31
dfmc-conditions
(method), 31
dfmc-conditions
(method), 31
dfmc-conditions
(method), 31
dfmc-conditions
(method), 31
dfmc-conditions
(method), 31
dfmc-conditions
(method), 31
dfmc-conditions
(method), 31
dfmc-conditions
(method), 31
dfmc-conditions
(generic function), 31

dfmc-conditions:dfmc-conditions:

:dfmc—conditions:

:dfmc-conditions:

:dfmc—-conditions:

:dfmc—conditions:

:dfmc-conditions:

:dfmc—conditions:

:dfmc—-conditions:

:dfmc—-conditions:

:dfmc—conditions:

program—-note-filte:
program-note-filte:
program-note-filte:
program—-note-filte:
program-note-filte:
program-note—-filte:
program-note-filte:
program-note-filte:
program—note-filte:
program-note-filte:

program-note—-filte:

subclass (<program-condition>))

performance-note-definer (macro), 21
portability-note-definer (macro), 21
ppml-block (function), 76

ppml-break (function), 77
ppml-browser—-aware-object (function), 77
ppml-format—-string (generic function), 80

(method), 31

program-note—in (function), 31
program-note-location-between (function), 32
program-restart-definer (macro), 21
program-warning-definer (macro), 21

88

API Index

Open Dylan Hacker’s Guide Documentation, Release 0.1

R

Srecord-program—-note (constant), 28
<run-time-error-warning> (class), 23
dfmc-conditions:dfmc—conditions:raise
(generic function), 25
dfmc-conditions:dfmc-conditions:raise (subclass (<program—-error>))
(method), 25
remove-program-conditions—from! (generic
function), 26
report—-condition (generic function), 32
dfmc-conditions:dfmc-conditions:restart
(generic function), 25
dfmc-conditions:dfmc-conditions:restart (subclass (<program-restart>))
(method), 25
run-time-error-warning-definer (macro), 22

S

$signal-program-error (function), 28
$signal-program-note (function), 28
xsubnotes—queuex (variable), 27
<serious-program-warning> (class), 23
<skip-1list> (class), 8
<style-warning> (class), 23
dfmc-conditions:dfmc-conditions:serious—note?
(generic function), 32
dfmc-conditions:dfmc—conditions:serious—note? (<program—error>)
(method), 32
dfmc-conditions:dfmc-conditions:serious—-note? (<program-note>)

(method), 32

dfmc-conditions:dfmc-conditions:serious—note? (<serious—-program-warning>)

(method), 32
serious—-program-warning-definer (macro),
22
simple—note (generic function), 33
simple-raise (generic function), 33
skip-1list (library), 8
skip-list:skip-1ist (module), 8
style-warning-definer (macro), 22
subnotes (generic function), 26

W

with-program-conditions (macro), 33
with-simple-abort-retry-restart (macro),
33

API Index

89

Open Dylan Hacker’s Guide Documentation, Release 0.1

90 API Index

Symbols

detail-level, 27
error-recovery-model, 26
*subnotes-queue®, 27
$line-break, 82
$record-program-note, 28
$signal-program-error, 28
$signal-program-note, 28
<detail-level>, 27
<ignore-serious-note>, 28
<nat>, 81
<performance-note>, 23
<portability-note>, 23
<ppml-block>, 76
<ppml-break-type>, 81
<ppml-break>, 76
<ppml-browser-aware-object>, 77
<ppml-printer>, 81
<ppml-separator-block>, 77
<ppml-sequence>, 82
<ppml-string>, 78
<ppml-suspension>, 78
<ppml>, 76
<program-condition>, 22
<program-error>, 23
<program-note-filter>, 28
<program-note>, 22
<program-notes>, 22
<program-restart>, 23
<program-warning>, 23
<run-time-error-warning>, 23
<serious-program-warning>, 23
<skip-list>, 8
<style-warning>, 23

A

accumulate-subnotes-during, 27
add-program-condition, 25

add-program-condition(<condition>), 25
add-program-condition(<program-condition>), 25

as

as(class == <ppml>, <byte-string>), 79

INDEX

as(class == <ppml>, <collection>), 79

as(class == <ppml>, <explicit-key-collection>), 79
as(class == <ppml>, <list>), 80

as(class == <ppml>, <object>), 79

as(class == <ppml>, <symbol>), 79

as(class == <ppml>, <vector>), 80

C

condition-block, 26
condition-compilation-stage, 24
condition-context-id, 24
condition-program-note-creator, 24
condition-source-location, 24
convert-condition-slots-to-ppml, 28
convert-condition-slots-to-ppml(<condition>), 28
convert-condition-slots-to-ppml(<ignore-serious-
note>), 29
convert-condition-slots-to-ppml(<performance-
note>), 29
convert-condition-slots-to-ppml(<portability-note>),
29
convert-condition-slots-to-ppml(<program-error>),
28
convert-condition-slots-to-ppml(<program-note>),
28
convert-condition-slots-to-ppml(<program-restart>),
28
convert-condition-slots-to-ppml(<program-
warning>), 28
convert-condition-slots-to-ppml(<run-time-error-
warning>), 29
convert-condition-slots-to-ppml(<serious-program-
warning>), 28
convert-condition-slots-to-ppml(<style-warning>),

29
convert-condition-slots-to-ppml(type-
union(<simple-condition>, <simple-error>,

<simple-warning>)), 28
convert-slots-to-ppml, 29

D

dfmc-continue, 29

91

Open Dylan Hacker’s Guide Documentation, Release 0.1

dfmc-restart, 29
do-with-program-conditions, 29

E

element
element(<skip-list>), 9
element-sequence, 9

F

format-condition, 27
format-to-ppml, 80

interesting-note?, 29
interesting-note?(<performance-note>), 29
interesting-note?(<program-note>), 29

L

library-conditions-table, 26

M

make-program-note-filter, 29
maybe-note, 25

N

note, 24
note(subclass(<program-condition>)), 25
note-during, 27

O

obsolete-condition?, 30
obsolete-condition?(<program-condition>), 30

P

performance-note-definer, 21

portability-note-definer, 21

ppml-block, 76

ppml-break, 77

ppml-browser-aware-object, 77

ppml-format-string, 80

ppml-print, 81

ppml-print-one-line, 81

ppml-separator-block, 77

ppml-string, 78

ppml-suspension, 78

present-program-error, 30
present-program-error(<condition>), 30
present-program-error(<program-note>), 30

present-program-note, 30
present-program-note(<condition>), 30
present-program-note(<program-note>), 30

print-object
print-object(<program-condition>, <stream>), 27

program-condition-definer, 20
program-condition-definer-definer, 22
program-error-definer, 21
program-note-class-=, 30
program-note-definer, 21
program-note-file-name-=, 31
program-note-filter, 31
program-note-filter(subclass(<condition>)), 31
program-note-filter(subclass(<performance-note>)),
31
program-note-filter(subclass(<portability-note>)),
31
program-note-filter(subclass(<program-note>)), 31
program-note-filter(subclass(<program-warning>)),
31
program-note-filter(subclass(<run-time-error-
warning>)), 31
program-note-filter(subclass(<serious-program-
warning>)), 31
program-note-filter(subclass(<style-warning>)), 31
program-note-filter-setter, 31
program-note-filter-setter(<program-note-filter>,
subclass(<program-condition>)), 31
program-note-in, 31
program-note-location-between, 32
program-restart-definer, 21
program-warning-definer, 21

R

raise, 25
raise(subclass(<program-error>)), 25
remove-program-conditions-from, 26
report-condition, 32
restart, 25
restart(subclass(<program-restart>)), 25
run-time-error-warning-definer, 22

S

serious-note?, 32
serious-note?(<program-error>), 32
serious-note?(<program-note>), 32
serious-note?(<serious-program-warning>), 32

serious-program-warning-definer, 22

simple-note, 33

simple-raise, 33

skip-list, 8

style-warning-definer, 22

subnotes, 26

W

with-program-conditions, 33
with-simple-abort-retry-restart, 33

92

Index

	Copyright
	How to contribute to Open Dylan
	Looking for Ideas?
	Making Changes
	Guidelines
	Testing
	Licensing

	Writing Documentation
	Guidelines
	Generating Documentation
	Doctower
	Example documentation

	Jam-based Build System
	Introduction
	Why Jam-based?
	Choosing Build Scripts
	How the Compiler Uses the Build System
	Automatically-invoked Jam Rules
	Additional Built-In Jam Rules
	Built-In Jam Variables
	Editing Jam Files

	DFMC, The Dylan Flow Machine Compiler
	Notes, Warnings and Errors
	Compiler Design (Old)
	Compiler Internals (Old)

	The Runtime
	Object Representation
	Calling Convention
	Special Features
	Name Mangling
	Compiler Support for Threads
	Startup

	DUIM - Dylan User Interface Manager
	GTK Back-end

	Topics
	Method Dispatch
	Debugging
	Porting to a New Target Platform
	The PPML library

	Glossary
	Indices and tables
	API Index
	Index

