

 Navigation

 	
 index

 	
 api |

 	
 next |

 	DUIM Reference 1.0 documentation

DUIM Reference

Contents:

	Copyright

	Conventions in this Manual
	Audience, goals, and purpose

	Example code fragments

	Module structure

	Spread point arguments to functions

	Immutability of objects

	Specialized arguments to generic functions

	Macros that expand into calls to advertised functions

	Terminology pertaining to error conditions

	DUIM-Geometry Library
	Overview

	The class hierarchy for DUIM-Geometry

	DUIM-Geometry Module

	DUIM-Extended-Geometry Library
	Overview

	The class hierarchy for DUIM-Extended-Geometry

	DUIM-Extended-Geometry Module

	DUIM-DCs Library
	Overview

	The class hierarchy for DUIM-DCs

	DUIM-DCs Module

	DUIM-Sheets Library
	Overview

	The class hierarchy for DUIM-Sheets

	DUIM-Sheets Module

	DUIM-Graphics Library
	Overview

	Definitions

	Drawing is approximate

	Rendering conventions for geometric shapes

	Drawing using path related functions

	DUIM-Graphics Module

	DUIM-Layouts Library
	Overview

	The class hierarchy for DUIM-Layouts

	DUIM-Layouts Module

	DUIM-Gadgets Library
	Overview

	Callbacks and keys

	Gadget protocols

	The class hierarchy for DUIM-Gadgets

	Button gadgets

	Text gadgets

	Collection gadgets

	Value range gadgets

	Page gadgets

	Gadgets that can have children

	DUIM-Gadgets Module

	DUIM-Frames Library
	Overview

	The class hierarchy for DUIM-Frames

	DUIM-Commands Library

	DUIM-Frames Module

Indices and tables

	Index

	Search Page

 Copyright 2011, Dylan Hackers.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 api |

 	
 next |

 	
 previous |

 	DUIM Reference 1.0 documentation

Copyright

Copyright © 1995-2000 Functional Objects, Inc.

Portions copyright © 2011-2016 Dylan Hackers.

Companies, names and data used in examples herein are fictitious unless
otherwise noted.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
“Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Other brand or product names are the registered trademarks or trademarks
of their respective holders.

 Copyright 2011, Dylan Hackers.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 api |

 	
 next |

 	
 previous |

 	DUIM Reference 1.0 documentation

Conventions in this Manual

This chapter describes the conventions used in this manual and in the
DUIM software itself.

Audience, goals, and purpose

This manual is intended for programmers using DUIM, and forms a complete
reference for the Application Programmer’s Interface (API) for DUIM. You
should also see Building Applications using DUIM [http://opendylan.org/documentation/building-with-duim/] for a description of
how to start building applications using DUIM. At some points, the API
also includes lower-level layers, which DUIM programmers are free to
specialize.

The DUIM library is a set of interfaces that allow you to create
graphical user interfaces (GUIs) for your application using Dylan code.

In this document, we may refer to two different audiences. A user is a
person who uses an application program that was written using DUIM. A
DUIM programmer is a person who writes application programs using
DUIM. Generally, this manual assumes that you, the reader, are the
programmer.

Example code fragments

Throughout this manual, example code fragments are provided at suitable
points in the documentation. These provide short illustrations of how to
use the interfaces being described. If you wish, you can run these
examples interactively by typing them into the Dylan Playground.

A number of additional, longer examples are provided as part of the
Harlequin Dylan installation, and are installed on your hard disk
automatically. You can look at these examples and load them into the
environment by clicking on the examples button in the main window of the
Harlequin Dylan environment.

Longer examples are also provided and discussed fully in the Building
Applications using DUIM, which you should refer to for an introduction
to building DUIM applications.

Module structure

The functionality of DUIM is provided via a number of modules. Each
chapter of this manual indicates what module its API is exported from.

The duim module is the main API module, which contains the variables
for the API-level functions available.

The DUIM-Geometry Library module provides basic support for coordinate
geometry. This allows the position of elements in a window object to be
determined correctly.

The DUIM-Extended-Geometry Library module provides more extensive support for
co-ordinate geometry that is only required for more specialist uses.

The DUIM-DCs Library module provides color support to the DUIM library.

The DUIM-Sheets Library module provides basic support for sheets. Sheets are
the basic unit of window applications, and can be nested hierarchically
to build up a complete user interface.

The DUIM-Graphics Library module provides support for graphics drawing

The DUIM-Layouts Library module provides support for a layout protocol that
makes it easy to create and layout groups of related elements in a given
interface. This module can handle layout problems such as the spacing
and justification of a group of elements automatically.

The DUIM-Gadgets Library module provides all the gadgets available for use in
the DUIM library. Gadgets are the sheet objects that make up any user
interface, and the DUIM library supplies all the gadgets you will need
in your applications.

The DUIM-Frames Library module provides support for frames. A DUIM frame is a
combination of a set of nested sheets, together with an event loop that
describes the behavior of the elements in those sheets. DUIM frames can
be used to specify whether a given user interface is displayed in an
application as a dialog box, or a more straightforward window, or as a
task wizard, and so on.

The Dylan Playground should be used when you just want to experiment
with DUIM code fragments without creating modules of your own. For real
application code, of course, you should define your own modules and
libraries and use the appropriate library code required by your
application.

Spread point arguments to functions

Many functions that take point arguments come in two forms: structured
and spread. Functions that take structured point arguments take the
argument as a single point object. Functions that take spread point
arguments take a pair of arguments that correspond to the x and y
coordinates of the point.

Functions that take structured point arguments, or return structured
point values have an asterisk in their name, for example, draw-line*
.

Immutability of objects

Most DUIM objects are immutable, that is, at the API level none of
their components can be modified once the object is created. Examples of
immutable objects include all of the members of the <region> classes,
pens, brushes, colors, and text styles. Since immutable objects by
definition never change, functions in the DUIM API can safely capture
immutable objects without first copying them. This also allows DUIM to
cache immutable objects. Any make methods that return immutable
objects are free to either create and return a new object, or return an
already existing object.

A few DUIM objects are mutable. Some components of mutable objects
can be modified once the object has been created, usually via setter
functions.

In DUIM, object immutability is maintained at the class level.
Throughout this specification, the immutability or mutability of a class
will be explicitly specified.

Some immutable classes also allow interning. A class is said to be
interning if it guarantees that two instances that are equivalent will
always be ==. For example, the class <text-style> is interned, so
calling make-text-style twice with the same arguments would return
identical values.

In some rare cases, DUIM will modify objects that are members of
immutable classes. Such objects are referred to as being volatile.
Extreme care must be take with volatile objects. For example, objects of
class <bounding-box> are often volatile.

Behavior of interfaces

Any interfaces that take or return mutable objects can be classified in
a few different ways.

Most functions do not capture their mutable input objects, that is,
these functions will either not store the objects at all, or will copy
any mutable objects before storing them, or perhaps store only some of
the components of the objects. Later modifications to those objects will
not affect the internal state of DUIM.

Some functions may capture their mutable input objects. That is, it is
not specified whether the mutable inputs to these functions will or will
not be captured. For such functions, you should assume that these
objects will be captured and must not modify these objects capriciously.
Furthermore, the behavior is undefined if these objects are later
modified.

Some functions that return mutable objects are guaranteed to create
fresh outputs. These objects can be modified without affecting the
internal state of DUIM.

Functions that return mutable objects that are not fresh objects fall
into two categories:

	Those that return read-only state

	Those that return read/write state

If a function returns read-only state, programmers must not modify that
object; doing so might corrupt the state of DUIM. If a function returns
read/write state, the modification of that object is part of the DUIM
interface, and you are free to modify the object in ways that make
sense.

Specialized arguments to generic functions

Unless otherwise stated, this manual uses the following convention for
specifying which arguments to generic functions are specialized:

	If the generic function is a -setter function, the second argument
is the one that is intended to be specialized.

	If the generic function is a “mapping” function (such as do-sheets),
the second argument (the object that specifies what is being
mapped over) is the one that is specialized. The first argument (the
functional argument) is not intended to be specialized.

	Otherwise, the first argument is the one that is intended to be
specialized.

Macros that expand into calls to advertised functions

Many macros that take a “body” argument expand into a call to an
advertised function that takes a functional argument. This functional
argument will execute the supplied body. For a macro named
with-environment, the function is generally named
do-with-environment. For example, with-drawing-options might
be defined as follows:

define macro with-drawing-options
 { with-drawing-options
 (?medium:name, #rest ?keys:*) ?body:body end }
 => { begin
 let with-drawing-options-body =
 method (?medium) ?body end;
 do-with-drawing-options(?medium,
 with-drawing-options-body, ?keys)
 end }
end macro;

define method do-with-drawing-options
 (medium :: <medium>, function, #rest options)
 apply(merge-drawing-options-into-medium, medium, options);
 function(medium)
end;

Terminology pertaining to error conditions

When this documentation specifies that it “is an error” for some
situation to occur, this means that:

	No valid DUIM program should cause this situation to occur.

	If this situation does occur, the effects and results are undefined.

	DUIM often tries to detect such an error, but it might not.

When this manual specifies that some argument “must be a type ” or
uses the phrase “the type argument”, this means that it is an
error if the argument is not of the specified type. DUIM tries to
detect such type errors, but it might not always be successful.

When this documentation says that “an error is signalled” in some
situation, this means that:

	If the situation occurs, DUIM will signal an error using error or
cerror.

	Valid DUIM programs may rely on the fact that an error will be
signalled.

When this manual states that “a condition is signalled” in a given
situation, this is the same as saying that “an error is signalled”, with
the exception that the condition will be signalled using signal
instead of error.

 Copyright 2011, Dylan Hackers.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 api |

 	
 next |

 	
 previous |

 	DUIM Reference 1.0 documentation

DUIM-Geometry Library

Overview

The DUIM-Geometry library provides basic support for coordinate
geometry. This allows the position of elements in a window object to be
determined correctly. The library contains a single module,
duim-geometry, from which all the interfaces described in this
chapter are exposed. DUIM-Geometry Module
contains complete reference entries for each exposed interface.

The class hierarchy for DUIM-Geometry

The base classes for classes in the DUIM-Geometry library are <region>
and <transform>, both of which are subclasses of <object> [http://opendylan.org/books/drm/Object_Classes#object]. While
the <region> class has a number of subclasses, <transform> has no
direct subclasses.

	<transform> The superclass of all transforms. A transform describes
the mapping of one set of points onto another. There are one or more
subclasses of <transform> that implement
transforms. These subclasses have implementation-dependent names
which are explicitly unspecified. All of the instantiable
transformation classes provided by DUIM are immutable.

In addition, there are a number of error classes which may be signalled.
These are all subclasses of <error> [http://opendylan.org/books/drm/Condition_Classes#error].

The <region> class and its subclasses

The DUIM-Geometry library exposes the <region> class and its subclasses as
shown in the following table . None of these subclasses have any further
subclasses exposed in the DUIM-Geometry library, although the
DUIM-Extended-Geometry library exposes some subclasses of <area>
and <path>.

	<region>
	

	
	<region-set>

	
	<point>

	
	<path>

	
	<area>

	
	<bounding-box>

	<region> This class is used to represent any set of points.
The:class:<region> class includes both bounded regions (that is, regions
whose edges are known) and unbounded regions (that is, regions with
no known edges).

	<region-set> This class represents a region set, that is, a set of
regions.

	<point> This class is used to represent mathematical points (that
is, regions with dimensionality 0).

	<path> The class <path> denotes bounded regions with a length,
but no area (that is, they have dimensionality 1).

	<area> This class denotes bounded regions that have an area (that
is, they have dimensionality 2).

	<bounding-box> A bounding box is an axis aligned rectangle that
contains some region.

Error classes provided by DUIM-Geometry

The DUIM-Geometry library exposes a number of errors that can be signalled in
certain circumstances. They are shown in the following table . All the errors
shown are subclasses of the <error> [http://opendylan.org/books/drm/Condition_Classes#error] class. Note that the subclasses of
<transform-error> are all specific to particular errors.

	<transform-error>
	
	

	
	<transform-underspecified>
	

	
	
	<reflection-<underspecified>

	
	<singular-transform>
	

	<transform-error> The superclass of all error conditions signalled
when there is an error with a transform.

	<transform-underspecified> The error that is signalled when
make-3-point-transform is given three colinear image points.

	<reflection-underspecified> The error that is signalled when
make-reflection-transform is given two coincident points.

	<singular-transform> The error that is signalled when
invert-transform is called on a singular transform, that is,
a transform that has no inverse.

DUIM-Geometry Module

This section contains a complete reference of all the interfaces that
are exported from the duim-geometry module.

	
=(<region>) Method

	Tests if its arguments are equal.

	Signature:	= region1 region2 => boolean

	Parameters:	
	region1 – An instance of type <region>.

	region2 – An instance of type <region>.

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Tests if its arguments are equal. Returns #t if the two regions
are the same, otherwise returns #f. Two regions are considered
equal if they contain exactly the same set of points.

	
=(<transform>) Method

	Tests if its arguments are equal.

	Signature:	= transform1 transform2 => boolean

	Parameters:	
	transform1 – An instance of type <transform>.

	transform2 – An instance of type <transform>.

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Tests if its arguments are equal. Returns #t if the two
transforms are the same, otherwise returns #f. Two transforms
are considered equal if they transform every region the same way.

	
<area> Open Abstract Class

	The class <area> denotes bounded regions that have dimensionality
2 (that is, have area).

	Superclasses:	<region>

	Discussion:	The class <area> denotes bounded regions that have
dimensionality 2 (that is, have area). <area> is a subclass of
<region>.Note that constructing an area object with no area (such as calling
make-rectangle with two coincident points, for example) may
canonicalize it to $nowhere.

	Operations:	
	area?

	See also:	
	area?

	
area? Generic function

	Returns #t if its argument is an area, otherwise returns #f.

	Signature:	area? object => boolean

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if object is an area, otherwise returns #f.

	See also:	
	<area>

	
<bounding-box> Open Abstract Instantiable Class

	The class that represents a bounding box.

	Superclasses:	<region>

	Init-Keywords:	
	left – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	top – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	right – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	bottom – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	A bounding box is an axis aligned rectangle that contains some
region. The representation of bounding boxes in DUIM is chosen to
be efficient. This representation is not sufficient to represent
the result of arbitrary transformations (such as rotations) of
bounding boxes. The most general class of transformations that is
guaranteed to transform a box into another box is the class of
transformations that satisfy rectilinear-transformation?.

Bounding boxes are immutable, but since they reflect the live state
of such mutable objects as sheets, bounding boxes are volatile.
Therefore, programmers must not depend on the bounding box
associated with a mutable object remaining constant.

	Operations:	
	bounding-box?

	box-edges

	region-contains-position?

	region-contains-region?

	region-difference

	region-empty?

	region-intersection

	region-intersects-region?

	region-union

	set-box-edges

	set-box-position

	set-box-size

	transform-region

	untransform-region

	See also:	
	bounding-box?

	bounding-box

	box-edges

	
bounding-box? Generic function

	Returns true if its argument is a bounding box.

	Signature:	bounding-box? object => boolean

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if object is a bounding box (that is, supports the
bounding box protocol), otherwise returns #f.

	See also:	
	<bounding-box>

	bounding-box

	box-edges

	
bounding-box Generic function

	Returns the bounding box of a region.

	Signature:	bounding-box region #key into => box

	Parameters:	
	region – An instance of type <region>.

	into – An instance of type false-or(<bounding-box>).

	Values:	
	box – An instance of type <bounding-box>.

	Discussion:	The argument region must be either a bounded region (such as a
line or an ellipse) or some other object that obeys the bounding
box protocol, such as a sheet.

This function often returns an existing object, so you should not
modify the returned result.

If into is supplied, it is a bounding box that might be
destructively modified to contain the result.

	See also:	
	<bounding-box>

	bounding-box?

	box-edges

	
box-bottom Function

	Returns the y coordinate of the bottom right corner of the bounding
box of a region.

	Signature:	box-bottom region => bottom

	Parameters:	
	region – An instance of type <region>.

	Values:	
	bottom – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns the y coordinate of the bottom right corner of the
bounding box of region. The argument region must be either a
bounded region or some other object that obeys the bounding box
protocol.

	See also:	
	box-left

	box-right

	box-top

	
box-edges Generic function

	Returns the bounding box of a region.

	Signature:	box-edges region => left top right bottom

	Parameters:	
	region – An instance of type <region>.

	Values:	
	left – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	top – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	right – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	bottom – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns the bounding box of region as four integers specifying
the x and y coordinates of the top left point and the x and
y coordinates of the bottom right point of the box

The argument region must be either a bounded region (such as a
line or an ellipse) or some other object that obeys the bounding
box protocol, such as a sheet.

The four returned values left, top, right, and bottom will
satisfy the inequalities:

left <= *right*
top <= *bottom*

	See also:	
	<bounding-box>

	bounding-box?

	bounding-box

	
box-height Function

	Returns the height of the bounding box of a region.

	Signature:	box-height region => height

	Parameters:	
	region – An instance of type <region>.

	Values:	
	height – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns the height of the bounding box region. The height of a
bounding box is the difference between the maximum y coordinate
and its minimum y coordinate. The argument region must be
either a bounded region or some other object that obeys the
bounding box protocol.

	See also:	
	box-position

	box-size

	box-width

	
box-left Function

	Returns the x coordinate of the upper left corner of the bounding
box of a region.

	Signature:	box-left region => left

	Parameters:	
	region – An instance of type <region>.

	Values:	
	left – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns the x coordinate of the upper left corner of the bounding
box region. The argument region must be either a bounded region
or some other object that obeys the bounding box protocol, such as
a sheet.

	See also:	
	box-bottom

	box-right

	box-top

	
box-position Generic function

	Returns the position of the bounding box of a region as two values.

	Signature:	box-position region => x y

	Parameters:	
	region – An instance of type <region>.

	Values:	
	x – An instance of type <integer>.

	y – An instance of type <integer>.

	Discussion:	Returns the position of the bounding box of region as two values.
The position of a bounding box is specified by its top left point.

	See also:	
	box-height

	box-size

	box-width

	
box-right Function

	Returns the x coordinate of the bottom right corner of the bounding
box of a region.

	Signature:	box-right region => right

	Parameters:	
	region – An instance of type <region>.

	Values:	
	right – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns the x coordinate of the bottom right corner of the
bounding box region. The argument region must be either a
bounded region or some other object that obeys the bounding box
protocol, such as a sheet.

	See also:	
	box-bottom

	box-left

	box-top

	
box-size Generic function

	Returns the width and height of the bounding box of a region as two
values

	Signature:	box-size region => width height

	Parameters:	
	region – An instance of type <region>.

	Values:	
	width – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	height – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns the width and height of the bounding box of region as two
values The argument region must be either a bounded region or
some other object that obeys the bounding box protocol, such as a
sheet.

	See also:	
	box-height

	box-position

	box-width

	
box-top Function

	Returns the y coordinate of the upper left corner of the bounding
box of a region.

	Signature:	box-top region => top

	Parameters:	
	region – An instance of type <region>.

	Values:	
	top – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns the y coordinate of the upper left corner of the bounding
box region. The argument region must be either a bounded region
or some other object that obeys the bounding box protocol.

	See also:	
	box-bottom

	box-left

	box-right

	
box-width Function

	Returns the width of the bounding box of a region.

	Signature:	box-width region => width

	Parameters:	
	region – An instance of type <region>.

	Values:	
	width – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns the width of the bounding box region. The width of a
bounding box is the difference between its maximum x coordinate
(right) and its minimum x coordinate (left).The argument region
must be either a bounded region or some other object that obeys the
bounding box protocol, such as a sheet.

	See also:	
	box-height

	box-position

	box-size

	
compose-rotation-with-transform Generic function

	Creates a new transform by composing a transform with the given rotation

	Signature:	compose-rotation-with-transform transform angle #key origin => transform

	Parameters:	
	transform – An instance of type <transform>.

	angle – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	origin (#key) – An instance of type <point>. Default
value: (0, 0).

	Values:	
	transform – An instance of type <transform>.

	Discussion:	Creates a new transform by composing the transform transform with
the given rotation The order of composition is that the rotation
transform is applied first, followed by the argument transform.

Note that this function could be implemented by using
make-rotation-transform and compose-transforms. It is
provided because it is common to build up a transform as a series
of simple transforms.

	See also:	
	make-rotation-transform

	
compose-scaling-with-transform Generic function

	Creates a new transform by composing a transform with the given scaling.

	Signature:	compose-scaling-with-transform transform scale-x scale-y #key origin => transform

	Parameters:	
	transform – An instance of type <transform>.

	scale-x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	scale-y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	origin (#key) – An instance of type <point>. Default
value: (0, 0).

	Values:	
	transform – An instance of type <transform>.

	Discussion:	Creates a new transform by composing the transform transform with
the given scaling. The order of composition is that the scaling
transform is applied first, followed by the argument transform.

The argument scale-x represents the scaling factor for the x
direction.

The argument scale-y represents the scaling factor for the y
direction.

The argument origin represents the point around which scaling is
performed. The default is to scale around the origin.

Note that this function could be implemented by using
make-scaling-transform and compose-transforms. It is
provided because it is common to build up a transform as a series
of simple transforms.

	See also:	
	make-scaling-transform

	
compose-transforms Generic function

	Returns a transform that is the mathematical composition of its
arguments.

	Signature:	compose-transforms transform1 transform2 => transform

	Parameters:	
	transform1 – An instance of type <transform>.

	transform2 – An instance of type <transform>.

	Values:	
	transform – An instance of type <transform>.

	Discussion:	Returns a transform that is the mathematical composition of its
arguments. Composition is in right-to-left order, that is, the
resulting transform represents the effects of applying the
transform transform2 followed by the transform transform1.

	See also:	
	compose-transform-with-rotation

	
compose-transform-with-rotation Generic function

	Creates a new transform by composing a given rotation with a transform.

	Signature:	compose-transform-with-rotation transform angle #key origin => transform

	Parameters:	
	transform – An instance of type <transform>.

	angle – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	origin (#key) – An instance of type <point>. Default
value: (0,0).

	Values:	
	transform – An instance of type <transform>.

	Discussion:	Creates a new transform by composing a given rotation with the
transform transform. The order of composition is transform
first, followed by the rotation transform.

The argument angle represents the angle by which to rotate, in
radians.

The argument origin represents the point about which to rotate.
The default is to rotate around (0,0).

Note that this function could be implemented by using
make-rotation-transform and compose-transforms. It is
provided because it is common to build up a transform as a series
of simple transforms.

	See also:	
	compose-transforms

	make-rotation-transform

	
compose-transform-with-scaling Generic function

	Creates a new transform by composing a given scaling with a transform.

	Signature:	compose-transform-with-scaling transform scale-x scale-y #key origin => transform

	Parameters:	
	transform – An instance of type <transform>.

	scale-x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	scale-y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	origin (#key) – An instance of type <point>. Default
value: (0,0).

	Values:	
	transform – An instance of type <transform>.

	Discussion:	Creates a new transform by composing a given scaling with the
transform transform. The order of composition is transform
first, followed by the scaling transform.

The argument scale-x represents the scaling factor for the x
direction.

The argument scale-y represents the scaling factor for the y
direction.

The argument origin represents the point around which scaling is
performed. The default is to scale around the origin.

Note that this function could be implemented by using
make-scaling-transform and compose-transforms. It is
provided because it is common to build up a transform as a series
of simple transforms.

	See also:	
	compose-transforms

	make-scaling-transform

	
compose-transform-with-translation Generic function

	Creates a new transform by composing a given translation with a
transform.

	Signature:	compose-transform-with-translation transform dx dy => transform

	Parameters:	
	transform – An instance of type <transform>.

	dx – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	dy – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Values:	
	transform – An instance of type <transform>.

	Discussion:	Creates a new transform by composing a given translation with the
transform transform. The order of composition is transform
first, followed by the translation transform.

The argument dx represents the delta by which to translate the
x coordinate.

The argument dy represents the delta by which to translate the
y coordinate.

Note that this function could be implemented by using
make-translation-transform and compose-transforms. It
is provided because it is common to build up a transform as a
series of simple transforms.

	See also:	
	make-translation-transform

	compose-transforms

	
compose-translation-with-transform Generic function

	Creates a new transform by composing a transform with the given
translation.

	Signature:	compose-translation-with-transform transform dx dy => transform

	Parameters:	
	transform – An instance of type <transform>.

	dx – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	dy – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Values:	
	transform – An instance of type <transform>.

	Discussion:	Creates a new transform by composing the transform transform with
the given translation. The order of composition is that the
translation transform is applied first, followed by the argument
transform.

The argument dx represents the delta by which to translate the
x coordinate.

The argument dy represents the delta by which to translate the
y coordinate.

Note that this function could be implemented by using
make-translation-transform and compose-transforms. It
is provided, because it is common to build up a transform as a
series of simple transforms.

	See also:	
	make-translation-transform

	compose-transforms

	
do-coordinates Function

	Applies a function to each coordinate pair in its argument list.

	Signature:	do-coordinates function coordinates => ()

	Parameters:	
	function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	coordinates – An instance of type limited(<sequence>, of: <real>).

	Discussion:	Applies function to each coordinate pair in coordinates. The
length of coordinates must be a multiple of 2. Function takes
two arguments, the x and y value of each coordinate pair.

	
do-endpoint-coordinates Function

	Applies a function to each coordinate pair in its argument list.

	Signature:	do-endpoint-coordinates function coordinates => ()

	Parameters:	
	function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	coordinates – An instance of type limited(<sequence>, of: <real>).

	Discussion:	Applies function to each pair of coordinate pairs in
coordinates. The arguments coordinates represents a set of line
segments rather than a set of points: The length of this sequence
must therefore be a multiple of 4. Function takes 4 arguments,
(x1, y1, x2, y2).

	
do-regions Generic function

	Calls a function on each region in a set of regions.

	Signature:	do-regions function region #key normalize? => ()

	Parameters:	
	function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	region – An instance of type <region>.

	normalize? (#key) – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #f.

	Discussion:	Calls function on each region in the region set region. This is
often more efficient than calling region-set-regions. function
is a function of one argument, a region. Region can be either a
region set or a simple region, in which case function is called
once on region itself. If normalize is supplied, it must be
either #"x-banding" or #"y-banding". If it is
#"x-banding" and all the regions in region are axis-aligned
rectangles, the result is normalized by merging adjacent rectangles
with banding done in the x direction. If it is #"y-banding"
and all the regions in region are rectangles, the result is
normalized with banding done in the y direction. Normalizing a
region set that is not composed entirely of axis-aligned rectangles
using x- or y-banding causes DUIM to signal the
<region-set-not-rectangular> error.

	
even-scaling-transform? Generic function

	Returns #t if the transform transform multiplies all x
lengths and y lengths by the same magnitude, otherwise returns
#f.

	Signature:	even-scaling-transform? transform => boolean

	Parameters:	
	transform – An instance of type <transform>.

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if the transform transform multiplies all x
lengths and y lengths by the same magnitude, otherwise returns
#f. even-scaling-transform? includes pure reflections
through vertical and horizontal lines.

	
$everywhere Constant

	The region that includes all the points on the two-dimensional
infinite drawing plane.

	Type:	<region>

	Discussion:	The region that includes all the points on the two-dimensional
infinite drawing plane.

	See also:	
	$nowhere

	
fix-coordinate Function

	Coerces the given coordinate into an <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Signature:	fix-coordinate coordinate => integer

	Parameters:	
	coordinate – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Values:	
	integer – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Coerces the given coordinate into an <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	
$identity-transform Constant

	An instance of a transform that is guaranteed to be an identity
transform, that is, the transform that does nothing.

	Type:	<transform>

	Discussion:	An instance of a transform that is guaranteed to be an identity
transform, that is, the transform that does nothing.

	See also:	
	identity-transform?

	
identity-transform? Generic function

	Returns #t if a transform is equal (in the sense of transform-equal) to the identity transform.

	Signature:	identity-transform? transform => boolean

	Parameters:	
	transform – An instance of type <transform>.

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if the transform transform is equal (in the sense
of transform-equal) to the identity transform, otherwise returns
#f.

	See also:	
	$identity-transform

	
invert-transform Generic function

	Returns a transform that is the inverse of the given transform.

	Signature:	invert-transform transform => transform

	Parameters:	
	transform – An instance of type <transform>.

	Values:	
	transform – An instance of type <transform>.

	Conditions:	If transform is singular, invert-transform signals the
<singular-transform> error.

Note

With finite-precision arithmetic there are several
low-level conditions that might occur during the attempt to invert
a singular or almost singular transform. (These include
computation of a zero determinant, floating-point underflow during
computation of the determinant, or floating-point overflow during
subsequent multiplication.) invert-transform signals the
<singular-transform> error for all of these cases.

	Discussion:	Returns a transform that is the inverse of the transform
transform. The result of composing a transform with its inverse
is equal to the identity transform.

	See also:	
	invertible-transform?

	
invertible-transform? Generic function

	Returns #t if the given transform has an inverse.

	Signature:	invertible-transform? transform => boolean

	Parameters:	
	transform – An instance of type <transform>.

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if the transform transform has an inverse,
otherwise returns #f.

	See also:	
	invert-transform

	
$largest-coordinate Constant

	The largest valid coordinate.

	Type:	<integer>

	Discussion:	The largest valid coordinate.

	See also:	
	$smallest-coordinate

	
make-3-point-transform Function

	Returns a transform that takes points point-1 into point-1-image,
point-2 into point-2-image and point-3 into point-3-image.

	Signature:	make-3-point-transform x1 y1 x2 y2 x3 y3 x1-image y1-image x2-image y2-image x3-image y3-image => transform

	Signature:	make-3-point-transform* point-1 point-2 point-3 point-1-image point-2-image point-3-image => transform

The following arguments are specific to make-3-point-transform.

	Parameters:	
	x1 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y1 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	x2 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y2 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	x3 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y3 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	x1-image – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y1-image – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	x2-image – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y2-image – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	x3-image – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y3-image – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

The following arguments are specific to make-3-point-transform*.

	Parameters:	
	point-1 – An instance of type <point>.

	point-2 – An instance of type <point>.

	point-3 – An instance of type <point>.

	point-1-image – An instance of type <point>.

	point-2-image – An instance of type <point>.

	point-3-image – An instance of type <point>.

	Values:	
	transform – An instance of type <transform>.

	Conditions:	If point-1, point-2 and point-3 are colinear, the
<transform-underspecified> error is signalled. If
point-1-image,*point-2-image* and point-3-image are colinear, the
resulting transform will be singular (that is, will have no inverse) but
this is not an error.

	Discussion:	Returns a transform that takes points point-1 into point-1-image,
point-2 into point-2-image and point-3 into point-3-image.
Three non-colinear points and their images under the transform are
enough to specify any affine transformation.

The function make-3-point-transform* is identical to
make-3-point-transform, except that it passes composite objects,
rather than separate coordinates, in its arguments. You should be aware
that using this function may lead to a loss of performance.

	
make-bounding-box Function

	Returns an object of the class <bounding-box>.

	Signature:	make-bounding-box x1 y1 x2 y2 => box

	Parameters:	
	x1 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y1 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	x2 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y2 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Values:	
	box – An instance of type <bounding-box>.

	Discussion:	Returns an object of the class <bounding-box> with the
edges specified by x1, y1, x2, and y2. x1, y1, x2, and y2 are
canonicalized in the following way. The min point of the box has an
x coordinate that is the smaller of x1 and x2 and a y
coordinate that is the smaller of y1 and y2. The max point of
the box has an x coordinate that is the larger of x1 and x2
and a y coordinate that is the larger of y1 and y2.
(Therefore, in a right-handed coordinate system the canonicalized
values of x1, y1, x2, and y2 correspond to the left, top,
right, and bottom edges of the box, respectively.)

This is a convenient shorthand function for make(<bounding-box>,
left: top: right: bottom:).

	
make-point Function

	Returns an object of class <point>.

	Signature:	make-point x y => point

	Parameters:	
	x – An instance of <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y – An instance of <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Values:	
	point – An instance of type <point>.

	Discussion:	Returns an object of class <point> whose coordinates are
x and y.

	
make-reflection-transform Function

	Returns a transform that reflects every point through the line
passing through the positions x1,y1 and x2,y2.

	Signature:	make-reflection-transform x1 y1 x2 y2 => transform

	Parameters:	
	x1 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y1 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	x2 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y2 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Values:	
	transform – An instance of type <transform>. The
resultant transformation.

	Discussion:	Returns a transform that reflects every point through the line
passing through the positions x1,y1 and x2,y2.

The arguments x1 and y1 represent the coordinates of the first
point of reflection. The arguments x2 and y2 represent the
coordinates of the second point of reflection.

A reflection is a transform that preserves lengths and magnitudes
of angles, but changes the sign (or handedness) of angles. If you
think of the drawing plane on a transparent sheet of paper, a
reflection is a transformation that turns the paper over.

	See also:	
	make-rotation-transform

	make-scaling-transform

	make-transform

	make-translation-transform

	<reflection-underspecified>

	
make-reflection-transform Function

	Returns a transform that reflects every point through the line
passing through the positions x1,y1 and x2,y2 or through the
points point1 and point2.

	Signature:	make-reflection-transform* point-1 point-2 => transform

	Parameters:	
	point1 – An instance of type <point>. The
first point.

	point2 – An instance of type <point>. The
second point.

	Values:	
	transform – An instance of type <transform>.
The resultant transformation.

	Discussion:	Returns a transform that reflects every point through the line
passing through the points point1 and point2.

A reflection is a transform that preserves lengths and magnitudes
of angles, but changes the sign (or handedness) of angles. If you
think of the drawing plane on a transparent sheet of paper, a
reflection is a transformation that turns the paper over.

The function make-reflection-transform* is identical to
:func:make-reflection-transform, except that it passes composite
objects, rather than separate coordinates, in its arguments. You
should be aware that using this function may lead to a loss of
performance.

	See also:	
	make-rotation-transform

	make-scaling-transform

	make-transform

	make-translation-transform

	<reflection-underspecified>

	
make-rotation-transform Function

	Returns a transform that rotates all points by angle around the point
specified by coordinates origin-x and origin-y or the point object
origin.

	Signature:	make-rotation-transform angle #key origin-x origin-y => transform

	Signature:	make-rotation-transform* angle #key origin => transform

	Parameters:	
	angle – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

The following arguments are specific to make-rotation-transform.

	Parameters:	
	origin-x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real]. Default value: 0.

	origin-y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real]. Default value: 0.

The following argument is specific to make-reflection-transform*.

	Parameters:	
	origin – An instance of type <point>. Default value: (0, 0).

	Values:	
	transform – An instance of type <transform>.

	Discussion:	Returns a transform that rotates all points by angle around the point
specified by coordinates origin-x and origin-y or the point object
origin. The angle must be expressed in radians.

A rotation is a transform that preserves length and angles of all
geometric entities. Rotations also preserve one point (the origin) and
the distance of all entities from that point.

The function make-rotation-transform* is identical to
make-rotation-transform, except that it passes composite objects,
rather than separate coordinates, in its arguments. You should be aware
that using this function may lead to a loss of performance.

	See also:	
	make-reflection-transform

	make-scaling-transform

	make-transform

	make-translation-transform

	
make-scaling-transform Function

	Returns a transform that multiplies the x -coordinate distance of
every point from origin by scale-x and the y -coordinate distance
of every point from origin by scale-y.

	Signature:	make-scaling-transform scale-x scale-y #key origin-x origin-y => transform

	Signature:	make-scaling-transform* scale-x scale-y #key origin => transform

	Parameters:	
	scale-x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	scale-y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

The following arguments are specific to make-scaling-transform.

	Parameters:	
	origin-x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real]. Default value: 0.

	origin-y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real]. Default value: 0.

The following argument is specific to make-scaling-transform*.

	Parameters:	
	origin – An instance of type <point>.

	Values:	
	transform – An instance of type <transform>. The resultant transformation.

	Discussion:	Returns a transform that multiplies the x -coordinate distance of
every point from origin by scale-x and the y -coordinate distance
of every point from origin by scale-y.

The argument scale-x represents the scaling factor for the x
direction.

The argument scale-y represents the scaling factor for the y
direction.

The arguments origin-x and origin-y represent the point around which
scaling is performed. The default is to scale around the origin.

There is no single definition of a scaling transformation. Transforms
that preserve all angles and multiply all lengths by the same factor
(preserving the shape of all entities) are certainly scaling
transformations. However, scaling is also used to refer to transforms
that scale distances in the x direction by one amount and distances in
the y direction by another amount.

The function make-scaling-transform* is identical to
make-scaling-transform, except that it passes composite objects,
rather than separate coordinates, in its arguments. You should be aware
that using this function may lead to a loss of performance.

	See also:	
	make-reflection-transform

	make-rotation-transform

	make-transform

	make-translation-transform

	
make-transform Function

	Returns a general affine transform.

	Signature:	make-transform mxx mxy myx myy tx ty => transform

	Parameters:	
	mxx – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	mxy – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	myx – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	myy – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	tx – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	ty – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Values:	
	transform – An instance of type <transform>.

	Discussion:	Returns a general transform whose effect is:

x'= *mxx* x + *mxy* y + *tx*
y'= *myx* x + *myy* y + *ty*

where x and y are the coordinates of a point before the transform
and x’ and y’ are the coordinates of the corresponding point after.

All of the arguments to make-transform must be real numbers.

This is a convenient shorthand for make(<transform>, ...).

	See also:	
	make-reflection-transform

	make-rotation-transform

	make-scaling-transform

	make-translation-transform

	
make-translation-transform Function

	Returns a transform that translates all points by dx in the x
direction and dy in the y direction.

	Signature:	make-translation-transform dx dy => transform

	Parameters:	
	dx – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	dy – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Values:	
	transform – An instance of type <transform>.

	Discussion:	Returns a transform that translates all points by dx in the x
direction and dy in the y direction.

The argument dx represents the delta by which to translate the
x coordinate.

The argument dy represents the delta by which to translate the
y coordinate.

A translation is a transform that preserves length, angle, and
orientation of all geometric entities.

	See also:	
	make-reflection-transform

	make-rotation-transform

	make-scaling-transform

	make-transform

	
$nowhere Constant

	The empty region, the opposite of $everywhere.

	Type:	<region>

	Discussion:	The empty region, the opposite of $everywhere.

	See also:	
	$everywhere

	
<path> Open Abstract Class

	The class <path> denotes bounded regions that have dimensionality
1 (that is, have length).

	Superclasses:	<region>

	Discussion:	The class <path> denotes bounded regions that have
dimensionality 1 (that is, have length).<path> is a subclass of <region>.

Constructing a <path> object with no length (via
make-line*, for example) may canonicalize it to
$nowhere.

	Operations:	
	path?

	See also:	
	path?

	
path? Generic function

	Returns #t if its argument is a path.

	Signature:	path? object => boolean

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if object is a path, otherwise returns #f.

	See also:	
	<path>

	
<point> Open Abstract Instantiable Class

	The class that corresponds to a mathematical point.

	Superclasses:	<region>

	Init-Keywords:	
	x – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	y – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	The class that corresponds to a mathematical point. <point> is
a subclass of <region>. The x: and y:
init-keywords correspond to the x and y coordinates, respectively.

	Operations:	
	=

	box-edges

	point?

	point-position

	point-x

	point-y

	region-contains-position?

	region-contains-region?

	region-intersection

	region-intersects-region?

	transform-region

	
point? Generic function

	Returns true if object is a point.

	Signature:	point? object => boolean

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if object is a point.

	
point-position Generic function

	Returns both the x and y coordinates of a point.

	Signature:	point-position point => x y

	Parameters:	
	point – An instance of type <point>.

	Values:	
	x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Discussion:	Returns both the x and y coordinates of the point point as
two values.

	See also:	
	point-x

	point-y

	
point-x Generic function

	Returns the x coordinate of a point.

	Signature:	point-x point => x

	Parameters:	
	point – An instance of type <point>.

	Values:	
	x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Discussion:	Returns the x coordinate of point.

	See also:	
	point-position

	point-y

	
point-y Generic function

	Returns the y coordinate of a point.

	Signature:	point-y point => y

	Parameters:	
	point – An instance of type <point>.

	Values:	
	y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real]

	Discussion:	Returns the y coordinate of point.

	See also:	
	point-position

	point-x

	
rectilinear-transform? Generic function

	Returns #t if a transform always transforms any axis-aligned
rectangle into another axis-aligned rectangle.

	Signature:	rectilinear-transform? transform => boolean

	Parameters:	
	transform – An instance of type <transform>.

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if the transform transform always transforms any
axis-aligned rectangle into another axis-aligned rectangle,
otherwise returns #f.

This category includes scalings as a subset, and also includes 90
degree rotations.

Rectilinear transforms are the most general category of transforms
for which the bounding rectangle of a transformed object can be
found by transforming the bounding rectangle of the original
object.

	
reflection-transform? Generic function

	Returns #t if the transform inverts the handedness of the
coordinate system.

	Signature:	reflection-transform? transform => boolean

	Parameters:	
	transform – An instance of type <transform>.

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if the transform transform inverts the
handedness of the coordinate system, otherwise returns #f.

Note that this is a very inclusive category — transforms are
considered reflections even if they distort, scale, or skew the
coordinate system, as long as they invert the handedness.

	
<reflection-underspecified> Concrete Sealed Class

	The error that is signalled when make-reflection-transform is
given two coincident points.

	Superclasses:	<transform-underspecified>

	Init-Keywords:	
	points – Instances of type <point>.

	Discussion:	The error that is signalled when make-reflection-transform
is given two coincident points. This condition handles the
points: initarg, which is used to supply the points that are in
error.

	See also:	
	make-reflection-transform

	
<region> Open Abstract Class

	The class that corresponds to a set of points.

	Superclasses:	<object>

	Discussion:	The class that corresponds to a set of points. The:class:<region>
class includes both bounded and unbounded regions.There is no make [http://opendylan.org/books/drm/Constructing_and_Initializing_Instances#make] method for <region> because of the
impossibility of a uniform way to specify the arguments to such a
function.

	Operations:	
	=

	do-regions

	region?

	region-contains-position?

	region-contains-region?

	region-difference

	region-empty?

	region-equal

	region-intersection

	region-intersects-region?

	region-set-function

	region-set-regions

	region-union

	See also:	
	region?

	
region? Generic function

	Returns #t if its argument is a region.

	Signature:	region? object => boolean

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if object is a region, otherwise returns``#f``.

	See also:	
	<region>

	
region-contains-position? Generic function

	Returns #t if the point at x,y is contained in the region.

	Signature:	region-contains-position? region x y => boolean

	Parameters:	
	region – An instance of type <region>.

	x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if the point at x,y is contained in the region
region, otherwise returns #f. Since regions in DUIM are
closed, this returns #t if the point at x,y is on the
region’s boundary.

	See also:	
	region-contains-region?

	
region-contains-region? Generic function

	Returns #t if all points in the second region are members of the
first region.

	Signature:	region-contains-region? region1 region2 => boolean

	Parameters:	
	region1 – An instance of type <region>.

	region2 – An instance of type <region>.

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if all points in the region region2 are members of
the region region1, otherwise returns #f.
region-contains-position? is a special case of
region-contains-region? in which the region is the point
x,y.

	See also:	
	region-contains-position?

	
region-difference Generic function

	Returns a region that contains all points in the region region1
that are not in the region region2 (possibly plus additional
boundary points to make the result closed).

	Signature:	region-difference region1 region2 => region

	Parameters:	
	region1 – An instance of type <region>.

	region2 – An instance of type <region>.

	Values:	
	region – An instance of type <region>.

	Discussion:	Returns a region that contains all points in the region region1
that are not in the region region2 (possibly plus additional
boundary points to make the result closed).

The result of region-difference has the same dimensionality as
region1, or is $nowhere. For example, the difference of
an area and a path produces the same area; the difference of a path
and an area produces the path clipped to stay outside of the area.

Note

region-difference may return either a simple region
or a region set.

	
region-empty? Generic function

	Returns #t if the region is empty.

	Signature:	region-empty? region => boolean

	Parameters:	
	region – An instance of type <region>.

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if the region is empty, otherwise returns #f.

	
region-equal Generic function

	Returns #t if the two regions region1 and region2 contain
exactly the same set of points.

	Signature:	region-equal region1 region2 => boolean

	Parameters:	
	region1 – An instance of type <region>.

	region2 – An instance of type <region>.

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if the two regions region1 and region2 contain
exactly the same set of points, otherwise returns #f. There is
a method on = on <region> and <region> that
calls region-equal.

	
region-intersection Generic function

	Returns the intersection of two regions, as a region.

	Signature:	region-intersection region1 region2 => region

	Parameters:	
	region1 – An instance of type <region>.

	region2 – An instance of type <region>.

	Values:	
	region – An instance of type <region>.

	Discussion:	Returns a region that contains all points that are in both of the
regions region1 and region2 (possibly with some points removed
in order to satisfy the dimensionality rule).

The result of region-intersection has dimensionality that is
the minimum dimensionality of region1 and region2, or is
$nowhere. For example, the intersection of two areas is
either another area or $nowhere; the intersection of two
paths is either another path or $nowhere; the intersection
of a path and an area produces the path clipped to stay inside of
the area.

Note

region-intersection may return either a simple region
or a region set.

	See also:	
	region-union

	
region-intersects-region? Generic function

	Returns #f if two regions do not intersect*.*

	Signature:	region-intersects-region? region1 region2 => boolean

	Parameters:	
	region1 – An instance of type <region>.

	region2 – An instance of type <region>.

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #f if region-intersection of the two regions
region1 and region2 would be $nowhere (that is, they
do not intersect), otherwise returns #t.

	
<region-set> Open Abstract Class

	The class that represents a region set.

	Superclasses:	<region>

	Discussion:	The class that represents a region set; a subclass of
<region>.

	Operations:	
	box-edges

	do-regions

	region-contains-position?

	region-contains-region?

	region-difference

	region-empty?

	region-intersection

	region-set-function

	region-set-regions

	region-union

	transform-region

	See also:	
	region-set?

	
region-set? Generic function

	Returns #t if its argument is a region set.

	Signature:	region-set? object => boolean

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if object is a region set, otherwise returns
#f.

	See also:	
	<region-set>

	
region-set-function Generic function

	Returns the function that composed the region.

	Signature:	region-set-function region => function

	Parameters:	
	region – An instance of type <region>.

	Values:	
	function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	Discussion:	Returns the function that composed the region,
region-intersection, region-union, or
region-difference.

	
region-set-regions Generic function

	Returns a sequence of the regions in the region set.

	Signature:	region-set-regions region #key normalize? => regions

	Parameters:	
	region – An instance of type <region>.

	normalize? – one-of(#f, #"x-banding", #"y-banding").
Default value: #f.

	Values:	
	regions – An instance of type limited(<sequence>, of: <region>).

	Conditions:	Normalizing a region set that is not composed entirely of axis-aligned
rectangles using x- or y-banding causes DUIM to signal the
<region-set-not-rectangular> error.

	Discussion:	Returns a sequence of the regions in the region set region.
region can be either a region set or a simple region, in which
case the result is simply a sequence of one element: region.

For the case of region sets that are unions of axis-aligned
rectangles, the rectangles returned by region-set-regions are
guaranteed not to overlap. If normalize? is supplied, it must be
either #"x-banding" or #"y-banding". If it is
#"x-banding" and all the regions in region are axis-aligned
rectangles, the result is normalized by merging adjacent rectangles
with banding done in the x direction. If it is #"y-banding"
and all the regions in region are rectangles, the result is
normalized with banding done in the y direction.

	
region-union Generic function

	Returns the union of two regions, as a region.

	Signature:	region-union region1 region2 => region

	Parameters:	
	region1 – An instance of type <region>.

	region2 – An instance of type <region>.

	Values:	
	region – An instance of type <region>.

	Discussion:	Returns a region that contains all points that are in either of the
regions region1 or region2 (possibly with some points removed
in order to satisfy the dimensionality rule)

The result of region-union always has dimensionality that is
the maximum dimensionality of region1 and region2. For example,
the union of a path and an area produces an area; the union of two
paths is a path.

Note

region-union may return either a simple region
or a region set.

	See also:	
	region-intersection

	
rigid-transform? Generic function

	Returns #t if the transform transforms the coordinate system as
a rigid object.

	Signature:	rigid-transform? transform => boolean

	Parameters:	
	transform – An instance of type <transform>.

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if the transform transforms the coordinate system
as a rigid object, that is, as a combination of translations,
rotations, and pure reflections. Otherwise, it returns #f.

Rigid transforms are the most general category of transforms that
preserve magnitudes of all lengths and angles.

	
scaling-transform? Generic function

	Returns #t if the transform transform multiplies all x
lengths by one magnitude and all y lengths by another magnitude,
otherwise returns #f.

	Signature:	scaling-transform? transform => boolean

	Parameters:	
	transform – An instance of type <transform>.

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if the transform transform multiplies all x
lengths by one magnitude and all y lengths by another magnitude,
otherwise returns #f. This category includes even scalings as a
subset.

	
set-box-edges Generic function

	Sets the edges of a box and returns the bounding box.

	Signature:	set-box-edges box left top right bottom => box

	Parameters:	
	box – An instance of type <bounding-box>.

	left – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	top – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	right – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	bottom – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Values:	
	box – An instance of type <bounding-box>.

	Discussion:	Sets the edges of a box and returns the bounding box box. This
might destructively modify box or it might not, depending on what
class box is.

	
set-box-position Generic function

	Sets the position of the bounding box and returns a (possibly new)
box.

	Signature:	set-box-position box x y => box

	Parameters:	
	box – An instance of type <bounding-box>.

	x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Values:	
	box – An instance of type <bounding-box>.

	Discussion:	Sets the position of the bounding box box and might or might not
modify the box.

	
set-box-size Generic function

	Sets the size (width and height) of the bounding box box.

	Signature:	set-box-size box width height => box

	Parameters:	
	box – An instance of type <bounding-box>.

	width – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	height – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer]

	Values:	
	box – An instance of type <bounding-box>.

	Discussion:	Sets the size (width and height) of the bounding box box.

	
<singular-transform> Instantiable Sealed Class

	The error that is signalled when invert-transform is called on
a singular transform, that is, a transform that has no inverse.

	Superclasses:	<transform-error>

	Init-Keywords:	
	transform – Used to supply the transform that is singular.

	Discussion:	The error that is signalled when invert-transform is called
on a singular transform, that is, a transform that has no inverse.

This condition handles the transform: initarg, which is used to
supply the transform that is singular.

	See also:	
	invert-transform

	
$smallest-coordinate Constant

	The smallest valid coordinate.

	Type:	<integer>

	Discussion:	The smallest valid coordinate. Coordinates must be instances of type
<integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	See also:	
	$largest-coordinate

	
<transform> Open Abstract Instantiable Class

	The superclass of all transforms.

	Superclasses:	<object>

	Init-Keywords:	
	mxx – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	mxy – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	myx – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	myy – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	tx – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	ty – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Discussion:	The superclass of all transforms. There are one or more subclasses
of <transform> with implementation-dependent names that
implement transforms. The exact names of these classes is
explicitly unspecified.
All of the instantiable transformation classes provided by DUIM
are immutable.

	Operations:	
	=

	compose-rotation-with-transform

	compose-scaling-with-transform

	compose-transforms

	compose-transform-with-translation

	compose-translation-with-transform

	even-scaling-transform?

	identity-transform?

	invert-transform

	invertible-transform?

	rectilinear-transform?

	reflection-transform?

	rigid-transform?

	scaling-transform?

	transform-angles

	transform-box

	transform-distance

	transform-position

	transform-region

	translation-transform?

	untransform-angles

	untransform-box

	untransform-distance

	untransform-position

	untransform-region

	See also:	
	transform?

	
transform? Generic function

	Returns #t if its argument is a transform.

	Signature:	transform? object => boolean

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if object is a transform, otherwise returns #f.

	See also:	
	<transform>

	
transform-angles Generic function

	Applies the transform to the start and end angles of an object, and
returns the transformed angles.

	Signature:	transform-angles transform start-angle end-angle => new-start new-end

	Parameters:	
	transform – An instance of type <transform>.

	start-angle – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	end-angle – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Values:	
	new-start – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	new-end – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Discussion:	Applies the transform transform to the angles start-angle and
end-angle of an object, and returns the transformed angles.

	
transform-box Generic function

	Applies the transform to the rectangle specified by the four
coordinate arguments.

	Signature:	transform-box transform x1 y1 x2 y2 => left top right bottom

	Parameters:	
	transform – An instance of type <transform>.

	x1 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y1 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	x2 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y2 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Values:	
	left – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	top – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	right – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	bottom – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Discussion:	Applies the transform transform to the rectangle specified by the
four coordinate arguments. transform-box is the spread version of
transform-region in the case where the transform is
rectilinear and the region is a rectangle.

The arguments x1, y1, x2, and y2 are canonicalized and the
four return values specify the minimum and maximum points of the
transformed rectangle in the order left, top, right, and
bottom.

An error is signalled if transform does not satisfy
rectilinear-transform?.

	
transform-distance Generic function

	Applies a transform to a distance represented by the coordinate
arguments and returns the transformed coordinates.

	Signature:	transform-distance transform dx dy => dx dy

	Parameters:	
	transform – An instance of type <transform>.

	dx – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	dy – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Values:	
	dx – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	dy – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Discussion:	Applies the transform transform to the distance represented by
dx and dy, and returns the transformed dx and dy. A
distance represents the difference between two points. It does not
transform like a point.

	
<transform-error> Sealed Class

	The superclass of all error conditions distributed when there is an
error with a transform.

	Superclasses:	<error>

	Discussion:	The class that is the superclass of three error conditions,
<transform-underspecified>,
<reflection-underspecified>, and
<singular-transform>.

	
transform-position Generic function

	Applies a transform to the point whose coordinates are x and y.

	Signature:	transform-position transform x y => new-x new-y

	Parameters:	
	transform – An instance of type <transform>.

	x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real]

	y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real]

	Values:	
	new-x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real]

	new-y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real]

	Discussion:	Applies the transform transform to the point whose coordinates
are x and y. transform-position is the spread version of
transform-region in the case where the region is a point.

	
transform-region Generic function

	Applies a transform to a region, and returns the transformed region.

	Signature:	transform-region transform region => region

	Parameters:	
	transform – An instance of type <transform>.

	region – An instance of type <region>.

	Values:	
	region – An instance of type <region>.

	Discussion:	Applies transform to the region region, and returns the transformed
region.

	
<transform-underspecified> Concrete Sealed Class

	The error that is signalled when make-3-point-transform is
given three colinear image points.

	Superclasses:	<transform-error>

	Init-Keywords:	
	points – The points that are in error.

	Discussion:	The error that is signalled when make-3-point-transform is
given three colinear image points. This condition handles the
points: initarg, which is used to supply the points that are in
error.

	See also:	
	make-3-point-transform

	
translation-transform? Generic function

	Returns #t if a transform is a pure translation, that is, a transform
such that there are two distance components transform dx and dy and
every point (x,y) is moved to (x+dx,y+dy).

	Signature:	translation-transform? transform => boolean

	Parameters:	
	transform – An instance of type <transform>.

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if the transform transform is a pure translation, that
is, a transform such that there are two distance components transform
dx and dy and every point (x,y) is moved to (x+dx,y+dy).
Otherwise, translation-transform? returns #f.

	
untransform-angles Generic function

	Undoes a transform and returns the original start and end angles of
the object.

	Signature:	untransform-angles transform start-angle end-angle => orig-start orig-end

	Parameters:	
	transform – An instance of type <transform>.

	start-angle – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	end-angle – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Values:	
	orig-start – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	orig-end – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Conditions:	
	<singular-transform> cannot be inverted.

	Discussion:	Undoes the transform transform to the angles new-start and*new-end,*
returning the original orig-start and orig-end. This is exactly
equivalent to:

transform-angles(invert-transform(*transform*))

	
untransform-box Generic function

	Undoes the previous transformation on the rectangle left, top and
right, bottom, returning the original box.

	Signature:	untransform-box transform x1 y1 x2 y2 => left top right bottom

	Parameters:	
	transform – An instance of type <transform>.

	x1 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y1 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	x2 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y2 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Values:	
	left – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	top – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	right – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	bottom – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Conditions:	
	<singular-transform> cannot be inverted.

	Discussion:	Undoes the previous transformation on the rectangle top-left-s,
top-left-y and bottom-right-x, bottom-right-y, returning the original
box. This is exactly equivalent to:

transform-box(invert-transform(*transform*))

	
untransform-distance Generic function

	Undoes the previous transformation on the distance dx,dy, returning
the original dx,dy.

	Signature:	untransform-distance transform dx dy => dx dy

	Parameters:	
	transform – An instance of type <transform>.

	dx – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	dy – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Values:	
	dx – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	dy – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Conditions:	
	<singular-transform> cannot be inverted.

	Discussion:	Undoes the previous transformation on the distance dx,dy, returning
the original dx,dy. This is exactly equivalent to:

transform-position(invert-transform(*transform*))

	
untransform-position Generic function

	Undoes the previous transformation on the point x,y, returning the
original point.

	Signature:	untransform-position transform x y => x y

:parameter transform* An instance of type <transform>.
:parameter x: An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].
:parameter y: An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].
:value x: An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].
:value y: An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Conditions:	
	<singular-transform> cannot be inverted.

	Discussion:	Undoes the previous transformation on the point x,y, returning
the original point. This is exactly equivalent to:transform-position(invert-transform(*transform*))

	
untransform-region Generic function

	Undoes the previous transformation on a region, returning the
original region.

	Signature:	untransform-region transform region2 => region1

	Parameters:	
	transform – An instance of type <transform>.

	region2 – An instance of type <region>. The region to untransform.

	Values:	
	region1 – An instance of type <region>. The original region.

	Conditions:	
	<singular-transform> cannot be inverted.

	Discussion:	Undoes the previous transformation on the region region,
returning the original region. This is exactly equivalent to

transform-region(invert-transform(*transform region*))

 Copyright 2011, Dylan Hackers.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 api |

 	
 next |

 	
 previous |

 	DUIM Reference 1.0 documentation

DUIM-Extended-Geometry Library

Overview

The DUIM-Extended-Geometry library builds on the features provided by
the DUIM-Geometry library, and provides more extensive support for
coordinate geometry that is only required for more specialist uses. The
library contains a single module, duim-extended-geometry, from which
all the interfaces described in this chapter are exposed. `See
DUIM-Extended-Geometry Module`_ contains complete
reference entries for each exposed interface.

The class hierarchy for DUIM-Extended-Geometry

The DUIM-Extended-Geometry library defines no base classes itself, but
instead subclasses two classes exposed in the DUIM-Geometry library:
<area> and <path>. In each case, these subclasses provide more
specialized geometrical tools.

Subclasses of <area>

Three subclasses of <area> are exposed in the DUIM-Extended-Geometry
library, each of which provides the ability to create instances of
particular shapes. Their usage is relatively obvious.

	<rectangle> This class is used to create rectangular shapes on a
drawable object.

	<ellipse> This class is used to create elliptical shapes on a
drawable object.

	<polygon> This class is used to create more general polygon shapes
on a drawable object.

Subclass of <path>

Three subclasses of <path> are exposed in the DUIM-Extended-Geometry
library, each of which provides the ability to create instances of
particular types of line. Their usage is relatively obvious.

	<line> This class is used to create straight lines between two
points on a drawable object.

	<elliptical-arc> This class is used to create elliptical arcs
(portions of an ellipse) on a drawable object.

	<polyline> This class is used to create lines that pass through an
arbitrary set of coordinates. It produces a jagged line with vertices
at each coordinate.

DUIM-Extended-Geometry Module

This section contains a complete reference of all the interfaces that
are exported from the duim-extended-geometry module.

	
do-polygon-coordinates Generic function

	Applies a function to all of the coordinates of the vertices of a
polygon.

	Signature:	do-polygon-coordinates function polygon => ()

	Parameters:	
	function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	polygon – An instance of type <polygon>.

	Discussion:	Applies function to all of the coordinates of the vertices of
polygon. function is a function of two arguments, the x and y
coordinates of the vertex. do-polygon-coordinates returns #f.

	See also:	
	do-polygon-segments

	
do-polygon-segments Generic function

	Applies a function to the segments that compose a polygon.

	Signature:	do-polygon-segments function polygon => ()

	Parameters:	
	function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	polygon – An instance of type <polygon>.

	Discussion:	Applies function to the segments that compose polygon. function
is a function of four arguments, the x and y coordinates of the
start of the segment, and the x and y coordinates of the end of the
segment. When do-polygon-segments is called on a closed polyline, it
calls function on the segment that connects the last point back to the
first point.

The function do-polygon-segments returns #f.

	See also:	
	do-polygon-coordinates

	
draw-design Generic function

	Draws a design on a drawing surface.

	Signature:	draw-design drawable design => ()

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

	design – A <region> to draw.

	Discussion:	Draws design on the sheet medium drawable.

	
<ellipse> Abstract Instantiable Class

	The class that corresponds to an ellipse.

	Superclasses:	<area>

	Init-Keywords:	
	center-x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	center-y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	center-point – An instance of type <point>.

	radius-1-dx – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real]

	radius-1-dy – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real]

	radius-2-dx – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real]

	radius-2-dy – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real]

	start-angle – An instance of false-or(<real>).

	end-angle – An instance of false-or(<real>).

	Discussion:	An ellipse is an area that is the outline and interior of an ellipse.
Circles are special cases of ellipses.

The center-x: init-keyword specifies the x coordinate of the center
of the ellipse.

The center-y: init-keyword specifies the y coordinate of the center
of the ellipse.

The center-point: init-keyword specifies the center of the ellipse as
a point.

An ellipse is specified in a manner that is easy to transform, and
treats all ellipses on an equal basis. An ellipse is specified by its
center point and two vectors that describe a bounding parallelogram of
the ellipse. y*c* -dx*1* + dx*2*

Note that several different parallelograms specify the same ellipse. One
parallelogram is bound to be a rectangle — the vectors will be
perpendicular and correspond to the semi-axes of the ellipse.

	Operations:	The following operations are exported from the DUIM-Extended-Geometry
module.

	draw-design

	ellipse?

	ellipse-center-point

	ellipse-center-position

	ellipse-end-angle

	ellipse-radii

	ellipse-start-angle

The following operations are exported from the DUIM-Geometry module.

	box-edges

	transform-region

	See also:	
	<area>

	make-ellipse

	
ellipse? Generic function

	Returns #t if an object is an ellipse.

	Signature:	ellipse? object => boolean

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if object is an ellipse, otherwise returns #f.

	See also:	
	<ellipse>

	
ellipse-center-point Generic function

	Returns the center point of an ellipse or an elliptical arc.

	Signature:	ellipse-center-point elliptical-object => point

	Parameters:	
	elliptical-object – An instance of type type-union(<ellipse>, <elliptical-arc>).

	Values:	
	point – An instance of type <point>.

	Discussion:	Returns the center point of ellipse-object as a <point> object.

	See also:	
	make-ellipse

	
ellipse-center-position Generic function

	Returns the coordinates of the center point of an ellipse or an
elliptical arc.

	Signature:	ellipse-center-position* elliptical-object => x y

	Parameters:	
	elliptical-object – An instance of type type-union(<ellipse>, <elliptical-arc>).

	Values:	
	x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Discussion:	Returns the coordinates of the center point of elliptical-object.

The arguments x and y represent the x and y coordinates of the
center of the elliptical object, respectively.

	See also:	
	make-ellipse

	
ellipse-end-angle Generic function

	Returns the end angle of an ellipse or an elliptical-object.

	Signature:	ellipse-end-angle elliptical-object => angle

	Parameters:	
	elliptical-object – An instance of type type-union(<ellipse>, <elliptical-arc>).

	Values:	
	angle – An instance of type false-or(<real>).

	Discussion:	Returns the end angle of elliptical-object. If elliptical-object is
a full ellipse or closed path then ellipse-end-angle returns #f ;
otherwise the value is a number greater than zero, and less than or
equal to 2p.

	See also:	
	make-ellipse

	
ellipse-radii Generic function

	Returns four values corresponding to the two radius vectors of an
elliptical arc.

	Signature:	ellipse-radii elliptical-object => r1-dx r1-dy r2-dx d2-dy

	Parameters:	
	elliptical-object – An instance of type type-union(<ellipse>, <elliptical-arc>).

	Values:	
	r1-dx – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	r1-dy – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	r2-dx – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	d2-dy – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Discussion:	Returns four values corresponding to the two radius vectors of
elliptical-object. These values may be canonicalized in some way, and
so may not be the same as the values passed to the constructor function.

	See also:	
	make-ellipse

	
ellipse-start-angle Generic function

	Returns the start angle of an elliptical arc.

	Signature:	ellipse-start-angle elliptical-object => angle

	Parameters:	
	elliptical-object – An instance of type type-union(<ellipse>, <elliptical-arc>).

	Values:	
	angle – An instance of type false-or(<real>).

	Discussion:	Returns the start angle of elliptical-object. If elliptical-object is
a full ellipse or closed path then ellipse-start-angle returns #f;
otherwise the value will be a number greater than or equal to zero, and
less than 2p.

	See also:	
	make-ellipse

	
<elliptical-arc> Abstract Instantiable Class

	An elliptical arc is a path consisting of all or a portion of the
outline of an ellipse.

	Superclasses:	<path>

	Init-Keywords:	
	center-x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	center-y – An instance of <real> [http://opendylan.org/books/drm/Number_Classes#real].

	center-point – An instance of type <point>.

	radius-1-dx – An instance of <real> [http://opendylan.org/books/drm/Number_Classes#real].

	radius-1-dy – An instance of <real> [http://opendylan.org/books/drm/Number_Classes#real].

	radius-2-dx – An instance of <real> [http://opendylan.org/books/drm/Number_Classes#real].

	radius-2-dy – An instance of <real> [http://opendylan.org/books/drm/Number_Classes#real].

	start-angle – An instance of false-or(<real>).

	end-angle – An instance of false-or(<real>).

	Discussion:	An elliptical arc is a path consisting of all or a portion of the
outline of an ellipse. Circular arcs are special cases of elliptical
arcs.

	Operations:	The following operations are exported from the DUIM-Extended-Geometry
module.

	draw-design

	ellipse-center-point

	ellipse-center-position

	ellipse-end-angle

	ellipse-radii

	ellipse-start-angle

	elliptical-arc?

The following operations are exported from the DUIM-Geometry module.

	box-edges

	transform-region

	See also:	
	elliptical-arc?

	make-elliptical-arc

	
elliptical-arc? Generic function

	Returns #t if an object is an elliptical arc,

	Signature:	elliptical-arc? object => boolean

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if object is an elliptical arc, otherwise returns #f.

	See also:	
	<elliptical-arc>

	
<line> Abstract Instantiable Class

	The class that corresponds to a line.

	Superclasses:	<path>

	Init-Keywords:	
	start-x – An instance of <real> [http://opendylan.org/books/drm/Number_Classes#real].

	start-y – An instance of <real> [http://opendylan.org/books/drm/Number_Classes#real].

	end-x – An instance of <real> [http://opendylan.org/books/drm/Number_Classes#real].

	end-y – An instance of <real> [http://opendylan.org/books/drm/Number_Classes#real].

	points – Instances of <point>.

	Discussion:	The class that corresponds to a line. This is a subclass of <path>.

This is the instantiable class that implements a line segment.
make-line instantiates an object of type <line>.

	Operations:	The following operations are exported from the DUIM-Extended-Geometry
module.

	do-polygon-coordinates

	do-polygon-segments

	draw-design

	line?

	line-end-point

	line-end-position

	line-start-point

	line-start-position

	polygon-coordinates

	polygon-points

	polyline-closed?

The following operations are exported from the DUIM-Geometry module.

	box-edges

	transform-region

	See also:	
	<path>

	make-line

	
line? Generic function

	Returns #t if an object is a line.

	Signature:	line? object => boolean

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if object is a line, otherwise returns #f.

	
line-end-point Generic function

	Returns the ending point of a line.

	Signature:	line-end-point line => point

	Parameters:	
	line – An instance of type <line>.

	Values:	
	point – An instance of type <point>.

	Discussion:	Returns the ending point of line as a <point> object.

	See also:	
	line-start-point

	
line-end-position Generic function

	Returns the ending point of a line.

	Signature:	line-end-position line => x y

	Parameters:	
	line – An instance of type <line>.

	Values:	
	x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Discussion:	Returns two real numbers representing the x and y coordinates of the
ending point of line.

The arguments x and y represent the x and y coordinates of the end
of the line, respectively.

	See also:	
	line-start-position

	
line-start-point Generic function

	Returns the starting point of a line.

	Signature:	line-start-point line => point

	Parameters:	
	line – An instance of type <line>.

	Values:	
	point – An instance of type <point>.

	Discussion:	Returns the starting point of line as a <point> object.

	See also:	
	line-end-point

	
line-start-position Generic function

	Returns the starting point of a line.

	Signature:	line-start-position line => x y

	Parameters:	
	line – An instance of type <line>.

	Values:	
	x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Discussion:	Returns two real numbers representing the x and y coordinates of the
starting point of line.

The arguments x and y represent the x and y coordinates of the start
of the line, respectively.

	See also:	
	line-end-position

	
make-ellipse Function

	Returns an object of class <ellipse>.

	Signature:	make-ellipse center-x center-y radius-1-dx radius-1-dy radius-2-dx radius-2-dy #key start-angle end-angle => ellipse

	Signature:	make-ellipse* center-point radius-1-dx radius-1-dy radius-2-dx radius-2-dy #key start-angle end-angle => ellipse

	Parameters:	
	radius-1-dx – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	radius-1-dy – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	radius-2-dx – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	radius-2-dy – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	start-angle – An instance of type false-or(<real>).

	end-angle – An instance of type false-or(<real>).

The following arguments are specific to make-ellipse.

	Parameters:	
	center-x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	center-y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

The following argument is specific to make-ellipse.

	Parameters:	
	center-point – An instance of type <point>.

	Values:	
	ellipse – An instance of type <ellipse>.

	Discussion:	Returns an object of class <ellipse>. The center of the ellipse is at
the position center-x,*center-y* or the point center-point.

Two vectors, (radius-1-dx,radius-1-dy) and (radius-2-dx,radius-2-dy
) specify the bounding parallelogram of the ellipse. All of the radii
are real numbers. If the two vectors are colinear, the ellipse is not
well-defined and the ellipse-not-well-defined error is signalled. The
special case of an ellipse with its axes aligned with the coordinate
axes can be obtained by setting both radius-1-dy and radius-2-dx to
0.

If start-angle or end-angle are supplied, the ellipse is the pie
slice area swept out by a line from the center of the ellipse to a
point on the boundary as the boundary point moves from the angle
start-angle to end-angle. Angles are measured counter-clockwise
with respect to the positive x axis. If end-angle is supplied, the
default for start-angle is 0 ; if start-angle is supplied, the
default for end-angle is 2p ; if neither is supplied then the region
is a full ellipse and the angles are meaningless.

The function make-ellipse* is identical to make-ellipse, except
that it passes composite objects, rather than separate coordinates, in
its arguments. You should be aware that using this function may lead to
a loss of performance.

	See also:	
	<ellipse>

	
make-elliptical-arc Function

	Returns an object of class <elliptical-arc>.

	Signature:	make-elliptical-arc center-x center-y radius-1-dx radius-1-dy radius-2-dx radius-2-dy #key start-angle end-angle => arc

	Signature:	make-elliptical-arc* center-point radius-1-dx radius-1-dy radius-2-dx radius-2-dy #key start-angle end-angle => arc

	Parameters:	
	radius-1-dx – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	radius-1-dy – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	radius-2-dx – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	radius-2-dy – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	start-angle – An instance of type false-or(<real>).

	end-angle – An instance of type false-or(<real>).

The following arguments are specific to make-elliptical-arc.

	Parameters:	
	center-x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	center-y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

The following argument is specific to make-elliptical-arc*.

	Parameters:	
	center-point – An instance of type <point>.

	Values:	
	arc – An instance of type <elliptical-arc>.

	Discussion:	Returns an object of class <elliptical-arc>. The center of the
ellipse is at the position center-x,center-y or the point
center-point

Two vectors, (radius-1-dx,radius-1-dy) and (radius-2-dx,radius-2-dy
), specify the bounding parallelogram of the ellipse. All of the radii
are real numbers. If the two vectors are colinear, the ellipse is not
well-defined and the ellipse-not-well-defined error will be signalled.
The special case of an elliptical arc with its axes aligned with the
coordinate axes can be obtained by setting both radius-1-dy and
radius-2-dx to 0.

If start-angle and end-angle are supplied, the arc is swept from
start-angle to end-angle. Angles are measured counter-clockwise
with respect to the positive x axis. If end-angle is supplied, the
default for start-angle is 0 ; if start-angle is supplied, the
default for end-angle is 2p ; if neither is supplied then the region
is a closed elliptical path and the angles are meaningless.

The function make-elliptical-arc* is identical to
make-elliptical-arc, except that it passes composite objects, rather
than separate coordinates, in its arguments. You should be aware that
using this function may lead to a loss of performance.

	See also:	
	<elliptical-arc>

	
make-line Function

	Returns an object of class <line>.t

	Signature:	make-line start-x start-y end-x end-y => line

	Signature:	make-line* start-point end-point => line

	Parameters:	
	start-x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	start-y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	end-x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	end-y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	start-point – An instance of type <point>.

	end-point – An instance of type <point>.

	Values:	
	line – An instance of type <line>.

	Discussion:	Returns an object of class <line> that connects the two positions
(start-x,start-y) and (e*nd-x,end-y*) or the two points
start-point and end-point.

	
make-polygon Function

	Returns an object of class <polygon>.

	Signature:	make-polygon coord-seq => polygon

	Signature:	make-polygon* point-seq => polygon

The following argument is specific to make-polygon.

	Parameters:	
	coord-seq – An instance of type limited(<sequence>, of: <real>).

The following argument is specific to make-polygon*.

	Parameters:	
	point-seq – An instance of type limited(<sequence>, of: <point>).

	Values:	
	polygon – An instance of type <polygon>.

	Discussion:	Returns an object of class <polygon> consisting of the area contained
in the boundary that is specified by the segments connecting each of the
points in point-seq or the points represented by the coordinate pairs
in coord-seq. point-seq is a sequence of points; coord-seq is a
sequence of coordinate pairs, which are real numbers. It is an error if
coord-seq does not contain an even number of elements.

The function make-polygon* is identical to make-polygon, except
that it passes composite objects, rather than separate coordinates, in
its arguments. You should be aware that using this function may lead to
a loss of performance.

	
make-polyline Function

	Returns an object of class <polyline>.

	Signature:	make-polyline coord-seq #key closed? => polyline

	Signature:	make-polyline* point-seq #key closed? => polyline

	Parameters:	
	closed? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #f.

The following argument is specific to make-polyline.

	Parameters:	
	coord-seq – An instance of type limited(<sequence>, of: <real>).

The following argument is specific to make-polyline*.

	Parameters:	
	point-seq – An instance of type limited(<sequence>, of: <point>).

	Values:	
	polyline – An instance of type <polyline>

	Discussion:	Returns an object of class <polyline> consisting of the segments
connecting each of the points in point-seq or the points represented
by the coordinate pairs in coord-seq. point-seq is a sequence of
points; coord-seq is a sequence of coordinate pairs, which are real
numbers. It is an error if coord-seq does not contain an even number
of elements.

If closed? is #t, then the segment connecting the first point and
the last point is included in the polyline. The default for closed?
is** #f.

The function make-polyline* is identical to make-polyline, except
that it passes composite objects, rather than separate coordinates, in
its arguments. You should be aware that using this function may lead to
a loss of performance.

	
make-rectangle Function

	Returns an object of class <rectangle>.

	Signature:	make-rectangle x1 y1 x2 y2 => rectangle

	Signature:	make-rectangle* min-point max-point => rectangle

The following arguments are specific to make-rectangle.

	Parameters:	
	x1 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real]. The x coordinate of the left top of the rectangle.

	y1 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real]. The y coordinate of the left top of the rectangle

	x2 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real]. The x coordinate of the bottom right of the rectangle.

	y2 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real]. The y coordinate of the bottom right of the rectangle.

The following arguments are specific to make-rectangle*.

	Parameters:	
	min-point – The minimum point (left top) of the rectangle.

	max-point – The maximum point (bottom right) of the rectangle.

	Values:	
	rectangle – An instance of type <rectangle>.

	Discussion:	Returns an object of class <rectangle> whose edges are parallel to the
coordinate axes. One corner is at the point point1 or the
position*x1,y1* and the opposite corner is at the point point2 or the
position x2,y2. There are no ordering constraints among point1 and
point2 or x1 and x2, and y1 and y2.

The function make-rectangle* is identical to make-rectangle,
except that it passes composite objects, rather than separate
coordinates, in its arguments. You should be aware that using this
function may lead to a loss of performance.

	
<polygon> Abstract Instantiable Class

	The class that corresponds to a polygon.

	Superclasses:	<area>

	Init-Keywords:	
	coordinates – An instance of type limited(<sequence>, of: <real>).

	points – An instance of type limited(<sequence>, of: <real>).

	Discussion:	The class that corresponds to a polygon. This is a subclass of <area>.

A polygon can be described either in terms of the individual x and y
coordinates that constitute its vertices, or by using composite points.
If the former is used, then they can be specified at the time of
creation using the coordinates: init-keyword, which is a sequence of
real numbers, with x and y coordinates alternating within the sequence.

To describe a polygon in terms of composite point objects, use the
points: init-keyword, which is a sequence of instances of <point>.
You should be aware that using composite points may lead to a loss of
performance.

Exactly one of coordinates: and points: is required.

	Operations:	The following operations are exported from the DUIM-Extended-Geometry
module.

	do-polygon-coordinates

	do-polygon-segments

	draw-design

	polygon?

	polygon-coordinates

	polygon-points

The following operations are exported from the DUIM-Geometry module.

	box-edges

	transform-region

	See also:	
	<area>

	make-polygon

	polygon?

	polygon-coordinates

	polygon-points

	
polygon? Generic function

	Returns #t if its argument is a polygon.

	Signature:	polygon? object => boolean

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if object is a polygon, otherwise returns #f.

	See also:	
	<polygon>

	polygon-coordinates

	polygon-points

	
polygon-coordinates Generic function

	Returns a sequence of coordinate pairs that specify the segments in a
polygon or a polyline.

	Signature:	polygon-coordinates polygon-or-polyline => coordinates

	Parameters:	
	polygon-or-polyline – An instance of type type-union(<polygon>, <polyline>).

	Values:	
	coordinates – An instance of type limited(<sequence>, of: <real>).

	Discussion:	Returns a sequence of coordinate pairs that specify the segments in
polygon-or-polyline.

	See also:	
	<polygon>

	polygon?

	polygon-points

	
polygon-points Generic function

	Returns a sequence of points that specify the segments in a polygon or a
polyline.

	Signature:	polygon-points polygon-or-polyline => points

	Parameters:	
	polygon-or-polyline – An instance of type type-union(<polygon>, <polyline>).

	Values:	
	points – An instance of type limited(<sequence>, of: <point>)

	Discussion:	Returns a sequence of points that specify the segments in
polygon-or-polyline.

	See also:	
	<polygon>

	polygon?

	polygon-coordinates

	
<polyline> Abstract Instantiable Class

	The protocol class that corresponds to a polyline.

	Superclasses:	<path>

	Init-Keywords:	
	coordinates – An instance of type limited(<sequence>, of: <real>). Required.

	points – An instance of type limited(<sequence>, of: <real>). Required.

	Discussion:	The protocol class that corresponds to a polyline.

A polyline can be described either in terms of the individual x and y
coordinates that constitute its vertices, or by using composite points.
If the former is used, then they can be specified at the time of
creation using the coordinates: init-keyword, which is a sequence of
real numbers, with x and y coordinates alternating within the sequence.

To describe a polyline in terms of composite point objects, use the
points: init-keyword, which is a sequence of instances of <point>.
You should be aware that using composite points may lead to a loss of
performance.

Exactly one of coordinates: and points: is required.

	Operations:	The following operations are exported from the DUIM-Extended-Geometry
module.

	do-polygon-coordinates

	do-polygon-segments

	draw-design

	polygon-coordinates

	polygon-points

	polyline?

	polyline-closed?

The following operations are exported from the DUIM-Geometry module.

	box-edges

	transform-region

	See also:	
	<path>

	<point>

	make-polyline

	polyline?

	polyline-closed?

	
polyline? Generic function

	Returns #t if an object is a polyline.

	Signature:	polyline? object => boolean

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if object is a polyline, otherwise returns #f.

	See also:	
	<polyline>

	polyline-closed?

	
polyline-closed? Generic function

	Returns #t if the polyline is closed.

	Signature:	polyline-closed? polyline => boolean

	Parameters:	
	polyline – An instance of type <polyline>.

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if the polyline polyline is closed, otherwise returns
#f. This function need be implemented only for polylines, not for
polygons.

	See also:	
	<polyline>

	polyline?

	
<rectangle> Abstract Instantiable Class

	The protocol class that corresponds to a rectangle.

	Superclasses:	<area>

	Init-Keywords:	
	min-x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	min-y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	max-x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	max-y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	points – An instance of type limited(<sequence>, of: <point>).

	Discussion:	The protocol class that corresponds to a rectangle. This is a subclass
of <polygon>.

Rectangles whose edges are parallel to the coordinate axes are a special
case of polygon that can be specified completely by four real numbers
x1,y1,x2,y2). They are not closed under general affine
transformations (although they are closed under rectilinear
transformations).

	Operations:	The following operations are exported from the DUIM-Extended-Geometry
module.

	do-polygon-coordinates

	do-polygon-segments

	draw-design

	polygon-coordinates

	polygon-points

	rectangle?

	rectangle-edges

	rectangle-height

	rectangle-max-point

	rectangle-max-position

	rectangle-min-point

	rectangle-min-position

	rectangle-size

	rectangle-width

The following operations are exported from the DUIM-Geometry module.

	box-edges

	transform-region

	See also:	
	<polygon>

	make-rectangle

	rectangle?

	rectangle-edges

	rectangle-height

	rectangle-max-point

	rectangle-max-position

	rectangle-min-point

	rectangle-min-position

	rectangle-size

	rectangle-width

	
rectangle? Generic function

	Returns #t if the object is a rectangle.

	Signature:	rectangle? object => boolean

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if object is a rectangle, otherwise returns #f.

	See also:	
	<rectangle>

	rectangle-edges

	rectangle-height

	rectangle-max-point

	rectangle-max-position

	rectangle-min-point

	rectangle-min-position

	rectangle-size

	rectangle-width

	
rectangle-edges Generic function

	Returns the coordinates of the minimum and maximum of the rectangle.

	Signature:	rectangle-edges rectangle => x1 y1 x2 y2

	Parameters:	
	rectangle – An instance of type <rectangle>.

	Values:	
	min-x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	min-y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	max-x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	max-y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Discussion:	Returns the coordinates of the minimum x and y and maximum x and
y of the rectangle rectangle as four values, min-x, min-y, max-x,
and max-y.

The argument min-x represents the x coordinate of the top left of
the rectangle.

The argument min-y represents the y coordinate of the top left of
the rectangle.

The argument max-x represents the x coordinate of the bottom right
of the rectangle.

The argument max-y represents the y coordinate of the bottom right
of the rectangle.

	See also:	
	<rectangle>

	rectangle?

	rectangle-height

	rectangle-max-point

	rectangle-max-position

	rectangle-min-point

	rectangle-min-position

	rectangle-size

	rectangle-width

	
rectangle-height Generic function

	Returns height of the rectangle.

	Signature:	rectangle-height rectangle => height

	Parameters:	
	rectangle – An instance of type <rectangle>.

	Values:	
	height – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Discussion:	Returns the height of the rectangle, which is the difference between the
maximum y and its minimum y.

	See also:	
	<rectangle>

	rectangle?

	rectangle-edges

	rectangle-max-point

	rectangle-max-position

	rectangle-min-point

	rectangle-min-position

	rectangle-size

	rectangle-width

	
rectangle-max-point Generic function

	Returns the bottom right point of the rectangle.

	Signature:	rectangle-max-point rectangle => point

	Parameters:	
	rectangle – An instance of type <rectangle>.

	Values:	
	point – An instance of type <point>.

	Discussion:	Returns the bottom right point of the rectangle.

	See also:	
	<rectangle>

	rectangle?

	rectangle-edges

	rectangle-height

	rectangle-max-position

	rectangle-min-point

	rectangle-min-position

	rectangle-size

	rectangle-width

	
rectangle-max-position Generic function

	Returns the x and y coordinates of the bottom right of the
rectangle.

	Signature:	rectangle-max-position rectangle => x2 y2

	Parameters:	
	rectangle – An instance of type <rectangle>.

	Values:	
	x2 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y2 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Discussion:	Returns the x and y coordinates of the bottom right of the
rectangle.

	See also:	
	<rectangle>

	rectangle?

	rectangle-edges

	rectangle-height

	rectangle-max-point

	rectangle-min-point

	rectangle-min-position

	rectangle-size

	rectangle-width

	
rectangle-min-point Generic function

	Returns the left top point of the rectangle.

	Signature:	rectangle-min-point rectangle => point

	Parameters:	
	rectangle – An instance of type <rectangle>.

	Values:	
	point – An instance of type <point>.

	Discussion:	Returns the left top point of the rectangle.

	See also:	
	<rectangle>

	rectangle?

	rectangle-edges

	rectangle-height

	rectangle-max-point

	rectangle-max-position

	rectangle-min-position

	rectangle-size

	rectangle-width

	
rectangle-min-position Generic function

	Returns the x and y coordinates of the left top of the rectangle.

	Signature:	rectangle-min-position rectangle => x1 y1

	Parameters:	
	rectangle – An instance of type <rectangle>.

	Values:	
	x1 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y1 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Discussion:	Returns the x and y coordinates of the left top of the rectangle.

	See also:	
	<rectangle>

	rectangle?

	rectangle-edges

	rectangle-height

	rectangle-max-point

	rectangle-max-position

	rectangle-min-point

	rectangle-size

	rectangle-width

	
rectangle-size Generic function

	Returns the width and the height of the rectangle.

	Signature:	rectangle-size rectangle => width height

	Parameters:	
	rectangle – An instance of type <rectangle>.

	Values:	
	width – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	height – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Discussion:	Returns two values, the width and the height.

	See also:	
	<rectangle>

	rectangle?

	rectangle-edges

	rectangle-height

	rectangle-max-point

	rectangle-max-position

	rectangle-min-point

	rectangle-min-position

	rectangle-width

	
rectangle-width Generic function

	Returns the width of the rectangle.

	Signature:	rectangle-width rectangle => width

	Parameters:	
	rectangle – An instance of type <rectangle>.

	Values:	
	width – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Discussion:	Returns the width of the rectangle rectangle, which is the difference
between the maximum x and its minimum x.

	See also:	
	<rectangle>

	rectangle?

	rectangle-edges

	rectangle-height

	rectangle-max-point

	rectangle-max-position

	rectangle-min-point

	rectangle-min-position

	rectangle-size

 Copyright 2011, Dylan Hackers.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 api |

 	
 next |

 	
 previous |

 	DUIM Reference 1.0 documentation

DUIM-DCs Library

Overview

The DUIM-DCs library provides color support to the DUIM library. The
library contains a single module, duim-dcs, from which all the
interfaces described in this chapter are exposed. DUIM-DCs
Module contains complete reference entries for each
exposed interface.

Throughout this chapter, a drawing context consists of the combination
of ink, color, brush, pen, palette, and shapes that make up patterns and
images.

The class hierarchy for DUIM-DCs

A number of base classes are exposed in the DUIM-DCs library, each of
which is a subclass of <object> [http://opendylan.org/books/drm/Object_Classes#object]. They are shown in the following table

	<object>
	
	

	
	<pen>
	

	
	<brush>
	

	
	<palette>
	

	
	<ink>
	See Subclasses of <ink>

	
	<text-style>
	

	
	
	<device-font>

	<pen> This is protocol class for pens. A pen is used to draw 1
dimensional graphics such as lines or outline, using a specific color
or pattern.

	<brush> The protocol class for brushes. Brushes are used to fill in
2 dimensional areas with a specific color or pattern.

	<palette> The protocol class for palettes. A palette provides a set
of colors which can be made available to an application.

	<ink> This class can be thought of as anything that can be drawn.
As the name implies, an ink describes the color and opacity features
used by a given pen or brush. That is, the pen and brush define the
drawing style (outlining or filling, respectively), and an ink is
used to describe the color or pattern that is drawn. This class has a
number of subclasses, described in Subclasses of <ink>.

	<text-style> The protocol class for text styles. A text style is a
portable way of describing the appearance of a piece of text on
screen (its font family, size, weight, and so on) in an abstract
fashion. Because the fonts available on a particular computer may not
necessarily match the fonts available on the computer of the
programmer, DUIM provides a portable model which allows the most
suitable font on the user’s machine to be chosen at run-time.

	<device-font> The protocol class for device-specific fonts, that
is, fonts that are resident on a particular device. This is a direct
subclass of <text-style>.

Subclasses of <ink>

A number of subclasses of <ink> are exposed by the DUIM-DCs library, as
follows:

	<color> The class of all colors available on the system. This is a
direct subclass of <ink>.

	<image> The class of all images, such as icons and bitmap images.
Images may often be acquired from an outside source, such as a file
on disk. This is a direct subclass of <ink>.

	<stencil> A stencil is a special kind of pattern that contains only
opacities, that is, it provides a layer of transparency. This can be
useful, for instance, when overlaying a color onto an image, so as to
provide the impression of shading. This is a direct subclass of
<image>.

	<pattern> A pattern is a bounded rectangular arrangement of color,
like a checkerboard. Drawing a pattern draws a different design in
each rectangular cell of the pattern. This is a direct subclass of
<stencil>.

Error classes provided by DUIM-DCs

Two error classes are provided by the DUIM-DCs library, both of which
are immediate subclasses of <error>.

	<color-not-found> This class of error is signalled when a color is
requested but is not available on the user’s system.

	<palette-full> This class of error is signalled when an attempt is
made to add a color to a palette, and the palette cannot accept any
more colors. The number of colors in a palette depends on the color
depth of the connected monitor.

DUIM-DCs Module

This section contains a complete reference of all the interfaces that
are exported from the duim-dcs module.

	
= Generic function

	Returns #t if two objects are equal.

	Signature:	= color1 color2 => boolean

	Signature:	= pen1 pen2 => boolean

	Signature:	= brush1 brush2 => boolean

	Signature:	= text-style1 text-style2 => value

	Parameters:	
	color1 – An instance of type <color>.

	color2 – An instance of type <color>.

	pen1 – An instance of type <pen>.

	pen2 – An instance of type <pen>.

	brush1 – An instance of type <brush>.

	brush2 – An instance of type <brush>.

	text-style1 – An instance of type <text-style>.

	text-style2 – An instance of type <text-style>.

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if two objects are equal.

	
add-colors Generic function

	Adds one or more colors to a palette and returns the updated palette.

	Signature:	add-colors palette #rest colors => palette

	Parameters:	
	palette – An instance of type <palette>.

	colors – Instances of type <color>.

	Values:	
	palette – An instance of type <palette>.

	Discussion:	Adds colors to palette and returns the updated palette.

	
$background Constant

	An indirect ink that uses the medium’s background design.

	Type:	<ink>

	Discussion:	An indirect ink that uses the medium’s background design.

	See also:	
	<palette>

	image-height

	
$black Constant

	The usual definition of black.

	Type:	<color>

	Discussion:	The usual definition black, the absence of all colors. In the rgb
color model, its value is 000.

	See also:	
	<color>

	
$blue Constant

	The usual definition of the color blue.

	Type:	<color>

	Discussion:	The usual definition of the color blue.

	See also:	
	<color>

	
$boole-clr Constant

	The logical operator that is always 0.

	Type:	<integer> [http://opendylan.org/books/drm/Number_Classes#integer]

	Discussion:	The logical operator that is always 0. It is a suitable first argument
to the boole function.

	
$boole-set Constant

	The logical operator that is always 1.

	Type:	<integer> [http://opendylan.org/books/drm/Number_Classes#integer]

	Discussion:	The logical operator that is always 1. It is a suitable first argument
to the boole function.

	
$boole-1 Constant

	The logical operator that is always the same as the first integer
argument to the boole function.

	Type:	<integer> [http://opendylan.org/books/drm/Number_Classes#integer]

	Discussion:	The logical operator that is always the same as the first integer
argument to the boole function. It is a suitable first argument to the
boole function.

	
$boole-2 Constant

	The logical operator that is always the same as the second integer
argument to the boole function.

	Type:	<integer> [http://opendylan.org/books/drm/Number_Classes#integer]

	Discussion:	The logical operator that is always the same as the second integer
argument to the boole function. It is a suitable first argument to the
boole function.

	
$boole-c1 Constant

	The logical operator that is always the same as the complement of the
first integer argument to the boole function.

	Type:	<integer> [http://opendylan.org/books/drm/Number_Classes#integer]

	Discussion:	The logical operator that is always the same as the complement of the
first integer argument to the boole function. It is a suitable first
argument to the boole function.

	
$boole-c2 Constant

	The logical operator that is always the same as the complement of the
second integer argument to the boole function.

	Type:	<integer> [http://opendylan.org/books/drm/Number_Classes#integer]

	Discussion:	The logical operator that is always the same as the complement of the
second integer argument to the boole function. It is a suitable first
argument to the boole function.

	
$boole-and Constant

	The logical operator and.

	Type:	<integer> [http://opendylan.org/books/drm/Number_Classes#integer]

	Discussion:	The logical operator and. It is a suitable first argument to the
boole function.

	
$boole-ior Constant

	The logical operator inclusive or.

	Type:	<integer> [http://opendylan.org/books/drm/Number_Classes#integer]

	Discussion:	The logical operator inclusive or. It is a suitable first argument
to the boole function.

	
$boole-xor Constant

	The logical operator exclusive or.

	Type:	<integer> [http://opendylan.org/books/drm/Number_Classes#integer]

	Discussion:	The logical operator exclusive or. It is a suitable first argument
to the boole function.

	
$boole-eqv Constant

	The logical operator equivalence (exclusive nor).

	Type:	<integer> [http://opendylan.org/books/drm/Number_Classes#integer]

	Discussion:	The logical operator equivalence (exclusive nor). It is a
suitable first argument to the boole function.

	
$boole-nand Constant

	The logical operator not-and.

	Type:	<integer> [http://opendylan.org/books/drm/Number_Classes#integer]

	Discussion:	The logical operator not-and. It is a suitable first argument to the
boole function.

	
$boole-nor Constant

	The logical operator not-or.

	Type:	<integer> [http://opendylan.org/books/drm/Number_Classes#integer]

	Discussion:	The logical operator not-or. It is a suitable first argument to the
boole function.

	
$boole-andc1 Constant

	The logical operator that is the and of the complement of the first
integer argument to the boole function with the second.

	Type:	<integer> [http://opendylan.org/books/drm/Number_Classes#integer]

	Discussion:	The logical operator that is the and of the complement of the first
integer argument to the boole function with the second. It is a
suitable first argument to the boole function.

	
$boole-andc2 Constant

	The logical operator that is the and of the first integer argument to
the boole function with the second with the complement of the second.

	Type:	<integer> [http://opendylan.org/books/drm/Number_Classes#integer]

	Discussion:	The logical operator that is and of the first integer argument to the
boole function with the complement of the second. It is a suitable
first argument to the boole function.

	
$boole-orc1 Constant

	The logical operator that is the or of the complement of the first
integer argument to the boole function with the second.

	Type:	<integer> [http://opendylan.org/books/drm/Number_Classes#integer]

	Discussion:	The logical operator that is the or of the complement of the first
integer argument to the boole function with the second. It is a
suitable first argument to the boole function.

	
$boole-orc2 Constant

	The logical operator that is the or of the first integer argument to
the boole function with the second with the complement of the second.

	Type:	<integer> [http://opendylan.org/books/drm/Number_Classes#integer]

	Discussion:	The logical operator that is or of the first integer argument to the
boole function with the complement of the second. It is a suitable
first argument to the boole function.

	
$bricks-stipple Constant

	A stipple pattern for use in creating a patterned brush with horizontal
and vertical lines in the pattern of the mortar in a brick wall.

	Type:	<array>

	Discussion:	A stipple pattern for use in creating a patterned brush with horizontal
and vertical lines in the pattern of the mortar in a brick wall.

	See also:	
	brush-stipple

	
<brush> Abstract Instantiable Class

	The protocol class for brushes.

	Superclasses:	<object> [http://opendylan.org/books/drm/Object_Classes#object]

	Init-Keywords:	
	foreground – An instance of type <ink>.

	background – An instance of type <ink>.

	mode – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	fill-style – An instance of type false-or(<integer>). Default value: #f.

	fill-rule – An instance of type false-or(<integer>). Default value: #f.

	tile – An instance of type false-or(<integer>). Default value: #f.

	stipple – An instance of type false-or(<integer>). Default value: #f.

	ts-x – An instance of false-or(<integer>). Default value: #f.

	ts-y – An instance of false-or(<integer>). Default value: #f.

	Discussion:	The protocol class for brushes.

	Operations:	The following operations are exported from the DUIM-DCs module.

	=

	brush?

	brush-background

	brush-fill-rule

	brush-fill-style

	brush-foreground

	brush-mode

	brush-stipple

	brush-stretch-mode

	brush-tile

	brush-ts-x

	brush-ts-y

	See also:	
	make

	
brush? Generic function

	Returns #t if its argument is a brush.

	Signature:	brush? object => boolean

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if its argument is a brush.

	
brush-background Generic function

	Returns the ink that is the background color of a brush.

	Signature:	brush-background brush => ink

	Parameters:	
	brush – An instance of type <brush>.

	Values:	
	ink – An instance of type <ink>.

	Discussion:	Returns the ink that is the background color of brush.

	See also:	
	brush-fill-rule

	
brush-fill-rule Generic function

	Returns the fill rule of the brush.

	Signature:	brush-fill-rule brush => fill-rule

	Parameters:	
	brush – An instance of type <brush>.

	Values:	
	fill-rule – An instance of type fill-rule or <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns the fill rule for brush, or #f if brush does not have a
fill rule.

	See also:	
	brush-fill-style

	
brush-fill-style Generic function

	Returns the fill style of the brush.

	Signature:	brush-fill-style brush => fill-style

	Parameters:	
	brush – An instance of type <brush>.

	Values:	
	fill-style – An instance of fill-style or <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns the fill style of brush, or #f, if brush does not have a
fill style.

	See also:	
	brush-fill-rule

	
brush-foreground Generic function

	Returns the ink that is the foreground color of a brush.

	Signature:	brush-foreground brush => ink

	Parameters:	
	brush – An instance of type <brush>.

	Values:	
	ink – An instance of type <ink>.

	Discussion:	Returns the ink that is the foreground color of brush.

	See also:	
	brush-stipple

	
brush-mode Generic function

	Returns an integer representing the drawing mode of a brush.

	Signature:	brush-mode brush => integer

	Parameters:	
	brush – An instance of type <brush>.

	Values:	
	integer – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer]. Default value: $boole-1.

	Discussion:	Returns an integer representing the drawing mode of brush.

	See also:	
	$boole-1

	
brush-stipple Generic function

	Returns the stipple pattern of a brush.

	Signature:	brush-stipple brush => stipple

	Parameters:	
	brush – An instance of type <brush>.

	Values:	
	stipple – A (stipple) or #f.

	Discussion:	Returns the stipple pattern of brush.

	See also:	
	brush-tile

	brush-fill-rule

	brush-fill-style

	
brush-stretch-mode Generic function

	Returns the stretch mode of the brush.

	Signature:	brush-stretch-mode brush => stretch-mode

	Parameters:	
	brush – An instance of type <brush>.

	Values:	
	stretch-mode – An instance of stretch-mode or <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns the stretch mode of the brush.

	
brush-tile Generic function

	Returns the tile pattern of a brush.

	Signature:	brush-tile brush => image

	Parameters:	
	brush – An instance of type <brush>.

	Values:	
	image – An instance of type <image>.

	Discussion:	Returns the tile pattern of brush.

	See also:	
	brush-stipple

	brush-ts-x

	brush-ts-y

	
brush-ts-x Generic function

	Returns the value of the x coordinate that is used to align the
brush’s tile or stipple pattern.

	Signature:	brush-ts-x brush => value

	Parameters:	
	brush – An instance of type <brush>.

	Values:	
	value – An instance of type false-or(<integer>).

	Discussion:	Returns the value of the x coordinate that is used to align the tile
or stipple pattern of brush. If brush has no tile or stipple
pattern, brush-ts-x returns #f.

	See also:	
	brush-ts-y

	
brush-ts-y Generic function

	Returns the value of the y coordinate that is used to align the
brush’s tile or stipple pattern.

	Signature:	brush-ts-y brush => value

	Parameters:	
	brush – An instance of type <brush>.

	Values:	
	value – An instance of type false-or(<integer>).

	Discussion:	Returns the value of the y coordinate that is used to align the tile
or stipple pattern of brush. If brush has no tile or stipple
pattern, brush-ts-y returns #f.

	See also:	
	brush-ts-x

	
<color> Abstract Instantiable Class

	The protocol class for colors.

	Superclasses:	<ink>

	Init-Keywords:	
	red – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	green – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	blue – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	intensity – An instance of type limited(<real>, min: 0, max: sqrt(3)).

	hue – An instance of type limited(<real>, min: 0, max: 1).

	saturation – An instance of type limited(<real>, min: 0, max: 1).

	opacity – An instance of type limited(<real>, min: 0, max: 1).

	Discussion:	The <color> class is the protocol class for a color, and is a subclass
of <ink>. A member of the class <color> is an
ink that represents the intuitive definition of color: white, black,
red, pale yellow, and so forth. The visual appearance of a single point
is completely described by its color. Drawing a color sets the color of
every point in the drawing plane to that color, and sets the opacity to
1.

The red:, green:, and blue: init-keywords represent the red,
green, and blue components of the color. For an 8-bit color scheme,
these can take any real number in the range 0 to 255.

The intensity describes the brightness of the color. An intensity of 0
is black.

The hue of a color is the characteristic that is represented by a name
such as red, green, blue and so forth. This is the main attribute of a
color that distinguishes it from other colors.

The saturation describes the amount of white in the color. This is what
distinguishes pink from red.

Opacity controls how new color output covers previous color output (that
is, the final appearance when one color is painted on top of another).
Opacity can vary from totally opaque (a new color completely obliterates
the old color) to totally transparent (a new color has no effect
whatsoever; the old color remains unchanged). Intermediate opacity
values result in color blending so that the earlier color shows through
what is drawn on top of it.

All of the standard instantiable color classes provided by DUIM are
immutable.

A color can be specified by four real numbers between 0 and 1
(inclusive), giving the amounts of red, green, blue, and opacity
(alpha). Three 0’s for the RGB components mean black; three 1’s mean
white. The intensity-hue-saturation color model is also supported, but
the red-green-blue color model is the primary model we will use in the
specification.

An opacity may be specified by a real number between 0 and 1
(inclusive). 0 is completely transparent, 1 is completely opaque,
fractions are translucent. The opacity of a color is the degree to which
it hides the previous contents of the drawing plane when it is drawn.

	Operations:	The following operations are exported from the DUIM-DCs module.

	=

	color?

	color-rgb

	color-ihs

	color-luminosity

	See also:	
	color?

	color-ihs

	color-luminosity

	<color-not-found>

	color-palette?

	color-rgb

	<ink>

	
color? Generic function

	Returns #t if object is a color.

	Signature:	color? object => boolean

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if object is a color, otherwise returns #f.

	See also:	
	<color>

	color-ihs

	color-luminosity

	<color-not-found>

	color-palette?

	color-rgb

	
color-ihs Generic function

	Returns four values, the intensity, hue, saturation, and opacity
components of a color.

	Signature:	color-ihs color => intensity hue saturation opacity

	Parameters:	
	color – An instance of type <color>.

	Values:	
	intensity – An instance of type limited(<real>, min: 0, max: sqrt(3)).

	hue – An instance of type limited(<real>, min: 0, max: 1).

	saturation – An instance of type limited(<real>, min: 0, max: 1).

	opacity – An instance of type limited(<real>, min: 0, max: 1).

	Discussion:	Returns four values, the intensity, hue, saturation, and
opacity components of the color color. The first value is a real
number between 0 and sqrt{3 } (inclusive). The second and third
values are real numbers between 0 and 1 (inclusive).

	See also:	
	<color>

	color?

	color-luminosity

	color-palette?

	color-rgb

	
color-luminosity Generic function

	Returns the brightness of a color.

	Signature:	color-luminosity* color => luminosity

	Parameters:	
	color – An instance of type <color>.

	Values:	
	luminosity – An instance of type limited(<real>, min: 0, max: 1).

	Discussion:	Returns the brightness of color color as real number between 0 and
1. The value is the solution of a function that describes the
perception of the color by the human retina.

	See also:	
	<color>

	color?

	color-ihs

	color-palette?

	color-rgb

	
<color-not-found> Concrete Sealed Class

	The class of the error that is signalled when a color that is not
available is requested.

	Superclasses:	<error>

	Init-Keywords:	
	color – An instance of type <color>.

	Discussion:	The class of the error that is signalled when a color that is not
available is requested. The color: init-keyword is used to specify the
color that was requested but was not available.

	Operations:	
	None.

	See also:	
	<color>

	find-color

	remove-colors

	find-color

	
color-palette? Generic function

	Returns #t if the stream or medium supports color.

	Signature:	color-palette? palette => boolean

	Parameters:	
	palette – An instance of type <palette>.

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if the stream or medium supports color.

	See also:	
	<color>

	color?

	color-ihs

	color-luminosity

	color-rgb

	
color-rgb Generic function

	Returns four values, the red, green, blue, and opacity components of a
color.

	Signature:	color-rgb color => ref green blue opacity

	Parameters:	
	color – An instance of type <color>.

	Values:	
	red – An instance of type limited(<real>, min: 0, max: 1)

	gree – n An instance of type limited(<real>, min: 0, max: 1)

	blue – An instance of type limited(<real>, min: 0, max: 1)

	opacity – An instance of type limited(<real>, min: 0, max: 1).

	Discussion:	Returns four values, the red, green, blue, and opacity
components of the color color. The values are real numbers between 0
and 1 (inclusive).

	See also:	
	<color>

	color?

	color-ihs

	color-luminosity

	color-palette?

	
contrasting-colors-limit Generic function

	Returns the number of contrasting colors that can be rendered on the
current platform.

	Signature:	contrasting-colors-limit port => integer

	Parameters:	
	port – An instance of type <silica>

	Values:	
	integer – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns the number of contrasting colors (or stipple patterns if port is
monochrome or grayscale) that can be rendered on any medium on the port
port. Implementations are encouraged to make this as large as
possible, but it must be at least 8. All classes that obey the medium
protocol must implement a method for this generic function.

	See also:	
	contrasting-dash-patterns-limit

	make-contrasting-colors

	
contrasting-dash-patterns-limit Generic function

	Returns the number of contrasting dash patterns that the specified port
can generate.

	Signature:	contrasting-dash-patterns-limit port => no-of-patterns

	Parameters:	
	port – An instance of type <silica>.

	Values:	
	no-of-patterns – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns the number of contrasting dash patterns that the specified port
can generate.

	See also:	
	contrasting-colors-limit

	make-contrasting-dash-patterns

	
$cross-hatch Constant

	A stipple pattern for use in creating a patterned brush with alternating
solid and dashed lines.

	Type:	<array>

	Discussion:	A stipple pattern for use in creating a patterned brush with alternating
solid and dashed lines.

	See also:	
	<color>.

	
$cyan Constant

	The usual definition for the color cyan.

	Type:	<color>

	Discussion:	The usual definition for the color cyan.

	See also:	
	<color>.

	
$dash-dot-dot-pen Constant

	A pen that draws a line with two dots between each dash.

	Type:	<pen>

	Discussion:	A pen that draws a line with two dots between each dash. The line width
is 1 and dashes: is #[4, 1, 1, 1, 1, 1].

	See also:	
	<pen>

	$solid-pen

	$magenta

	$dash-dot-pen

	$dotted-pen

	
$dash-dot-pen Constant

	A pen that draws a dashed and dotted line.

	Type:	<pen>

	Discussion:	A pen that draws a dashed and dotted line. The line width is 1 and
dashes: is #[4, 1, 1, 1].

	See also:	
	<pen>

	$solid-pen

	$magenta

	$dash-dot-pen

	$dotted-pen

	
$dashed-pen Constant

	A pen that draws a dashed line.

	Type:	<pen>

	Discussion:	A pen that draws a dashed line. The line width is 1 and dashes: is
#t.

	See also:	
	<pen>

	$solid-pen

	$magenta

	$dash-dot-pen

	$dotted-pen

	
default-background Generic function

	Returns the ink that is the default background of its argument.

	Signature:	default-foreground object => background

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	background – An instance of type <ink>.

	Discussion:	Returns the ink that is the default background of its argument.

	See also:	
	brush-fill-style

	default-background-setter

	default-foreground

	
default-background-setter Generic function

	Sets the default background.

	Signature:	default-foreground-setter background object => background

	Parameters:	
	background – An instance of type <ink>.

	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	background – An instance of type <ink>.

	Discussion:	Sets the default background for object.

	See also:	
	brush-fill-style

	default-background

	default-foreground-setter

	
default-foreground Generic function

	Returns the ink that is the default foreground of its argument.

	Signature:	default-foreground object => foreground

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	foreground – An instance of type <ink>.

	Discussion:	Returns the ink that is the default foreground of its argument.

	See also:	
	brush-fill-rule

	default-background

	default-foreground-setter

	
default-foreground-setter Generic function

	Sets the default foreground.

	Signature:	default-foreground-setter foreground object => foreground

	Parameters:	
	foreground – An instance of type <ink>.

	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	foreground – An instance of type <ink>.

	Discussion:	Sets the default foreground for object.

	See also:	
	brush-fill-rule

	default-background-setter

	default-foreground

	
default-text-style Generic function

	Returns the default text style for its argument.

	Signature:	default-text-style object => text-style

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	text-style – An instance of type <text-style>.

	Discussion:	Returns the default text style for its argument.This function is used to
merge against if the text style is not fully specified, or if no text
style is specified.

	See also:	
	default-text-style-setter

	
default-text-style-setter Generic function

	Sets the default text style.

	Signature:	default-text-style-setter text-style object => text-style

	Parameters:	
	text-style – An instance of type <text-style>.

	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	text-style – An instance of type <text-style>.

	Discussion:	Sets the default text style.

	See also:	
	default-text-style

	
<device-font> Concrete Sealed Class

	The protocol class for device-specific fonts.

	Superclasses:	<text-style>

	Init-Keywords:	
	port –

	font-name –

	Discussion:	The protocol class for device-specific fonts.

	Operations:	
	None.

	See also:	
	<text-style>

	
$diagonal-hatch-down Constant

	A stipple pattern for use in creating a patterned brush with alternating
dashes and spaces.

	Type:	<array>

	Discussion:	A stipple pattern for use in creating a patterned brush with alternating
dashes and spaces, the first line starting with a dash, followed by a
space, and the second line starting with a space followed by a dash.

	See also:	
	brush-stipple

	
$diagonal-hatch-up Constant

	A stipple pattern for use in creating a patterned brush with alternating
dashes and spaces.

	Type:	<array>

	Discussion:	A stipple pattern for use in creating a patterned brush with alternating
dashes and spaces, the first line starting with a space, followed by a
dash, and the second line starting with a dash followed by a space.

	See also:	
	brush-stipple

	
$dotted-pen Constant

	A pen that draws a dotted line.

	Type:	<pen>

	Discussion:	A pen that draws a dotted line. The line width is 1 and dashes: is
#[1, 1].

	See also:	
	<pen>

	$solid-pen

	$dash-dot-pen

	
find-color Generic function

	Looks up and returns a color by name.

	Signature:	find-color name palette #key error? => color

	Parameters:	
	name – An instance of type <string> [http://opendylan.org/books/drm/Collection_Classes#string].

	palette – An instance of type <palette>.

	error? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #f.

	Values:	
	color – An instance of type <color>.

	Discussion:	Looks up and returns a color by name. This is a list of the commonly
provided color names that can be looked up with find-color:

	alice-blue

	antique-white

	aquamarine

	azure

	beige

	bisque

	black

	blanched-almond

	blue

	blue-violet

	brown

	burlywood

	cadet-blue

	chartreuse

	chocolate

	coral

	cornflower-blue

	cornsilk

	cyan

	dark-goldenrod

	dark-green

	dark-khaki

	dark-olive-green

	dark-orange

	dark-orchid

	dark-salmon

	dark-sea-green

	dark-slate-blue

	dark-slate-gray

	dark-turquoise

	dark-violet

	deep-pink

	deep-sky-blue

	dim-gray

	dodger-blue

	firebrick

	floral-white

	forest-green

	gainsboro

	ghost-white

	gold

	goldenrod

	gray

	green

	green-yellow

	honeydew

	hot-pink

	indian-red

	ivory

	khaki

	lavender

	lavender-blush

	lawn-green

	lemon-chiffon

	light-blue

	light-coral

	light-cyan

	light-goldenrod

	light-goldenrod-yellow

	light-gray

	light-pink

	light-salmon

	light-sea-green

	light-sky-blue

	light-slate-blue

	light-slate-gray

	light-steel-blue

	light-yellow

	lime-green

	linen

	magenta

	maroon

	medium-aquamarine

	medium-blue

	medium-orchid

	medium-purple

	medium-sea-green

	medium-slate-blue

	medium-spring-green

	medium-turquoise

	medium-violet-red

	midnight-blue

	mint-cream

	misty-rose

	moccasin

	navajo-white

	navy-blue

	old-lace

	olive-drab

	orange

	orange-red

	orchid

	pale-goldenrod

	pale-green

	pale-turquoise

	pale-violet-red

	papaya-whip

	peach-puff

	peru

	pink

	plum

	powder-blue

	purple

	red

	rosy-brown

	royal-blue

	saddle-brown

	salmon

	sandy-brown

	sea-green

	seashell

	sienna

	sky-blue

	slate-blue

	slate-gray

	snow

	spring-green

	steel-blue

	tan

	thistle

	tomato

	turquoise

	violet

	violet-red

	wheat

	white

	white-smoke

	yellow

	yellow-green

Application programs can define other colors; these are provided because
they are commonly used in the X Windows community, not because there is
anything special about these particular colors.

	See also:	
	stencil?

	contrasting-dash-patterns-limit

	$black

	$red

	$yellow

	$green

	$blue

	$magenta

	
$foreground Constant

	An indirect ink that uses the medium’s foreground design.

	Type:	<ink>

	Discussion:	An indirect ink that uses the medium’s foreground design.

	See also:	
	<ink>

	<palette>

	
fully-merged-text-style? Generic function

	Returns #t if the specified text style is completely specified.

	Signature:	fully-merged-text-style? text-style => boolean

	Parameters:	
	text-style – An instance of type <text-style>.

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if the specified text style is completely specified.

	See also:	
	merge-text-styles

	
$green Constant

	The usual definition of the color green.

	Type:	<color>

	Discussion:	The usual definition of the color green.

	See also:	
	<color>

	
$hearts-stipple Constant

	A stipple pattern for use in creating a patterned brush that draws a
heart shape.

	Type:	<array>

	Discussion:	A stipple pattern for use in creating a patterned brush that draws a
heart shape.

	See also:	
	brush-stipple

	
$horizontal-hatch Constant

	A stipple pattern for use in creating a patterned brush with alternating
horizontal rows of lines and spaces.

	Type:	<array>

	Discussion:	A stipple pattern for use in creating a patterned brush with alternating
horizontal rows of lines and spaces.

	See also:	
	brush-stipple

	
<image> Abstract Class

	The class for objects that are images.

	Superclasses:	<ink>

	Discussion:	The class for objects that are images.

	Operations:	The following operation is exported from the DUIM-DCs module.
	image?

The following operation is exported from the DUIM-Graphics module.

	<graphics>

	See also:	
	image?

	image-depth

	image-height

	image-width

	<ink>

	
image? Generic function

	Returns #t if its argument is an image.

	Signature:	image? object => boolean

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if its argument is an image.

	See also:	
	<image>

	image-depth

	image-height

	image-width

	
image-depth Generic function

	Returns the depth of an image.

	Signature:	image-depth image => depth

	Parameters:	
	image – An instance of type <image>.

	Values:	
	depth – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Discussion:	Returns the depth of the image image.

	See also:	
	<image>

	image?

	image-height

	image-width

	
image-height Generic function

	Returns the height of an image.

	Signature:	image-height image => height

	Parameters:	
	image – An instance of type <image>.

	Values:	
	height – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Discussion:	Returns the height of the image image.

	See also:	
	<image>

	image?

	image-depth

	image-width

	
image-width Generic function

	Returns the width of an image.

	Signature:	image-width image => width

	Parameters:	
	image – An instance of type <image>.

	Values:	
	width – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Discussion:	Returns the width of the image image.

	See also:	
	<image>

	image?

	image-depth

	image-height

	
<ink> Abstract Class

	The class of objects that represent a way of arranging colors and
opacities in the drawing plane.

	Superclasses:	<object> [http://opendylan.org/books/drm/Object_Classes#object]

	Discussion:	The class of objects that represent a way of arranging colors and
opacities in the drawing plane. Intuitively, it is anything that can be
drawn with. An ink is anything that can be used in medium-foreground,
medium-background, medium-ink, or the foreground or background of a
brush.

	Operations:	The following operation is exported from the DUIM-DCs module.
	ink?

	See also:	
	ink?

	
ink? Generic function

	Returns #t if its argument is an ink.

	Signature:	ink? object => boolean

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if object is an ink, otherwise returns #f.

	See also:	
	<ink>

	
$magenta Constant

	The usual definition of the color magenta.

	Type:	<color>

	Discussion:	The usual definition of the color magenta.

	See also:	
	<color>

	
make Generic function

	Returns an object that is of the same type as the class given as its
argument.

	Signature:	make (class == <pen>) #key width units dashes joint-shape cap-shape => pen

	Signature:	make (class == <brush>) #key foreground background mode fill-style fill-rule tile stipple ts-x ts-y => brush

	Parameters:	
	(class==<pen>) – The class <pen>.

	width – An instance of type <pen-width>. Default value: 1.

	units – An instance of type <pen-units>. Default value: #"normal".

	dashes – An instance of type <pen-dashes>. Default value: #f.

	joint-shape – An instance of type <pen-joint-shape>. Default value: #"miter".

	cap-shape – An instance of type <pen-cap-shape>. Default value: #"butt".

	(class==<brush>) – The class <brush>.

	foreground – An instance of type <ink>. Default value: $foreground.

	background – An instance of type <ink>. Default value: $background.

	mode – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer]. Default value: $boole-1.

	fill-style – A (fill-style) or #f. Default value: #f.

	fill-rule – A (fill-rule) or #f. Default value: #f.

	tile – An (image) or #f. Default value: #f.

	stipple – A (stipple) or #f. Default value: #f.

	ts-x – An instance of false-or(<integer>). Default value: #f.

	ts-y – An instance of false-or(<integer>). Default value: #f.

	Values:	
	pen – An instance of type <pen>.

	brush – An instance of type <brush>.

	Discussion:	Returns an object that is of the same type as the class given as its
argument. Default values for the keywords that specify object are
provided, or the keywords can be given explicitly to override the
defaults.

	See also:	
	<brush>

	<pen>

	
make-color-for-contrasting-color Generic function

	Returns a color that is recognizably different from the main color.

	Signature:	make-color-for-contrasting-color ink => color

	Parameters:	
	ink – An instance of type <ink>.

	Values:	
	color – An instance of type <color>.

	Discussion:	Returns a color that is recognizably different from the main color.

	See also:	
	make-contrasting-colors

	
make-contrasting-colors Function

	Returns a vector of colors with recognizably different appearance.

	Signature:	make-contrasting-colors n #key k => colors

	Parameters:	
	n – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	k – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	colors – An instance of type limited(<sequence>, of: <color>).

	Discussion:	Returns a vector of n colors with recognizably different appearance.
Elements of the vector are guaranteed to be acceptable values for the
brush: argument to the drawing functions, and do not include
$foreground, $background, or nil. Their class is otherwise
unspecified. The vector is a fresh object that may be modified.

If k is supplied, it must be an integer between 0 and n - 1
(inclusive), in which case make-contrasting-colors returns the k th
color in the vector rather than the whole vector.

If the implementation does not have n different contrasting colors,
make-contrasting-colors signals an error. This does not happen unless
n is greater than eight.

The rendering of the color is a true color or a stippled pattern,
depending on whether the output medium supports color.

	See also:	
	contrasting-colors-limit

	$green

	make-color-for-contrasting-color

	make-contrasting-dash-patterns

	
make-contrasting-dash-patterns Function

	Returns a vector of dash patterns with recognizably different
appearances.

	Signature:	make-contrasting-dash-patterns n #key k => dashes

	Parameters:	
	n – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	k – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Values:	
	dashes – An instance of type <vector> [http://opendylan.org/books/drm/Collection_Classes#vector].

	Discussion:	Returns a vector of n dash patterns with recognizably different
appearances. If the keyword k is supplied,
make-contrasting-dash-patterns returns the k th pattern. If there
are not n different dash patterns, an error is signalled.

The argument n represents the number of dash patterns.

The argument k represents the index in the vector of dash patterns
indicating the pattern to use.

	See also:	
	contrasting-dash-patterns-limit

	make-contrasting-colors

	
make-device-font Function

	Returns a device-specific font.

	Signature:	make-device-font port font => device-font

	Parameters:	
	port – An instance of type <silica>.

	font – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	device-font – A font object or the name of a font.

	Discussion:	Returns a device-specific font. Text styles are mapped to fonts for a
port, a character set, and a text style. All ports must implement
methods for the generic functions, for all classes of text style.

The objects used to represent a font mapping are unspecified and are
likely to vary from port to port. For instance, a mapping might be some
sort of font object on one type of port, or might simply be the name of
a font on another.

Part of initializing a port is to define the mappings between text
styles and font names for the port’s host window system.

	
make-gray-color Function

	Returns a member of class <color>.

	Signature:	make-gray-color luminosity #key opacity => color

	Parameters:	
	luminosity – An instance of type limited(<real>, min: 0, max: 1).

	opacity – An instance of type limited(<real>, min: 0, max: 1). Default value: 1.0.

	Values:	
	color – An instance of type <color>.

	Discussion:	Returns a member of class <color>. The luminance is a real number
between 0 and 1 (inclusive). On a black-on-white display device, 0
means black, 1 means white, and the values in between are shades of
gray. On a white-on-black display device, 0 means white, 1 means
black, and the values in between are shades of gray.

	See also:	
	make-ihs-color

	make-rgb-color

	
make-ihs-color Function

	Returns a member of the class <color>.

	Signature:	make-ihs-color intensity hue saturation #key opacity => color

	Parameters:	
	intensity – An instance of type limited(<real>, min: 0, max: sqrt(3)).

	hue – An instance of type limited(<real>, min: 0, max: 1).

	saturation – An instance of type limited(<real>, min: 0, max: 1).

	opacity – An instance of type limited(<real>, min: 0, max: 1). Default value: 1.0.

	Values:	
	color – An instance of type <color>.

	Discussion:	Returns a member of class <color>. The intensity argument is a real
number between 0 and sqrt(3) (inclusive). The hue and
saturation arguments are real numbers between 0 and 1 (inclusive).

	See also:	
	make-gray-color

	make-rgb-color

	
make-palette Generic function

	Returns a member of the class <palette>.

	Signature:	make-palette port #key => palette

	Parameters:	
	port – An instance of type <silica>.

	Values:	
	palette – An instance of type <palette>.

	Discussion:	Returns a member of the class <palette>.

	
make-pattern Function

	Returns a pattern generated from a two-dimensional array.

	Signature:	make-pattern array colors => pattern

	Parameters:	
	array – An instance of type <array>.

	colors – An instance of type limited(<sequence>, of: <color>).

	Values:	
	pattern – An instance of type <pattern>.

	Discussion:	Returns a pattern design that has (array-dimension array 0) cells
in the vertical direction and (array-dimension array 1} cells in
the horizontal direction. array must be a two-dimensional array of
non-negative integers less than the length of designs. designs must
be a sequence of designs. The design in cell*i,j* of the resulting
pattern is the n th element of designs, if n is the value of
(aref array i j). For example, array can be a bit-array and
designs can be a list of two designs, the design drawn for 0 and the
one drawn for 1. Each cell of a pattern can be regarded as a hole that
allows the design in it to show through. Each cell might have a
different design in it. The portion of the design that shows through a
hole is the portion on the part of the drawing plane where the hole is
located. In other words, incorporating a design into a pattern does not
change its alignment to the drawing plane, and does not apply a
coordinate transformation to the design. Drawing a pattern collects the
pieces of designs that show through all the holes and draws the pieces
where the holes lie on the drawing plane. The pattern is completely
transparent outside the area defined by the array.

Each cell of a pattern occupies a 1 by 1 square. You can use
transform-region to scale the pattern to a different cell size and
shape, or to rotate the pattern so that the rectangular cells become
diamond-shaped. Applying a coordinate transformation to a pattern does not
affect the designs that make up the pattern. It only changes the position,
size, and shape of the cells’ holes, allowing different portions of the
designs in the cells to show through. Consequently, applying
make-rectangular-tile to a pattern of nonuniform designs can produce
a different appearance in each tile. The pattern cells’ holes are tiled, but
the designs in the cells are not tiled and a different portion of each of
those designs shows through in each tile.

	
make-rgb-color Function

	Returns a member of class <color>.

	Signature:	make-rgb-color red green blue #key opacity => color

	Parameters:	
	red – An instance of type limited(<real>, min: 0, max: 1).

	green – An instance of type limited(<real>, min: 0, max: 1).

	blue – An instance of type limited(<real>, min: 0, max: 1).

	opacity – An instance of type limited(<real>, min: 0, max: 1). Default value: 1.0.

	Values:	
	color – An instance of type <color>.

	Discussion:	Returns a member of class <color>. The red, green, and*blue*
arguments are real numbers between 0 and 1 (inclusive) that specify the
values of the corresponding color components.

When all three color components are 1, the resulting color is white.
When all three color components are 0, the resulting color is black.

	See also:	
	make-gray-color

	make-ihs-color

	
make-stencil Function

	Returns a pattern design generated from a two-dimensional array.

	Signature:	make-stencil array => stencil

	Parameters:	
	array – An instance of type <array>.

	Values:	
	stencil – An instance of type <stencil>.

	Discussion:	Returns a pattern design that has (array-dimension array 0) cells
in the vertical direction and (array-dimension array 1) cells in
the horizontal direction. array must be a two-dimensional array of
real numbers between 0 and 1 (inclusive) that represent opacities. The
design in cell i,j of the resulting pattern is the value of
(make-opacity (aref array i j)).

	
make-text-style Function

	Returns an instance of <text-style>.

	Signature:	make-text-style family weight slant size #key underline? strikeout? => text-style

	Parameters:	
	family – An instance of type one-of(#"fix", #"serif", #"sans-serif", #f).

	weight – An instance of type one-of(#"normal", #"condensed", #"thin", #"extra-light", #"light", #"medium", #"demibold", #"bold", #"extra-bold", #"black", #f).

	slant – An instance of type one-of(#"roman", #"italic", #"oblique", #f).

	size – An instance of <integer> [http://opendylan.org/books/drm/Number_Classes#integer], or an instance of type one-of(#"normal", #"tiny", #"very-small", #"small", #"large", #"very-large:", #"huge", #"smaller", #"larger", #f).

	underline? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	strikeout? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Values:	
	text-style – An instance of type <text-style>.

	Discussion:	Returns an instance of <text-style>.

Text style objects have components for family, face, and size. Not all
of these attributes need be supplied for a given text style object. Text
styles can be merged in much the same way as pathnames are merged;
unspecified components in the style object (that is, components that
have #f in them) may be filled in by the components of a default style
object. A text style object is called fully specified if none of its
components is #f, and the size component is not a relative size (that
is, neither #"smaller" nor #"larger").

If size is an integer, it represents the size of the font in printer’s
points.

Implementations are permitted to extend legal values for family, face,
and size.

	See also:	
	$solid-pen

	
merge-text-styles Generic function

	Merges two text styles and returns a new text style that is the same as
the first, except that unspecified components in are filled in from the
second.

	Signature:	merge-text-styles text-style default-style => text-style

	Parameters:	
	text-style – An instance of type <text-style>.

	default-style – An instance of type <text-style>.

	Values:	
	text-style – An instance of type <text-style>.

	Discussion:	Merges the text styles text-style with default-style, that is,
returns a new text style that is the same as text-style, except that
unspecified components in style1 are filled in from default-style.
For convenience, the two arguments may be also be style specs. Note that
default-style must be a fully specified text style.

When merging the sizes of two text styles, if the size from the first
style is a relative size, the resulting size is either the next smaller
or next larger size than is specified by default-style. The ordering
of sizes, from smallest to largest, is #"tiny", #"very-small",
#"small", #"normal", #"large", #"very-large", and #"huge".

	See also:	
	default-background-setter

	
<palette> Abstract Instantiable Class

	The protocol class for color palettes.

	Superclasses:	<object> [http://opendylan.org/books/drm/Object_Classes#object]

	Discussion:	The protocol class for color palettes.

	Operations:	
	add-colors

	do-add-colors

	remove-colors

	do-remove-colors

	color-palette?

	dynamic-palette?

	See also:	
	palette?

	
palette? Generic function

	Returns #t if an object is a palette.

	Signature:	palette? object => boolean

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if the object object is a palette. A palette is a color
map that maps 16 bit colors into a, for example, 8 bit display.

	See also:	
	<palette>

	
<palette-full> Concrete Sealed Class

	The class for errors that are signalled when a color palette is full.

	Superclasses:	<error>

	Init-Keywords:	
	palette –

	Discussion:	The class for errors that are signalled when a color palette is full.

	See also:	
	<palette>

	
$parquet-stipple Constant

	A stipple pattern for use in creating a patterned brush that looks like
a parquet floor.

	Type:	<array>

	Discussion:	A stipple pattern for use in creating a patterned brush that looks like
a parquet floor.

	See also:	
	brush-stipple

	
<pattern> Concrete Sealed Class

	The class for patterns.

	Superclasses:	<stencil>

	Init-Keywords:	
	colors – An instance of type limited(<sequence>, of: <color>).

	Discussion:	The class for patterns. A pattern is a bounded rectangular arrangement
of color, like a checkerboard. Drawing a pattern draws a different
design in each rectangular cell of the pattern.

	Operations:	The following operation is exported from the DUIM-DCs module.

	pattern?

	See also:	
	<stencil>

	make-pattern

	
pattern? Generic function

	Returns #t if its argument is a pattern.

	Signature:	pattern? object => boolean

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if object is a pattern.

	See also:	
	make-pattern

	
<pen> Abstract Instantiable Class

	The protocol class for pens.

	Superclasses:	<object> [http://opendylan.org/books/drm/Object_Classes#object]

	Init-Keywords:	
	width – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer]. Default value: 1.

	units – An instance of type one-of(#"normal", #"point", #"device") . Default value: #"normal".

	dashes – An instance of type-union(<boolean>, <sequence>). Default value: #f.

	joint-shape – An instance of type one-of(#"miter", #"bevel", #"round", #"none"). Default value: #"miter".

	cap-shape – An instance of type one-of(#"butt", #"square", #"round", #"no-end-point"). Default value: #"butt".

	Discussion:	The protocol class for pens. A pen imparts ink to a medium.

	Operations:	The following operations are exported from the DUIM-DCs module.

	=

	pen?

	pen-cap-shape

	pen-dashes

	pen-joint-shape

	pen-units

	pen-width

	See also:	
	<ink>

	make

	pen?

	pen-cap-shape

	pen-dashes

	pen-joint-shape

	pen-units

	pen-width

	
pen? Generic function

	Returns #t if its argument is a pen.

	Signature:	pen? object => boolean

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if object is a pen, otherwise returns #f.

	See also:	
	<pen>

	pen-cap-shape

	pen-dashes

	pen-joint-shape

	pen-units

	pen-width

	
pen-cap-shape Generic function

	Returns the shape of the end of a line or an arc drawn by the pen.

	Signature:	pen-cap-shape pen => value

	Parameters:	
	pen – An instance of type <pen>.

	Values:	
	value – An instance of type one-of(#"butt", #"square", #"round", #"no-end-point").

	Discussion:	Returns the shape of the end of a line or an arc drawn by pen.

	See also:	
	make-contrasting-dash-patterns

	<pen>

	pen?

	pen-dashes

	pen-joint-shape

	pen-units

	pen-width

	
pen-dashes Generic function

	Returns #t if the lines drawn by a pen are dashed.

	Signature:	pen-dashes pen => value

	Parameters:	
	pen – An instance of type <pen>.

	Values:	
	value – An instance of type type-union(<boolean>, <sequence>).

	Discussion:	Returns #t if the lines drawn by pen are dashed. The sequence is a
vector of integers indicating the pattern of dashes. There must be an
even number of integers. The odd elements in the list indicate the
length of the inked dashes and the even elements indicate the length of
the gaps between dashes.

	See also:	
	<pen>

	pen?

	pen-cap-shape

	pen-joint-shape

	pen-units

	pen-width

	
pen-joint-shape Generic function

	Returns the shape of the joints between line segments of a closed,
unfilled figure.

	Signature:	pen-joint-shape pen => value

	Parameters:	
	pen – An instance of type <pen>.

	value – An instance of type one-of(#"miter", #"bevel", #"round", #"none").

	Discussion:	Returns the shape of the joints between line segments of a closed,
unfilled figure drawn by pen.

	See also:	
	make-contrasting-dash-patterns

	<pen>

	pen?

	pen-cap-shape

	pen-dashes

	pen-units

	pen-width

	
pen-units Generic function

	Returns the units in which the pen width is specified.

	Signature:	pen-units pen => value

	Parameters:	
	pen – An instance of type <pen>.

	Values:	
	value – An instance of type one-of(#"normal", #"point", #"device").

	Discussion:	Returns the units in which the pen width is specified. They may be
normal, points, or device-dependent. A width of #"normal" is a
comfortably visible thin line.

	See also:	
	make-contrasting-dash-patterns

	<pen>

	pen?

	pen-cap-shape

	pen-dashes

	pen-joint-shape

	pen-width

	
pen-width Generic function

	Returns the pen-width, that is how wide a stroke the pen draws, of its
argument.

	Signature:	pen-width pen => width

	Parameters:	
	pen – An instance of type <pen>.

	Values:	
	width – An instance of type <pen-width>. The units that specify the width of the pen may be #"normal", #"points", or #"device".

	Discussion:	Returns the pen width, that is how wide a stroke the pen draws, of pen
. A width of #"normal" is a comfortably visible thin line.

	See also:	
	make-contrasting-dash-patterns

	<pen>

	pen?

	pen-cap-shape

	pen-dashes

	pen-joint-shape

	pen-units

	
read-image Generic function

	Reads an image.

	Signature:	read-image resource-id #key image-type: image-type #all-keys => image

	Parameters:	
	locator – An instance of type type-union(<string>, <locator>).

	image-type – On Windows, an instance of type one-of(#"bitmap", #"icon").

	Values:	
	image – An instance of type <image>.

	Discussion:	Reads an image from the location resource-id. This function calls
read-image-as.

	See also:	
	read-image-as

	
read-image-as Generic function

	Reads an image.

	Signature:	read-image-as class locator image-type #key #all-keys => image

	Parameters:	
	class – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	locator – An instance of type <string> [http://opendylan.org/books/drm/Collection_Classes#string].

	image-type – On Windows, #"bitmap" or #"icon".

	Values:	
	image – An instance of type <image>.

	Discussion:	Reads the image in the location pointed to be locator, as an instance
of a particular class*.* This function is called by read-image.

The class represents the class that the image is read as an instance
of.

	See also:	
	read-image

	
$red Constant

	The usual definition of the color red.

	Type:	<color>

	Discussion:	The usual definition of the color red.

	See also:	
	$blue

	
remove-colors Generic function

	Removes one or more colors from a palette and returns the updated
palette.

	Signature:	remove-colors palette #rest colors => palette

	Parameters:	
	palette – An instance of type <palette>.

	colors – Instances of type <color>.

	Values:	
	palette –

	Discussion:	Removes colors from palette and returns the updated palette.

	
$solid-pen Constant

	A pen that draws a solid line.

	Type:	<pen>

	Discussion:	A pen that draws a solid line. The width of the line is 1, and
dashes: is #f.

	See also:	
	<pen>

	make

	$dash-dot-pen

	$dotted-pen

	
<stencil> Concrete Sealed Class

	The class for stencils.

	Superclasses:	<image>

	Init-Keywords:	
	array – An instance of type <array>. Required.

	transform – An instance of type <transform>. Default value: #f.

	Discussion:	The class for stencils. A stencil is a special kind of pattern that
contains only opacities.

	Operations:	The following operations are exported from the DUIM-DCs module.

	image-height

	image-width

	stencil?

The following operation is exported from the DUIM-Geometry module.

	box-edges

	See also:	
	<image>

	make-pattern

	stencil?

	
stencil? Generic function

	Returns #t if its argument is a stencil.

	Signature:	stencil? object => boolean

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if its argument is a stencil.

	See also:	
	make-pattern

	<stencil>

	
<text-style> Abstract Instantiable Class

	The protocol class for text styles.

	Superclasses:	<object> [http://opendylan.org/books/drm/Object_Classes#object]

	Init-Keywords:	
	family – An instance of type one-of(#"fix", #"serif", #"sans-serif", #f). Default value: #f.

	weight – An instance of type one-of(#"normal", #"condensed", #"thin", #"extra-light", #"light", #"medium", #"demibold", #"bold", #"extra-bold", #"black", #f).

	slant – An instance of type one-of(#"roman", #"italic", #"oblique", #f).

	size – An instance of <integer> [http://opendylan.org/books/drm/Number_Classes#integer], or an instance of type one-of(#"normal", #"tiny", #"very-small", #"small", #"large", #"very-large:", #"huge", #"smaller", #"larger", #f). Default value: #f.

	underline? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #f.

	strikeout? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #f.

	Discussion:	The protocol class for text styles. When specifying a particular
appearance for rendered characters, there is a tension between
portability and access to specific font for a display device. DUIM
provides a portable mechanism for describing the desired text style in
abstract terms. Each port defines a mapping between these abstract style
specifications and particular device-specific fonts. In this way, an
application programmer can specify the desired text style in abstract
terms secure in the knowledge that an appropriate device font will be
selected at run time. However, some applications may require direct
access to particular device fonts. The text style mechanism supports
specifying device fonts by name, allowing the programmer to sacrifice
portability for control.

If size: is specified as an integer, then it represents the font size
in printer’s points.

	Operations:	The following operations are exported from the DUIM-DCs module.

	=

	fully-merged-text-style?

	merge-text-styles

	text-style?

	text-style-components

	text-style-family

	text-style-size

	text-style-slant

	text-style-strikeout?

	text-style-underline?

	text-style-weight

The following operations are exported from the DUIM-Sheets module.

	medium-default-text-style

	medium-default-text-style-setter

	medium-merged-text-style

	medium-text-style

	medium-text-style-setter

	See also:	
	text-style?

	text-style-components

	text-style-family

	text-style-size

	text-style-slant

	text-style-strikeout?

	text-style-underline?

	text-style-weight

	
text-style? Generic function

	Returns #t if its argument is a text-style.

	Signature:	text-style? object => text-style?

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	text-style? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if its argument is a text-style.

	See also:	
	<text-style>

	text-style-components

	text-style-family

	text-style-size

	text-style-slant

	text-style-strikeout?

	text-style-underline?

	text-style-weight

	
text-style-components Generic function

	Returns the components of a text style as the values family, face,
slant, size, underline and strikeout.

	Signature:	text-style-components text-style => family weight slant size underline? strikeout?

	Parameters:	
	text-style – An instance of type <text-style>.

	slant – An instance of type one-of(#"roman", #"italic", #"oblique", #f).

	Values:	
	family – An instance of type one-of(#"fix", #"serif", #"sans-serif", #f).

	weight – An instance of type one-of(#"normal", #"condensed", #"thin", #"extra-light", #"light", #"medium", #"demibold", #"bold", #"extra-bold", #"black", #f).

	size – An instance of <integer> [http://opendylan.org/books/drm/Number_Classes#integer], or an instance of type one-of(#"normal", #"tiny", #"very-small", #"small", #"large", #"very-large:", #"huge", #"smaller", #"larger", #f). Default value: #f.

	underline? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	strikeout? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns the components of the text style text-style as the values
family, face, slant, size, underline and strikeout.

	See also:	
	<text-style>

	text-style?

	text-style-family

	text-style-size

	text-style-slant

	text-style-strikeout?

	text-style-underline?

	text-style-weight

	
text-style-family Generic function

	Returns the family component of the specified text style.

	Signature:	text-style-family text-style => family

	Parameters:	
	text-style – An instance of type <text-style>.

	Values:	
	family – An instance of type one-of(#"fix", #"serif", #"sans-serif", #f).

	Discussion:	Returns the family component of the specified text style.

	See also:	
	<text-style>

	text-style?

	text-style-components

	text-style-size

	text-style-slant

	text-style-strikeout?

	text-style-underline?

	text-style-weight

	
text-style-size Generic function

	Returns the style component of the specified text style.

	Signature:	text-style-size text-style => size

	Parameters:	
	text-style – An instance of type <text-style>.

	Values:	
	size – An instance of <integer> [http://opendylan.org/books/drm/Number_Classes#integer], or an instance of type one-of(#"normal", #"tiny", #"very-small", #"small", #"large", #"very-large:", #"huge", #"smaller", #"larger", #f). Default value: #f.

	Discussion:	Returns the style component of the specified text style.

	See also:	
	<text-style>

	text-style?

	text-style-components

	text-style-family

	text-style-slant

	text-style-strikeout?

	text-style-underline?

	text-style-weight

	
text-style-slant Generic function

	Returns the slant component of the specified text style.

	Signature:	text-style-slant text-style => slant

	Parameters:	
	text-style – An instance of type <text-style>.

	Values:	
	slant – An instance of type one-of(#"roman", #"italic", #"oblique", #f).

	Discussion:	Returns the slant component of the specified text style.

	See also:	
	<text-style>

	text-style?

	text-style-components

	text-style-family

	text-style-size

	text-style-strikeout?

	text-style-underline?

	text-style-weight

	
text-style-strikeout? Generic function

	Returns #t if the text style includes a line through it, striking it
out.

	Signature:	text-style-strikeout? text-style => strikeout?

	Parameters:	
	text-style – An instance of type <text-style>.

	Values:	
	strikeout? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if the text style includes a line through it, striking it
out.

	See also:	
	<text-style>

	text-style?

	text-style-components

	text-style-family

	text-style-size

	text-style-slant

	text-style-underline?

	text-style-weight

	
text-style-underline? Generic function

	Returns #t if the text style is underlined.

	Signature:	text-style-underline? text-style => underline?

	Parameters:	
	text-style – An instance of type <text-style>.

	Values:	
	underline? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #t if the text style is underlined.

	See also:	
	<text-style>

	text-style?

	text-style-components

	text-style-family

	text-style-size

	text-style-slant

	text-style-strikeout?

	text-style-weight

	
text-style-weight Generic function

	Returns the weight component of the specified text style.

	Signature:	text-style-weight text-style => weight

	Parameters:	
	text-style – An instance of type <text-style>.

	Values:	
	weight – An instance of type one-of(#"normal", #"condensed", #"thin", #"extra-light", #"light", #"medium", #"demibold", #"bold", #"extra-bold", #"black", #f).

	Discussion:	Returns the weight component of the text style.

	See also:	
	<text-style>

	text-style?

	text-style-components

	text-style-family

	text-style-size

	text-style-slant

	text-style-strikeout?

	text-style-underline?

	
$tiles-stipple Constant

	A stipple pattern for use in creating a patterned brush with lines and
spaces suggesting tiles

	Type:	<array>

	Discussion:	A stipple pattern for use in creating a patterned brush with lines and
spaces suggesting tiles

	See also:	
	brush-stipple

	
$vertical-hatch Constant

	
A stipple pattern for use in creating a patterned brush with alternating
vertical columns of lines and spaces.

	Type:	<array>

	Discussion:	A stipple pattern for use in creating a patterned brush with alternating
vertical columns of lines and spaces.

	See also:	
	brush-stipple

	
$white Constant

	The usual definition of white.

	Type:	<color>

	Discussion:	The usual definition of white. In the rgb color model, its value is
111.

	See also:	
	<color>

	
write-image Generic function

	Writes out a copy of an image to disk (or other designated medium).

	Signature:	write-image image locator => ()

	Parameters:	
	image – An instance of type <image>.

	locator – An instance of type <string> [http://opendylan.org/books/drm/Collection_Classes#string].

	Discussion:	Writes out a copy of image to the designated medium locator.

	
$xor-brush Constant

	A standard brush with the drawing property of $boole-xor.

	Type:	<brush>

	Discussion:	A standard brush with the drawing property of $boole-xor.

	
$yellow Constant

	The usual definition of the color yellow.

	Type:	<color>

	Discussion:	The usual definition of the color yellow.

	See also:	
	<color>

 Copyright 2011, Dylan Hackers.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 api |

 	
 next |

 	
 previous |

 	DUIM Reference 1.0 documentation

DUIM-Sheets Library

Overview

The elements that comprise a Graphical User Interface (GUI) are arranged
in a hierarchical ordering of object classes. At the top level of the
DUIM hierarchy there are three main classes, <sheet>, <gadget>,
and <frame>, all of which are subclasses of <object> [http://opendylan.org/books/drm/Object_Classes#object].

Sheets are the most basic visual GUI element, and can be any unique part
of a window: either a control such as a gadget or pane, or a layout.

	Sheets have a visual presence: size, drawing context and so on.

	The essential component of a sheet is its region; the area of the
screen that the sheet occupies.

	In practice sheets always also have a transform that maps the
coordinate system of the sheet’s region to the coordinate system of
its parent, because in practice all sheets maintain a pointer to a
parent sheet.

	Sheets can be output-only (labels, for example), input-output (most
gadgets are like this) or even, in principle, input-only (for
instance, you may need to provide some kind of simple drag’n’drop
target).

Most of the sheet classes that you need to use on a day to day basis are
exposed in the DUIM-Gadgets and DUIM-Layouts libraries. The DUIM-Sheets
library contains the basic building blocks to implement these classes,
as well as providing the necessary functionality for you to create and
manipulate your own classes of sheet. In addition, DUIM-Sheets defines a
portable model for handling events. These event handling routines are
used by the DUIM-Frames, DUIM-Gadgets, and DUIM-Layouts libraries
without the need for any special action on your part. However, if you
need to define your own sheet classes, you will also need to handle
events occurring within those classes.

The DUIM-Sheets library contains a single module, duim-sheets, from which all
the interfaces described in this chapter are exposed. DUIM-Sheets Module
contains complete reference entries for each exposed interface.

A sheet is the basic unit in a DUIM window. Inside any window, sheets
are nested in a parent-child hierarchy. All sheets have the following
attributes:

	sheet-region, expressed in the sheet’s own coordinate system.

	sheet-transform, which maps the sheet’s coordinate system to the
coordinate system of its parent.

	sheet-parent, which is #f if the sheet has no parent.

	sheet-mapped?, which tells if the sheet is visible on a display,
ignoring issues of occluding windows.

The sheet-transform is an instance of a concrete subclass of
<transform>. The sheet-region can be an instance of any concrete
subclass of <region>, but is usually represented by the region class
<bounding-box>.

Some sheets (menu bars, button boxes, or tool bars, for instance) also
have single or multiple children, in which case they have additional
attributes:

	A sheet-children slot. This is a sequence of sheets. Each sheet in
the sequence is a child of the current sheet.

	Methods to add, remove, and replace a child.

	Methods to map over children.

The functions that maintain the sheet’s region and transform are part of
the sheet-geometry protocol. Functions that maintain a sheet’s parent
and children are part of the sheet-genealogy protocol. Note that the
sheet geometry and genealogy protocols are independent. Adding a child
to a sheet that is larger than its parent does not cause the parent’s
region to grow. Shrinking the region of a parent does not cause the
children to shrink. You must maintain the region yourself, either by
explicitly setting the sheet’s region and transform, or by using the
layout facilities (compose-space and allocate-space).

As a convenience, there are some glue functions that mediate between
geometry and layout: set-sheet-position, set-sheet-size,
and set-sheet-edges.

Some classes of sheet can receive input. These have:

	A sheet-event-queue slot.

	Methods for <handle-event>.

Sheets that can be repainted have methods for handle-repaint.

Sheets that can do output, have a sheet-medium slot.

Some sheets act as controls such as push buttons, scroll bars, and
sliders. These are represented by the <gadget> class and its
subclasses.

Other sheets act as layout controls, which allow you to specify how the
elements in a sheet are laid out, whether they are placed vertically or
horizontally, whether they are left, right, or center-aligned, and so
on. These are represented by the <layout> class and its subclasses,
and are described in DUIM-Layouts Library.

A sheet can be associated with a <display>, which is an object that
represents a single display (or screen) on some display server.

A display (and all the sheets attached to the display) is associated
with a <port> that is a connection to a display server. The port
manages:

	a primary input device, such as a keyboard.

	a pointing device, such as a mouse.

	an event processor that dispatches events to the appropriate sheet.

There is a protocol for using the Windows clipboard. In order to
manipulate the Windows clipboard from within DUIM, the clipboard needs
to be locked, so that its contents can be manipulated. DUIM uses the
functions open-clipboard and close-clipboard to create and free
clipboard locks. The open-clipboard function creates an instance of
the class <clipboard> which is used to hold the contents of the
clipboard for the duration of the lock. For general use of the
clipboard, use the macro with-clipboard, rather than calling
open-clipboard and close-clipboard explicitly. This lets you
manipulate the clipboard easily, sending the results of any code
evaluated to the clipboard.

Once a clipboard lock has been created, you can use add-clipboard-data
and add-clipboard-data-as to add data to the clipboard. Use
get-clipboard-data-as to query the contents of the clipboard, and use
clear-clipboard to empty the locked clipboard. Finally, use
clipboard-data-available? to see if the clipboard contains data of a
particular type.

You can put arbitrary Dylan objects onto the clipboard, and retrieve
them within the same process. This gives you the ability to cut and
paste more interesting pieces of an application within the application’s
own domain than would normally be possible.

The DUIM GUI test suite contains a demonstration of how to use the
clipboard in DUIM, in the file

sources/duim/tests/gui/clipboard.dylan

in the Open Dylan installation directory.

The class hierarchy for DUIM-Sheets

This section presents an overview of the available classes exposed by
the DUIM-Sheets library, and describes the class hierarchy present.

The base classes in the DUIM-Sheets library

The base classes for the majority of subclasses exposed from the
DUIM-Sheets library are <sheet> and <event>, although a number of
additional subclasses of <object> [http://opendylan.org/books/drm/Object_Classes#object] are also exposed.

The base classes exposed by the DUIM-Sheets library are shown in the following
table . Only <sheet>, and <event> have any subclasses
defined. An <event> is an object representing some sort of event. See
Subclasses of <event> for details of the subclasses of <event>.

Overall class hierarchy for the DUIM-Sheets library

	<object>
	
	

	
	<sheet>
	

	
	<display>

	<port>
	

	<clipboard>
	

	<caret>
	

	<pointer>
	

	<medium>
	

	<frame-manager>
	

	<event>
	

	<sheet> As already mentioned, a sheet is the basic unit of window
applications, and they can be nested in a parent-child hierarchy. A
subclass of sheet is provided — <display> — which is an object that
represents a single display (or screen) on a display server. All
sheets can be attached to a display.

	<port> A port is a connection to a display server. A display,
together with all the sheets attached to it, is associated with a
port, which manages a primary input device, such as a keyboard, a
pointing device, such as a mouse, and an event processor that
dispatches events to the appropriate sheet.

	<clipboard> This class is used as a clipboard that can be used to
hold information temporarily while it is transferred from one sheet
to another, or between applications. Clipboards provide support for
the standard Cut, Copy, and Paste commands common in most
applications.

	<caret> and <pointer> These two classes form an interface
between the keyboard and the display, and the pointing device and the
display, respectively.

	The <caret> represents the position on screen that characters typed
on the keyboard will be placed. This is often a position in a
document.

	The <pointer> represents the position of the pointing device on the
screen, and thus shows the area that will be affected by any events
generated with the pointing device, such as pressing or clicking one
of the buttons on the device.

	<pointer-drag-event> The class of events where the pointer for the
pointing device attached to the computer is moving, and one of the buttons
on the pointing device is pressed down as well. The effects of this event
are rather like a combination of the <button-press-event> and
<pointer-motion-event> classes. For more information about these
and other pointer event classes, see Subclasses of <device-event>.

	<pointer-enter-event> This event is used to describe the event
where the pointer for the pointing device enters a specified area of the
screen, such as a sheet. For more information about these and other pointer
event classes, see Subclasses of <device-event>.

	<medium> A medium represents a destination for drawn or written
output. It has several items associated with it, such as a drawing
plane, foreground and background colors, and default line and text
styles.

	<frame-manager> A frame manager represents the “look and feel” of
a frame. This controls standard interface elements for the platform you are
delivering on, such as the appearance and behavior of title bars, borders,
menu commands and scroll bars. Unless you are developing for more than one
platform, you do not need to be too concerned with frame managers, since you
will only using the default frame manager.

Subclasses of <event>

The following table shows the subclasses of the <event> class that are
exposed by the DUIM-Sheets library.

	<event>
	
	
	

	
	<frame-event>
	
	

	
	<port-terminated-event>
	

	
	<timer-event>
	

	<sheet-event>
	
	

	
	<device-event>
	

	
	<window-event>
	See Subclasses of <device-event>

	
	
	<window-configuration-event>

	
	
	<window-repaint-event>

The classes of event that are exposed by the DUIM-Sheets library fall
into two categories:

	Events that occur in frames: subclasses of the <frame-event> class

	Events that occur in sheets: subclasses of the <sheet-event> class

Most subclasses of <frame-event> are exposed by the DUIM-Frames
library. See DUIM-Frames Library, for full details about these
subclasses. However, two subclasses of <frame-event> are exposed by
the DUIM-Sheets library:

	<port-terminated-event> This class represents the event of a port
— a connection to a display — being terminated.

	<timer-event> This is the class of any event that is timed.

Subclasses of <sheet-event> fall into two categories:

	Device events that occur to devices attached to the computer
(typically the keyboard and the pointing device). These are described
in Subclasses of <device-event>.

	Window events that occur in a window.

Events that occur in a window are subclasses of <window-event>. Two
such events are supplied:

	<window-configuration-event> This event occurs whenever the
configuration of sheets in a window needs to be recalculated. This may occur
in property frames, for example, when clicking on the available tabs to
display different pages of information. Sometimes, dialog boxes have buttons
that allow you to show or hide additional details, which are themselves
displayed in an extra pane at the bottom or on the right hand side of the
dialog. Clicking on such a button would also create
a <window-configuration-event>, as the additional pane would need to
be displayed or hidden, forcing a recalculation of the layout of the sheets
in the frame.

	<window-repaint-event> This event occurs whenever a region of
a window needs to be repainted. This may occur when refreshing a chart or
drawing in a frame.

Subclasses of <device-event>

The following table shows the subclasses of the <device-event> class
that are exposed by the DUIM-Sheets library. Device events, broadly speaking,
describe any event that can occur on a device connected to the computer.

	<device-event>
	
	
	
	

	
	<pointer-event>
	
	
	

	
	
	<pointer-button-event>
	
	

	
	
	
	<button-press-event>
	

	
	
	
	<button-release-event>
	

	
	
	
	<button-click-event>
	

	
	
	
	<double-click-event>
	

	
	
	
	<pointer-drag-event>
	

	
	
	<pointer-motion-event>
	
	

	
	
	
	<pointer-drag-event>
	

	
	
	
	<pointer-boundary-event>
	

	
	<keyboard-event>
	
	
	<pointer-exit-event>

	
	
	<key-press-event>
	
	<pointer-enter-event>

	
	
	<key-release-event>
	
	

Note

The <pointer-drag-event> class is a subclass of both
<pointer-button-event> and <pointer-motion-event>.

Device events fall into two distinct categories:

	Keyboard events that occur on the keyboard attached to the computer:
subclasses of <keyboard-event>

	Pointer events that occur on the pointing device attached to the
computer: subclasses of <pointer-event>

There are two classes of keyboard event. The classes <key-press-event>
and <key-release-event> describe the events that occur when any key on
the keyboard is pressed or released, respectively.

There are three classes of pointer event, some of which provide a number
of subclasses. Note that there are another two classes of pointer event
that are immediate subclasses of <object> [http://opendylan.org/books/drm/Object_Classes#object]. These are described in
The base classes in the DUIM-Sheets library.

	<pointer-button-event> These events occur whenever there is any
activity on one of the buttons on the pointing device. Several subclasses of
this class are provided.

	<pointer-exit-event> This is an event that occurs when the pointer
leaves a specified area such as a sheet.

	<pointer-motion-event> This class of events occur when the pointer
is in motion. There is one subclass provided,
<pointer-boundary-event>, for the specific case when the motion of
the pointer causes the boundary of a sheet to be crossed. Note: Unlike
<pointer-drag-event>, no button needs to be pressed on the attached
pointing device.

The subclasses provided for <pointer-button-event> are as follows:

	<button-press-event> This event occurs when any button on the
pointing device is pressed down by the user. Note that this is distinct from
<button-click-event>, described below.

	<button-release-event>
This event occurs when any previously pressed button on the pointing device
is released by the user.

	<button-click-event> This event occurs when any button on the
pointing device is pressed down by the user and then released again within
a certain time frame. An instance of this class is created if the creation
of an instance of <button-press-event> is closely followed by the
creation of an instance of <button-release-event>. The necessary
time frame is dictated by the configuration of your computer. In Windows, for
example, this time can be set using the Control Panel.

	<double-click-event> This event occurs when a button is clicked
twice within a certain time frame. An instance of this class is created if
the creation of an instance of <button-click-event> is closely
followed by the creation of another instance of
<button-click-event>. The necessary time frame is dictated by the
configuration of your computer.

DUIM-Sheets Module

This section contains a complete reference of all the interfaces that
are exported from the duim-sheets module.

	
= Generic function

	Returns true if the specified gestures are the same.

	Signature:	= gesture1 gesture2 => equal?

	Parameters:	
	gesture1 – An instance of type <gesture>.

	gesture2 – An instance of type <gesture>.

	Values:	
	equal? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if gesture1 and gesture2 are the same.

	See also:	
	gesture-spec-equal

	
add-child Generic function

	Adds a child to the specified sheet.

	Signature:	add-child sheet child #key index => sheet

	Parameters:	
	sheet – An instance of type <sheet>.

	child – An instance of type <sheet>.

	index – An instance of type false-or(<integer>).

	Values:	
	sheet – An instance of type <sheet>.

	Discussion:	Adds a child to sheet.

	See also:	
	remove-child

	replace-child

	
add-clipboard-data Generic function

	Adds data to a clipboard.

	Signature:	add-clipboard-data clipboard data => success?

	Parameters:	
	clipboard – An instance of <clipboard>.

	data – An instance of <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	success? – An instance of <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	This generic function adds data to clipboard. It returns #t if
data was successfully added to the clipboard.

	
add-clipboard-data-as Generic function

	Coerces data to a particular type and then adds it to a clipboard.

	Signature:	add-clipboard-data type clipboard data => success?

	Parameters:	
	type – An instance of type-union(<symbol>, <type>).

	clipboard – An instance of <clipboard>.

	data – An instance of <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	success? – An instance of <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	This generic function adds data to clipboard, first coercing it to
type. The argument type is an instance of type-union(<symbol>,
<type>). It returns #t if data was successfully added to the
clipboard.

	
$alt-key Constant

	A constant that represents the ALT key on the keyboard.

	Type:	<integer> [http://opendylan.org/books/drm/Number_Classes#integer]

	Value:	$meta-key

	Discussion:	A constant that represents the ALT key on the keyboard. This is set to
the same value as the META key, to deal with the case where the META key
is not present on the keyboard.

	See also:	
	$control-key

	$hyper-key

	$meta-key

	modifier-key-index

	modifier-key-index-name

	$modifier-keys

	$option-key

	$shift-key

	$super-key

	
beep Generic function

	

	Signature:	beep drawable => ()

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

	Discussion:	

	
boundary-event-kind Generic function

	Returns the kind of boundary event for the specified event.

	Signature:	boundary-event-kind event => symbol

	Parameters:	
	event – An instance of type <event>.

	Values:	
	symbol – An instance of type one-of(#"ancestor", #"virtual", #"inferior", #"nonlinear", #"nonlinear-virtual", #f).

	Discussion:	Returns the kind of boundary event for event. These correspond to the
detail members for X11 enter and exit events.

	See also:	
	<pointer-boundary-event>

	
button-index Function

	Returns the index for the specified pointer button.

	Signature:	button-index button => index

	Parameters:	
	button – An instance of type one-of(#"left", #"middle", #"right").

	Values:	
	index – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns the index for button, a button on the pointer device
connected to the computer (typically a mouse). The index returned is
either 0, 1, or 2, for the left, middle, or right buttons, respectively.

	See also:	
	button-index-name

	$pointer-buttons

	
button-index-name Function

	Returns the button on the pointer device represented by the specified
index.

	Signature:	button-index-name index => button

	Parameters:	
	index – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Values:	
	button – An instance of type one-of(#"left", #"middle", #"right").

	Discussion:	Returns the button on the pointer device connected to the computer
(typically a mouse) represented by index. The index is either 0, 1,
or 2, these values corresponding to the left, middle, or right buttons,
respectively.

	See also:	
	button-index

	$pointer-buttons

	
<button-press-event> Instantiable Sealed Class

	The class of events representing button presses.

	Superclasses:	<pointer-button-event>

	Discussion:	The class of events representing button presses. A instance of this
class is generated if a button press is detected, and a second button
press is not detected within the allowed interval for a double-click
event. Alternatively, if a double-click event has just been generated,
then an instance of this class is generated when a subsequent button
press is detected.

	See also:	
	<button-release-event>

	<double-click-event>

	
<button-release-event> Instantiable Sealed Class

	The class of events representing button releases.

	Superclasses:	<pointer-button-event>

	Discussion:	The class of events representing button releases. An instance of this
class is generated if the mouse button is released after a period of
being pressed, for example, at the end of a drag and drop maneuver.

	See also:	
	<button-press-event>

	
<caret> Abstract Instantiable Class

	The class of carets.

	Superclasses:	<object> [http://opendylan.org/books/drm/Object_Classes#object]

	Init-Keywords:	
	sheet – An instance of type false-or(<sheet>).

	x – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer]. Default value: 0.

	y – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer]. Default value: 0.

	width – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer]. Default value: 0.

	height – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer]. Default value: 0.

	Discussion:	The class of carets, or text cursors. A cursor can actually be any
instance of <symbol> or any instance of <image>.

The sheet: init-keyword specifies the sheet that the caret is
positioned in.

The x:, y:, width:, and height: init-keywords define the
position and size of the caret, with respect to the sheet that contains
it. The position of the caret is measured from the top left of the
sheet. All units are measured in pixels.

	Operations:	
	caret-position

	caret-sheet

	caret-size

	caret-visible?

	caret-visible?-setter

	display

	port

	set-caret-position

	See also:	
	caret-position

	caret-sheet

	caret-size

	caret-visible?

	<cursor>

	
caret-position Generic function

	Returns the position of the specified caret.

	Signature:	cursor-position caret => x y

	Parameters:	
	caret – An instance of type <caret>.

	Values:	
	x – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	y – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns the position of caret.

	See also:	
	caret-sheet

	caret-size

	
caret-sheet Generic function

	Returns the sheet that owns the specified caret.

	Signature:	cursor-sheet caret => sheet

	Parameters:	
	caret – An instance of type <caret>.

	Values:	
	sheet – An instance of type <sheet>.

	Discussion:	Returns the sheet that owns caret.

	See also:	
	caret-position

	caret-size

	
caret-size Generic function

	Returns the size of the specified caret.

	Signature:	cursor-size caret => width height

	Parameters:	
	caret – An instance of type <caret>.

	Values:	
	width – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	height – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns the size of caret.

	See also:	
	caret-position

	caret-sheet

	
caret-visible? Generic function

	Returns true if the specified caret is visible.

	Signature:	cursor-visible? caret => visible?

	Parameters:	
	caret – An instance of type <caret>.

	Values:	
	visible? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if caret is visible.

	See also:	
	<cursor>

	caret-visible?-setter

	
caret-visible?-setter Generic function

	Specifies whether or not the specified caret is visible.

	Signature:	cursor-visible?-setter visible? caret => boolean

	Parameters:	
	visible? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	caret – An instance of type <caret>.

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Specifies whether or not caret is visible.

	See also:	
	<cursor>

	caret-visible?

	
child-containing-position Generic function

	Returns the topmost child of the specified sheet that occupies a
specified position.

	Signature:	child-containing-position sheet x y => value

	Parameters:	
	sheet – An instance of type <sheet>.

	x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Values:	
	value – An instance of type false-or(<sheet>).

	Discussion:	Returns the topmost enabled direct child of sheet whose region
contains the position (x, y). The position is expressed in
the coordinate system used by sheet.

	See also:	
	children-overlapping-region

	do-children-containing-position

	
children-overlapping-region Generic function

	Returns any children of the specified sheet whose regions overlap a
specified region.

	Signature:	children-overlapping-region sheet region => sheets

	Parameters:	
	sheet – An instance of type <sheet>.

	region – An instance of type <region>.

	Values:	
	sheets – An instance of type limited(<sequence>, of: <sheet>).

	Discussion:	Returns the list of enabled direct children of sheet whose region
overlaps region.

	See also:	
	child-containing-position

	do-children-overlapping-region

	
choose-color Generic function

	Displays the built-in color dialog for the target platform.

	Signature:	choose-color #key frame owner title documentation exit-boxes name default => color

	Parameters:	
	frame – An instance of type <frame>. Default value: #f.

	owner – An instance of type <sheet>. Default value: #f.

	title – An instance of type <string> [http://opendylan.org/books/drm/Collection_Classes#string].

	documentation – An instance of type <string> [http://opendylan.org/books/drm/Collection_Classes#string].

	exit-boxes – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	name – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	default – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	color – An instance of type <color>

	Discussion:	Displays the built-in color dialog for the target platform, which allows
the user to choose a color from the standard palette for whatever
environment the application is running in.

[image: _images/sheets-3.png]
The standard Choose Color dialog

If the frame argument is specified, the top-level sheet of frame
becomes the owner of the dialog.

Alternatively, you can specify the owner directly using the owner
argument, which takes an instance of <sheet> as its value.

By default, both frame and owner are #f, meaning the dialog has
no owner. You should not specify both of these values.

If you wish, you can specify a title for the dialog; this is displayed
in the title bar of the frame containing the dialog.

	Example:	The following example illustrates how you can define a class of frame
that contains a button that displays the Choose Color dialog, using the
pre-built dialog classes for your target environment. The frame also
contains an ellipse whose color is set to the color chosen from the
dialog.

define frame <color-dialog-frame> (<simple-frame>)
 pane ellipse-pane (frame)
 make(<ellipse-pane>, foreground: $red);
 pane choose-color-button (frame)
 make(<menu-button>,
 label: "Choose Color...",
 documentation:
 "Example of standard 'choose color' dialog",
 activate-callback:
 method (button)
 let color = choose-color(owner: frame);
 color & change-ellipse-color(frame, color)
 end);
end frame <color-dialog-frame>;

	See also:	
	choose-directory

	choose-file

	notify-user

	
choose-directory Generic function

	Displays the built-in directory dialog for the target platform.

	Signature:	choose-directory #key frame owner title documentation exit-boxes name default => locator

	Parameters:	
	frame – An instance of type <frame>. Default value: #f.

	owner – An instance of type <sheet>. Default value: #f.

	title – An instance of type <string> [http://opendylan.org/books/drm/Collection_Classes#string].

	documentation – An instance of type <string> [http://opendylan.org/books/drm/Collection_Classes#string].

	exit-boxes – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	name – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	default – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	locator – An instance of type type-union(<string>, <locator>).

	Discussion:	Displays the built-in directory dialog for the target platform, which
allows the user to choose a directory from any of the local or networked
drives currently connected to the computer.

If the frame argument is specified, the top-level sheet of frame
becomes the owner of the dialog.

Alternatively, you can specify the owner directly using the owner
argument, which takes an instance of <sheet> as its value.

By default, both frame and owner are #f, meaning the dialog has
no owner. You should not specify both of these values.

If you wish, you can specify a title for the dialog; this is displayed
in the title bar of the frame containing the dialog.

	Example:	The following example illustrates how you can define a class of frame
that contains a button that displays the Choose Directory dialog, using
the pre-built dialog classes for your target environment.

define frame <directory-dialog-frame> (<simple-frame>)
 pane dir-file-button (frame)
 make(<menu-button>,
 label: "Choose directory ...",
 documentation:
 "Example of standard 'Choose Dir' dialog",
 activate-callback:
 method (button)
 let dir = choose-directory (owner: frame);
 if (dir)
 frame-status-message(frame) := format-to-string
 ("Chose directory %s", dir);
 end
 end);
 pane dir-layout (frame)
 vertically ()
 frame.dir-file-button;
 end;
 layout (frame) frame.dir-layout;
 keyword title: = "Choose directory example";
end frame <directory-dialog-frame>;

	See also:	
	choose-color

	choose-file

	notify-user

	
choose-file Generic function

	Displays the built-in file dialog for the target platform.

	Signature:	choose-file #key frame owner title documentation exit-boxes name default => locator

	Parameters:	
	frame – An instance of type <frame>. Default value: #f.

	owner – An instance of type <sheet>. Default value: #f.

	title – An instance of type <string> [http://opendylan.org/books/drm/Collection_Classes#string].

	documentation – An instance of type <string> [http://opendylan.org/books/drm/Collection_Classes#string].

	direction – An instance of type one-of(#"input", #"output"). Default value: #"input".

	filters – An instance of type limited(<sequence>, of: <sequence>).

	exit-boxes – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	name – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	default – An instance of type <string> [http://opendylan.org/books/drm/Collection_Classes#string].

	Values:	
	locator – An instance of type <string> [http://opendylan.org/books/drm/Collection_Classes#string].

	Discussion:	Displays the built-in file dialog for the target platform, which allows
the user to choose a file from any of the local or networked drives
currently connected to the computer. The function returns the name of
the file chosen by the user.

[image: _images/sheets-4.png]
Typical appearance of a choose-file dialog

If the frame argument is specified, the top-level sheet of frame
becomes the owner of the dialog.

Alternatively, you can specify the owner directly using the owner
argument, which takes an instance of <sheet> as its value.

By default, both frame and owner are #f, meaning the dialog has
no owner. You should not specify both of these values.

If you wish, you can specify a title for the dialog; this is displayed
in the title bar of the frame containing the dialog.

The direction argument is used to specify whether the file chosen is
being opened (that is, information in the file is loaded into the
application) or saved to (that is, information in the application is
being saved to a file on disk).

The filters argument lets you specify the file filters that should be
offered to the user in the dialog. These filters are typically available
in a drop-down list box, and let the user display only certain types of
file, such as text files. Each filter is described as a sequence of
strings:

	The first string in the sequence is a description of the files that
are displayed when this filter is chosen.

	Each subsequent string is a regular expression that describes which
files to display in the dialog.

For example, to specify a filter that lets the user choose to display
either text files, HTML files, or Dylan source files, the following
sequence should be passed to the filters argument:

#[#["Text files", "*.txt", "*.text"],
 #["HTML files", "*.htm", "*.html"],
 #["Dylan files", "*.dylan"]

Here, text files are defined as any file with a filename suffix of
.txt or .text, HTML files have filenames with a suffix of either
.htm or .html, and Dylan files have filenames with a suffix of
.dylan.

The default argument is used to specify a default filename to pass to
the dialog. This is a convenient way to suggest a file in which some
information may be saved, or a file to be loaded into an application.

	Example:	The following example illustrates how you can define a class of frame
that contains buttons to display both Open and Save As dialogs, using
the pre-built dialog classes for your target environment.

define frame <open-save-dialog-frame> (<simple-frame>)
 pane open-file-button (frame)
 make(<menu-button>,
 label: "Open...",
 documentation:
 "Example of standard file 'Open' dialog",
 activate-callback:
 method (button)
 let file = choose-file(direction: #"input",
 owner: frame);
 if (file)
 frame-status-message(frame) := format-to-string
 ("Opened file %s", file);
 end
 end);
 pane save-file-button (frame)
 make(<menu-button>,
 label: "Save As...",
 documentation:
 "Example of standard file 'Save As' dialog",
 activate-callback:
 method (button)
 let file = choose-file(direction: #"output",
 owner: frame);
 if (file)
 frame-status-message(frame) := format-to-string
 ("Saved file as %s", file);
 end
 end);
end frame <open-save-dialog-frame>;

	See also:	
	choose-color

	choose-directory

	notify-user

	
choose-from-dialog Generic function

	Prompt the user to choose from a collection of items, using a dialog
box.

	Signature:	choose-from-dialog items #key frame owner title value default-item label-key value-key selection-mode gadget-class gadget-options width height foreground background text-style => value success?

	Parameters:	
	items – An instance of type-union(<sequence>, <menu>).

	frame – An instance of type <frame>. Default value: #f.

	owner – An instance of type <sheet>. Default value: #f.

	title – An instance of type <string> [http://opendylan.org/books/drm/Collection_Classes#string].

	default-item – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	label-key – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function]. Default value: identity [http://opendylan.org/books/drm/Coercing_and_Copying_Objects#identity].

	value-key – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function]. Default value: identity [http://opendylan.org/books/drm/Coercing_and_Copying_Objects#identity].

	selection-mode – An instance of <symbol>. Default value: #"single".

	gadget-class – An instance of type <gadget>.

	gadget-options – An instance of type <sequence>.

	foreground – An instance of type <ink>.

	background – An instance of type <ink>.

	text-style – An instance of type <text-style>.

	Values:	
	value – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	success? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Prompt the user to choose from a collection of items, using a dialog
box. This generic function is similar to choose-from-menu.

The function returns the values chosen by the user, and a boolean value:
#t if a value was chosen, #f if nothing was chosen. Unlike
choose-from-menu, the user can choose several values if desired,
depending on the value of selection-mode, described below.

At its most basic, choose-from-dialog can be passed a simple sequence
of items, as follows:

choose-from-dialog(range(from: 1, to: 10));

However, any of a large number of keywords can be supplied to specify
more clearly the dialog that is created. A range of typical options can
be chosen: The frame keyword specifies a frame whose top level sheet
becomes the owner of the menu. Alternatively, you can specify this top
level sheet explicitly using owner. The title keyword lets you
choose a title for the dialog. By default, each of these values is #f
.

In addition, choose-from-dialog offers options similar to collection
gadgets, that can act upon the items specified. The default-item
keyword lets you specify an item that is returned by default if no value
is chosen explicitly (thereby ensuring that success? will always be
#t). You can also specify a value-key or label-key for the items
in the menu. The selection-mode keyword is used to make the dialog box
single-selection (the user can only choose one value) or
multiple-selection (the user can return any number of values). The
default value of selection-mode is #"single". By specifying
selection-mode: #"multiple", the user can choose several values from
the dialog box. The gadget-class keyword lets you specify which type
of collection gadget is displayed in the dialog box. This lets you, for
example, display a list of check boxes or radio boxes. Finally,
gadget-options let you specify a set of options to be applied to the
collection gadgets in the dialog box.

You can also configure the appearance of the menu itself. The width
and height keywords let you set the size of the menu. The foreground
and background keywords let you set the text color and the menu color
respectively. The text-style keyword lets you specify a font to
display the menu items.

	See also:	
	choose-from-menu

	
choose-from-menu Generic function

	Prompt the user to choose from a collection of items, using a pop-up
menu.

	Signature:	choose-from-menu items #key frame owner title value default-item label-key value-key width height foreground background text-style multiple-sets? => value success?

	Parameters:	
	items – An instance of type-union(<sequence>, <menu>).

	frame – An instance of type <frame>. Default value: #f.

	owner – An instance of type <sheet>. Default value: #f.

	title – An instance of type <string> [http://opendylan.org/books/drm/Collection_Classes#string]. Default value: #f.

	default-item – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	label-key – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function]. Default value: identity [http://opendylan.org/books/drm/Coercing_and_Copying_Objects#identity].

	value-key – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function]. Default value: identity [http://opendylan.org/books/drm/Coercing_and_Copying_Objects#identity].

	foreground – An instance of type <ink>.

	background – An instance of type <ink>.

	text-style – An instance of type <text-style>.

	Values:	
	value – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	success? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Prompt the user to choose from a collection of items, using a pop-up
menu.This generic function is similar to choose-from-dialog.

The function returns the value chosen by the user, and a boolean value:
#t if a value was chosen, #f if nothing was chosen.

At its most basic, choose-from-menu can be passed a simple sequence of
items, as follows:

choose-from-menu(#(1, 2, 3));

However, any of a large number of keywords can be supplied to specify
more clearly the menu that is created. A range of typical options can be
chosen: The frame keyword specifies a frame whose top level sheet
becomes the owner of the menu. Alternatively, you can specify this top
level sheet explicitly using owner. The title keyword lets you
choose a title for the dialog. By default, each of these values is #f
.

In addition, choose-from-menu offers options similar to collection
gadgets, that can act upon the items specified. The default-item
keyword lets you specify an item that is returned by default if no value
is chosen explicitly (thereby ensuring that success? will always be
#t). You can also specify a value-key or label-key for the items
in the menu.

Finally, you can configure the appearance of the menu itself. The
width and height keywords let you set the size of the menu. The
foreground and background keywords let you set the text color and
the menu color respectively. The text-style keyword lets you specify a
font to display the menu items.

	See also:	
	choose-from-dialog

	
choose-text-style Generic function

	Displays the built-in font dialog for the target platform, thereby
letting the user choose a font.

	Signature:	choose-text-style #key frame owner title => font

	Parameters:	
	frame – An instance of type <frame>. Default value: #f.

	owner – An instance of type <sheet>. Default value: #f.

	title – An instance of type <string> [http://opendylan.org/books/drm/Collection_Classes#string]. Default value: #f.

	Values:	
	font – An instance of <text-style>.

	Discussion:	Displays the built-in font dialog for the target platform, thereby
letting the user choose a font.

The frame keyword specifies a frame whose top-level sheet becomes the
owner of the menu. Alternatively, you can specify this top level sheet
explicitly using owner. The title keyword lets you choose a title
for the dialog. By default, each of these values is #f.

If you wish, you can specify a title for the dialog; this is an
instance of <string> [http://opendylan.org/books/drm/Collection_Classes#string] and is displayed in the title bar of the frame
containing the dialog. If you do not specify title, then DUIM uses
the default title for that type of dialog on the target platform.

	
clear-box Generic function

	Clears a box-shaped area in the specified drawable.

	Signature:	clear-box drawable left top right bottom => ()

	Signature:	clear-box* drawable region => ()

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

The following arguments are specific to clear-box.

	Parameters:	
	left – An instance of type <coordinate>.

	top – An instance of type <coordinate>.

	right – An instance of type <coordinate>.

	bottom – An instance of type <coordinate>.

The following argument is specific to clear-box*.

	Parameters:	
	region – An instance of type <region>.

	Discussion:	Clears a box-shaped area in the specified drawable, removing anything
that was drawn in that region.

The function clear-box* is identical to clear-box, except that it
passes composite objects, rather than separate coordinates, in its
arguments. You should be aware that using this function may lead to a
loss of performance.

	
clear-clipboard Generic function

	Clears the contents of a clipboard.

	Signature:	clear-clipboard clipboard => ()

	Parameters:	
	clipboard – An instance of <clipboard>.

	Discussion:	Clears the contents of clipboard, which represents the locked
clipboard.

	
<clipboard> Open Abstract Class

	The class of clipboard objects.

	Discussion:	The class of clipboard objects. An instance of this class is created when
a clipboard lock is created, and is used to hold the contents of the
Windows clipboard for the duration of the lock. You do not need to worry
about creating instances of <clipboard> yourself, since this is
handled automatically by the macro with-clipboard.

	See also:	
	add-clipboard-data

	add-clipboard-data-as

	clear-clipboard

	clipboard-data-available?

	clipboard-sheet

	clipboard-owner

	close-clipboard

	get-clipboard-data-as

	open-clipboard

	with-clipboard

	
clipboard-data-available? Generic function

	Returns false if there is any data of a particular type on a clipboard.

	Signature:	clipboard-data-available? type clipboard => available?

	Parameters:	
	type – An instance of type-union(<symbol>, <type>).

	clipboard – An instance of <clipboard>.

	Values:	
	available? – An instance of <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns #f if and only if there is any data of type type on the
clipboard. The argument type is an instance of type-union(<symbol>,
<type>).

	See also:	
	add-clipboard-data

	add-clipboard-data-as

	<clipboard>

	get-clipboard-data-as

	
clipboard-sheet Generic function

	Returns the sheet with the clipboard lock.

	Signature:	clipboard-sheet clipboard => sheet

	Parameters:	
	clipboard – An instance of <clipboard>.

	Values:	
	sheet – An instance of <sheet>.

	Discussion:	Returns the sheet with the clipboard lock.

	See also:	
	<clipboard>

	
clipboard-owner Generic function

	Returns the sheet that owns the current clipboard data.

	Signature:	clipboard-owner clipboard => owner

	Parameters:	
	clipboard – An instance of <clipboard>.

	Values:	
	owner – An instance of <sheet>.

	Discussion:	Returns the sheet that owns the current clipboard data.

	See also:	
	<clipboard>

	
close-clipboard Function

	Closes the current clipboard lock for a sheet on a port.

	Signature:	close-clipboard port sheet => ()

	Parameters:	
	port – An instance of <port>.

	sheet – An instance of <sheet>.

	Discussion:	Closes the current clipboard lock for sheet on port. A clipboard
lock needs to be closed safely after it the clipboard has been used, to
free the clipboard for further use.

You should not normally call close-clipboard yourself to close a
clipboard lock. Use the macro with-clipboard to create and free the
lock for you.

	See also:	
	<clipboard>

	with-clipboard

	
$control-key Constant

	A constant that represents the CONTROL key on the keyboard.

	Type:	<integer> [http://opendylan.org/books/drm/Number_Classes#integer]

	Value:	ash(1, %modifier_base + 1);

	Discussion:	A constant that represents the CONTROL key on the keyboard.

	See also:	
	$alt-key

	$hyper-key

	$meta-key

	modifier-key-index

	modifier-key-index-name

	$modifier-keys

	$option-key

	$shift-key

	$super-key

	
<cursor> Class

	The class of cursor objects.

Equivalent: type-union(<symbol>, <image>)

	Discussion:	The class of cursor objects. The cursor is the small image that is used
to display the location of the mouse pointer at any time. A cursor can
actually be any instance of <symbol> or any instance of
<image>.

	Operations:	
	pointer-cursor-setter

	set-caret-position

	sheet-pointer-cursor-setter

	See also:	
	<caret>

	cursor?

	
cursor? Generic function

	Returns true if the specified object is a cursor.

	Signature:	cursor? object => cursor?

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	cursor? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if object is a cursor. In practice, you can create a cursor
from any instance of <symbol> or <image>.

	See also:	
	<cursor>

	
default-port Function

	Returns the default port for the specified server.

	Signature:	default-port #key server-path => port

	Parameters:	
	server-path – An instance of type <vector> [http://opendylan.org/books/drm/Collection_Classes#vector]. Default value: #(#"local").

	port – An instance of type false-or(<port>).

	Discussion:	Returns the default port for server specified by server-path.

	See also:	
	default-port-setter

	destroy-port

	
default-port-setter Function

	Sets the default port.

	Signature:	default-port-setter port => port

	Parameters:	
	port – An instance of type <port>. Default value: #f.

	Values:	
	port – An instance of type <port>.

	Discussion:	Sets the default port.

	See also:	
	default-port

	destroy-port

	
destroy-port Generic function

	Destroys the specified port.

	Signature:	destroy-port port => ()

	Parameters:	
	port – An instance of type <port>.

	Discussion:	Destroys port.

	See also:	
	default-port

	default-port-setter

	
destroy-sheet Generic function

	Destroys the specified sheet.

	Signature:	destroy-sheet sheet => ()

	Parameters:	
	sheet – An instance of type <sheet>.

	Discussion:	Destroys sheet.

	
<device-event> Open Abstract Class

	The class of device events.

	Superclasses:	<sheet-event>

	Init-Keywords:	
	sheet – An instance of type <sheet>.

	modifier-state – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer]. Default value: 0.

	Discussion:	The class of device events.

The modifier-state: init-keyword is used to record the state of the
device at the time the event occurred.

	Operations:	
	event-modifier-state

	
<display> Open Abstract Class

	The class of displays.

	Superclasses:	<sheet>

	Init-Keywords:	
	orientation – An instance of type one-of(#"vertical", #"horizontal", #"default"). Default value: #"default".

	units – An instance of type one-of(#"device", #"mm", #"pixels"). Default value: #"device".

	Discussion:	The class of displays. An instance of <display> is an object that
represents a single display (or screen) on some display server. Any sheet
can be attached to an instance of <display>, and a display, and
all the sheets attached to it, are associated with a <port> that
is a connection to a display server.

The orientation: init-keyword is used to specify the orientation of a
display.

The units: init-keyword is used to specify the units in which height
and width measurements are made with respect to the display. The default
is whatever units are standard for the display device (usually pixels).

	Operations:	
	display

	display?

	display-depth

	display-height

	display-mm-height

	display-mm-width

	display-orientation

	display-pixel-height

	display-pixels-per-point

	display-pixel-width

	display-units

	display-width

	See also:	
	display

	display?

	display-depth

	display-height

	display-orientation

	display-units

	display-width

	<port>

	<sheet>

	
display Generic function

	Returns the display for the specified object.

	Signature:	display object => display

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	display – An instance of type false-or(<display>).

	Discussion:	Returns the display used to display object.

	See also:	
	<display>

	frame-manager

	port

	
display? Generic function

	Returns true if the specified object is a display.

	Signature:	display? object => display?

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	display? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if object is a display.

	See also:	
	<display>

	
display-depth Generic function

	Returns the color depth of the specified display.

	Signature:	display-depth display => depth

	Parameters:	
	display – An instance of type <display>.

	Values:	
	depth – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns the color depth of display. By default, the color depth of
any display is assumed to be 8.

	See also:	
	display-height

	display-orientation

	display-width

	
display-height Generic function

	Returns the height of the specified display.

	Signature:	display-height display #key units => height

	Parameters:	
	display – An instance of type <display>.

	units – An instance of one-of(#"device", #"mm", #"pixels"). Default value: #"device".

	Values:	
	height – An instance of type <number> [http://opendylan.org/books/drm/Number_Classes#number].

	Discussion:	Returns the height of display, in device-independent units. If
units is specified, then the value returned is converted into the
appropriate type of units.

	See also:	
	display-depth

	display-mm-height

	display-orientation

	display-pixel-height

	display-units

	display-width

	
display-mm-height Generic function

	Returns the height of the specified display in millimeters.

	Signature:	display-mm-height display => height

	Parameters:	
	display – An instance of type <display>.

	Values:	
	height – An instance of type <number> [http://opendylan.org/books/drm/Number_Classes#number].

	Discussion:	Returns the height of display in millimeters. This is equivalent to
calling display-height with the units argument set to #"mm".

	See also:	
	display-height

	display-mm-width

	display-pixel-height

	display-units

	
display-mm-width Generic function

	Returns the width of the specified display in millimeters.

	Signature:	display-mm-width display => width

	Parameters:	
	display – An instance of type <display>.

	Values:	
	width – An instance of type <number> [http://opendylan.org/books/drm/Number_Classes#number].

	Discussion:	Returns the width of display in millimeters. This is equivalent to
calling display-width with the units argument set to #"mm".

	See also:	
	display-mm-height

	display-pixel-width

	display-units

	display-width

	
display-orientation Generic function

	Returns the orientation of the specified display.

	Signature:	display-orientation display => orientation

	Parameters:	
	display – An instance of type <display>.

	Values:	
	orientation – An instance of type one-of(#"vertical", #"horizontal", #"default").

	Discussion:	Returns the orientation of display. Unless specified otherwise, the
orientation of any display is #"default".

	See also:	
	display-depth

	display-height

	display-width

	
display-pixel-height Generic function

	Returns the height of the specified display in pixels.

	Signature:	display-pixel-height display => height

	Parameters:	
	display – An instance of type <display>.

	Values:	
	height – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns the height of display in pixels. This is equivalent to calling
display-height with the units argument set to #"pixels".

	See also:	
	display-height

	display-mm-height

	display-pixel-width

	display-units

	
display-pixels-per-point Generic function

	Returns the number of pixels per point for the specified display.

	Signature:	display-pixels-per-point display => number

	Parameters:	
	display – An instance of type <display>.

	Values:	
	number – An instance of type <number> [http://opendylan.org/books/drm/Number_Classes#number].

	Discussion:	Returns the number of pixels per point for display.

	See also:	
	display-pixel-height

	display-pixel-width

	display-units

	
display-pixel-width Generic function

	Returns the width of the specified display in pixels.

	Signature:	display-pixel-width display => width

	Parameters:	
	display – An instance of type <display>.

	Values:	
	width – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns the height of display in pixels. This is equivalent to calling
display-width with the units argument set to #"pixels".

	See also:	
	display-mm-width

	display-pixel-height

	display-units

	display-width

	
display-units Generic function

	Returns the default units for the specified display.

	Signature:	display-units display => value

	Parameters:	
	display – An instance of type <display>.

	Values:	
	value – An instance of type one-of(#"device", #"pixels", #"mm").

	Discussion:	Returns the default units for display. These are the units in which
height and width measurements are made, both for the display, and for
any children of the display. Unless otherwise specified, the value
returned is #"default", so as to maintain a device-independent
measurement as far as possible.

	See also:	
	display-height

	display-width

	
display-width Generic function

	Returns the width of the specified display.

	Signature:	display-width display #key units => width

	Parameters:	
	display – An instance of type <display>.

	units – An instance of one-of(#"device", #"mm", #"pixels"). Default value: #"device".

	Values:	
	width – An instance of type <number> [http://opendylan.org/books/drm/Number_Classes#number].

	Discussion:	Returns the width of display, in device-independent units. If units
is specified, then the value returned is converted into the appropriate
type of units.

	See also:	
	display-depth

	display-height

	display-mm-width

	display-orientation

	display-pixel-width

	display-units

	
do-children-containing-position Generic function

	Invokes a function on any children that occupy a specified position in
the specified sheet.

	Signature:	do-children-containing-position function sheet x y => ()

	Parameters:	
	function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	sheet – An instance of type <sheet>.

	x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Discussion:	Invokes function on any children that occupy position (x, y)
in sheet. This is used by child-containing-position to
ascertain which children occupy the position. The function
child-containing-position then decides which of the children
returned is the topmost direct enabled child.

	See also:	
	child-containing-position

	
do-children-overlapping-region Generic function

	Invokes a function on any children of the specified sheet whose regions
overlap a specified region.

	Signature:	do-children-overlapping-region function sheet region => ()

	Parameters:	
	function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	sheet – An instance of type <sheet>.

	region – An instance of type <region>.

	Discussion:	Invokes function on any children of sheet whose regions overlap
region. This is used by children-overlapping-region to ascertain
which children overlap region.

	See also:	
	children-overlapping-region

	do-children-containing-position

	
do-displays Function

	Runs a function on all the displays attached to a given port.

	Signature:	do-displays function port => ()

	Parameters:	
	function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	port – An instance of type <port>.

	Discussion:	Runs a function on all the displays attached to a given port. By
default, the current port is used, unless port is specified.

	
do-frames Generic function

	Runs a function on all the frames managed by a given frame manager.

	Signature:	do-frames function #key port frame-manager => ()

	Parameters:	
	function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	port – An instance of type <port>.

	frame-manager – An instance of type <frame-manager>.

	Discussion:	Runs a function on all the frames managed by a given frame manager. By
default, the current frame manager on the current port is used, unless
port or frame-manager are specified.

	
do-ports Function

	Runs a function on all the current ports.

	Signature:	do-ports function => ()

	Parameters:	
	function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	Discussion:	Runs a function on all the current ports.

	
do-sheet-children Generic function

	Runs a function on all the immediate children of the specified sheet.

	Signature:	do-sheet-children function sheet => ()

	Parameters:	
	function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	sheet – An instance of type <sheet>.

	Discussion:	Runs function on all the immediate children of sheet. This function
calls sheet-children to find the children of sheet.

	See also:	
	sheet-children

	
do-sheet-tree Generic function

	Runs a function on all the children in the hierarchy of the specified
sheet.

	Signature:	do-sheet-tree function sheet => ()

	Parameters:	
	function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	sheet – An instance of type <sheet>.

	Discussion:	Runs a function on all the children in the hierarchy of the specified
sheet. The function is run on sheet, then on the children of sheet,
then on the children of the children of sheet, and so on.

	
<double-click-event> Instantiable Sealed Class

	The class of double-click events on the pointer device.

	Superclasses:	<button-press-event>

	Discussion:	The class of double-click events on the pointer device. An instance of
this class is generated when a button press is detected within a certain
(small) amount of time after a previous button press. If a double click
event is generated, the clock is reset, so that the next press generated
is an instance of <button-press-event>.

	See also:	
	<button-press-event>

	
do-with-drawing-options Generic function

	Runs some code on a drawable in a given drawing context.

	Signature:	do-with-drawing-options drawable function #key brush pen text-style clipping-region transform => #rest values

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

	function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	brush – An instance of type <brush>.

	pen – An instance of type <pen>.

	text-style – An instance of type <text-style>.

	clipping-region – An instance of type <region>.

	transform – An instance of type <transform>.

	Values:	
	values – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Discussion:	Runs some code on a drawable in a given drawing context. This function
is called by the macro with-drawing-options,
and you should define new methods on it for new classes of drawable.

The function passed to do-with-drawing-options is the result of
encapsulating the body passed to with-drawing-options as
a stand-alone method.

The values returned are the values that are returned from
with-drawing-options.

The various keywords specify a drawing context in which function is run.

	See also:	
	with-drawing-options

	
do-with-pointer-grabbed Generic function

	Runs some specified code, forwarding all pointer events to a sheet.

	Signature:	do-with-pointer-grabbed port sheet continuation #key => #rest values

	Parameters:	
	port – An instance of type <port>.

	sheet – An instance of type <sheet>.

	continuation – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	Values:	
	values – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Discussion:	Runs the code specified in continuation, forwarding all pointer
events to sheet, even if the pointer leaves the sheet-region of
sheet. The argument continuation is an instance of <function>.

This function is called by with-pointer-grabbed, and
continuation is actually the result of creating a stand-alone method
from the body of code passed to with-pointer-grabbed.

	See also:	
	with-pointer-grabbed

	
do-with-sheet-medium Generic function

	Runs a continuation function on a sheet.

	Signature:	do-with-sheet-medium sheet continuation => #rest values

	Parameters:	
	sheet – An instance of type <sheet>.

	continuation – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	Values:	
	values – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Discussion:	Runs a continuation function on a sheet.

	See also:	
	with-sheet-medium

	
do-with-text-style Generic function

	Runs some code on a drawable in the context of a given text style.

	Signature:	do-with-text-style drawable function text-style => ()

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

	function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	text-style – An instance of type <text-style>.

	Discussion:	Runs some code on a drawable in the context of a given text style.

	See also:	
	with-text-style

	
do-with-transform Generic function

	Returns the result of running a function in a transform defined on a
specified medium.

	Signature:	do-with-transform drawable function transform => #rest values

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

	function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	transform – An instance of type <transform>.

	Values:	
	values – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Discussion:	

Returns the result of running a function in a transform defined on
a specified medium. Methods on this function are called by
with-transform, which in turn is used by the similar macros
with-rotation, with-scaling, and
with-translation.

	See also:	
	with-transform

	
<event> Open Abstract Class

	The base class of all DUIM events.

	Superclasses:	<object> [http://opendylan.org/books/drm/Object_Classes#object]

	Init-Keywords:	
	timestamp – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer]. Default value: next-event-timestamp().

	Discussion:	The base class of all DUIM events.

The timestamp: init-keyword is used to give a unique identifier for
the event.

	Operations:	
	event?

	event-matches-gesture?

	handle-event

	queue-event

	See also:	
	<frame-event>

	<sheet-event>

	
event? Generic function

	Returns true if the specified object is an event.

	Signature:	event? object => event?

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	event? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if object is an instance of <event> or one of its
subclasses.

	See also:	
	<event>

	
event-button Generic function

	Returns an integer corresponding to the mouse button that was pressed or
released.

	Signature:	event-button event => integer

	Parameters:	
	event – An instance of type <event>.

	Values:	
	integer – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns an integer corresponding to the mouse button that was pressed or
released, which will be one of $left-button,
$middle-button, or $right-button.

Note

The function event-button records the button state at the time
that the event occurred, and hence can be different from
pointer-button-state.

	See also:	
	$left-button

	$middle-button

	<pointer-button-event>

	pointer-button-state

	$right-button

	
event-character Generic function

	Returns the character that was pressed on the keyboard.

	Signature:	event-character event => value

	Parameters:	
	event – An instance of type <event>.

	Values:	
	value – An instance of type false-or(<character>).

	Discussion:	Returns the character associated with the keyboard event, if there is
any.

	See also:	
	event-key-name

	<keyboard-event>

	
event-key-name Generic function

	Returns the name of the key that was pressed or released on the
keyboard.

	Signature:	event-key-name event => name

	Parameters:	
	event – An instance of type <event>.

	Values:	
	name – An instance of type <symbol>.

	Discussion:	Returns the name of the key that was pressed or released in a keyboard
event. This will be a symbol whose value is specific to the current
port.

	See also:	
	event-character

	<keyboard-event>

	
event-matches-gesture? Generic function

	Returns true if an event matches a defined gesture.

	Signature:	event-matches-gesture? event gesture-name => matches?

	Parameters:	
	event – An instance of type <event>.

	gesture-name – An instance of type type-union(<gesture>, <character>).

	Values:	
	matches? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if an event matches a defined gesture.

	
event-modifier-state Generic function

	Returns an integer value that encodes the state of all the modifier keys
on the keyboard.

	Signature:	event-modifier-state event => integer

	Parameters:	
	event – An instance of type <event>.

	Values:	
	integer – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns an integer value that encodes the state of all the modifier keys on
the keyboard. This is a mask consisting of the logior [http://opendylan.org/books/drm/Arithmetic_Operations#logior] of
$shift-key, $control-key, $meta-key,
$super-key, and $hyper-key.

	See also:	
	event-sheet

	gesture-modifier-state

	make-modifier-state

	port-modifier-state

	
event-pointer Generic function

	Returns the pointer object to which the specified event refers.

	Signature:	event-pointer event => pointer

	Parameters:	
	event – An instance of type <event>.

	Values:	
	pointer – An instance of type <pointer>.

	Discussion:	Returns the pointer object to which event refers.

	See also:	
	<pointer>

	event-x

	event-y

	
event-region Generic function

	Returns the region in the sheet that is affected by the specified event.

	Signature:	event-region event => region

	Parameters:	
	event – An instance of type <event>.

	Values:	
	region – An instance of type <region>.

	Discussion:	Returns the region of the sheet that is affected by event.

	See also:	
	event-x

	event-y

	<window-event>

	
event-sheet Generic function

	Returns the sheet associated with the specified event.

	Signature:	event-sheet event => sheet

	Parameters:	
	event – An instance of type <event>.

	Values:	
	sheet – An instance of type <sheet>.

	Discussion:	Returns the sheet associated with event.

	See also:	
	event-modifier-state

	
event-x Generic function

	Returns the x position of the pointer at the time the event occurred.

	Signature:	event-x event => x

	Parameters:	
	event – An instance of type <event>.

	Values:	
	x – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns the x position of the pointer at the time the event occurred, in
the coordinate system of the sheet that received the event.

	See also:	
	event-pointer

	event-region

	event-y

	
event-y Generic function

	Returns the y position of the pointer at the time the event occurred.

	Signature:	event-y event => y

	Parameters:	
	event – An instance of type <event>.

	Values:	
	y – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns the y position of the pointer at the time the event occurred, in
the coordinate system of the sheet that received the event.

	See also:	
	event-pointer

	event-region

	event-x

	
find-display Function

	Returns a suitable display for the specified port and server-path
criteria.

	Signature:	find-display #key server-path port orientation units => display

	Parameters:	
	server-path – An instance of type <symbol>. Default value: #(#"local").

	port – An instance of type <port>.

	orientation – An instance of type one-of(#"default"). Default value: #"default".

	units – An instance of type one-of(#"device", #"pixels", #"mm"). Default value: #"device".

	Values:	
	display – An instance of type <display>.

	Discussion:	Returns a suitable display for the specified port and server-path
criteria.

The orientation and units arguments can be used to specify the
orientation and display units that the returned display needs to use.

	See also:	
	find-port

	
find-frame-manager Function

	Returns a suitable frame manager for the specified criteria.

	Signature:	find-frame-manager #rest options #key port server-path class palette => framem

	Parameters:	
	options – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	port – An instance of type <port>.

	server-path – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	class – An instance of type <type>.

	palette – An instance of type <palette>.

	Values:	
	framem – An instance of type <frame-manager>.

	Discussion:	Returns a suitable frame manager for the specified criteria.

If necessary, you can specify a port, server-path, class, or
palette. If any of these are not specified, then the default value is
used in each case. The class argument specifies the class of frame
manager that should be returned.

	
find-port Function

	Returns a suitable port for the specified server-path.

	Signature:	find-port #rest initargs #key server-path => port

	Parameters:	
	initargs – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	server-path – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object]. Default value: *default-server-path*.

	Values:	
	port – An instance of type <port>.

	Discussion:	Returns a suitable port for the specified server-path.

	See also:	
	find-display

	
fixed-width-font? Generic function

	Returns true if the specified text style uses a fixed-width font.

	Signature:	fixed-width-font? text-style port #key character-set => fixed?

	Parameters:	
	text-style – An instance of type <text-style>.

	port – An instance of type <port>.

	character-set – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object]. Default value: $standard-character-set.

	Values:	
	fixed? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if text-style uses a fixed-width font.

	
font-ascent Generic function

	Returns the ascent of the font in the specified text style.

	Signature:	font-ascent text-style port #key character-set => ascent

	Parameters:	
	text-style – An instance of type <text-style>.

	port – An instance of type <port>.

	character-set – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object]. Default value: $standard-character-set.

	Values:	
	ascent – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Discussion:	Returns the ascent of the font in the text-style on port.

	See also:	
	font-descent

	font-height

	font-metrics

	font-width

	
font-descent Generic function

	Returns the descent of the font in the specified text style.

	Signature:	font-descent text-style port #key character-set => descent

	Parameters:	
	text-style – An instance of type <text-style>.

	port – An instance of type <port>.

	character-set – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	descent – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Discussion:	Returns the descent of the font in the text-style on port.

	See also:	
	font-ascent

	font-height

	font-metrics

	font-width

	
font-height Generic function

	Returns the height of the font in the specified text style.

	Signature:	font-height text-style port #key character-set => height

	Parameters:	
	text-style – An instance of type <text-style>.

	port – An instance of type <port>.

	character-set – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	height – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Discussion:	Returns the height of the font in the text-style on port.

	See also:	
	font-ascent

	font-descent

	font-metrics

	font-width

	
font-metrics Generic function

	Returns the metrics of the font in the specified text style.

	Signature:	font-metrics text-style port #key character-set => font width height ascent descent

	Parameters:	
	text-style – An instance of type <text-style>.

	port – An instance of type <port>.

	character-set – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	font – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	width – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	height – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	ascent – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	descent – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Discussion:	Returns the metrics of the font in the text-style on port.

	See also:	
	font-ascent

	font-descent

	font-height

	font-width

	
font-width Generic function

	Returns the width of the font in the specified text style.

	Signature:	font-width text-style port #key character-set => width

	Parameters:	
	text-style – An instance of type <text-style>.

	port – An instance of type <port>.

	character-set – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	width – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Discussion:	Returns the with of the font in the text-style on port.

	See also:	
	font-ascent

	font-descent

	font-height

	font-metrics

	
force-display Generic function

	Forces the specified drawable object to be displayed.

	Signature:	force-display drawable => ()

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

	Discussion:	Forces drawable to be displayed.

	
<frame-event> Open Abstract Class

	The class of events that occur in frames.

	Superclasses:	<event>

	Parameter frame:

		An instance of type <frame>. Required.

	Discussion:	The class of events that occur in frames. The frame: init-keyword
specified the frame in which the event occurs.

	See also:	
	<frame-created-event>

	<frame-destroyed-event>

	<frame-exited-event>

	<frame-exit-event>

	<frame-mapped-event>

	<frame-unmapped-event>

	
<frame-manager> Open Abstract Class

	The class of frame managers.

	Superclasses:	<object> [http://opendylan.org/books/drm/Object_Classes#object]

	Discussion:	The class of frame managers.Frame managers control the realization of the look and feel of a frame.
The frame manager interprets the specification of the application frame
in the context of the available window system facilities, taking into
account preferences expressed by the user.

In addition, the frame manager takes care of attaching the pane
hierarchy of an application frame to an appropriate place in a window
hierarchy.

Thus, the frame manager decides the following:

	What concrete gadget to create for an abstract gadget.

	How to layout the various parts of a frame, such as its menu, tool,
and status bars.

	How to lay out dialogs and their exit buttons.

	How much spacing to use in various conventional layouts.

In addition, a frame manager maps dialog functions such as
choose-file to their appropriate native dialogs.

	Operations:	The following operations are exported from the DUIM-Sheets module.
	display

	frame-manager?

	frame-manager-frames

	frame-manager-palette

	frame-manager-palette-setter

	port

The following operations are exported from the DUIM-Frames module.

	clear-progress-note

	display-progress-note

	make-menus-from-command-table

The following operation is exported from the DUIM-DCs module.

	find-color

	See also:	
	frame-manager

	frame-manager?

	
frame-manager Generic function

	Returns the frame manager for the specified object.

	Signature:	frame-manager object => value

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	value – An instance of type false-or(<frame-manager>).

	Discussion:	Returns the frame manager used to control the look and feel of the
display of object.

	See also:	
	display

	<frame-manager>

	frame-manager?

	port

	
frame-manager? Generic function

	Returns true if the specified object is a frame manager.

	Signature:	frame-manager? object => framem?

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	framem? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if object is a frame manager.

	See also:	
	<frame-manager>

	frame-manager

	
frame-manager-frames Generic function

	Returns the frames managed by the specified frame manager.

	Signature:	frame-manager-frames framem => frames

	Parameters:	
	framem – An instance of type <frame-manager>.

	frames – An instance of type limited(<sequence>, of: <frame>).

	Discussion:	Returns the frames managed by framem.

	
frame-manager-palette Generic function

	Returns the palette used by the specified frame manager.

	Signature:	frame-manager-palette framem => palette

	Parameters:	
	framem – An instance of type <frame-manager>.

	Values:	
	palette – An instance of type <palette>.

	Discussion:	Returns the palette used by framem.

	See also:	
	frame-manager-palette-setter

	
frame-manager-palette-setter Generic function

	Sets the palette used by the specified frame manager.

	Signature:	frame-manager-palette-setter palette framem => palette

	Parameters:	
	palette – An instance of type <palette>.

	framem – An instance of type <frame-manager>.

	Values:	
	palette – An instance of type <palette>.

	Discussion:	Sets the palette used by framem.

	See also:	
	frame-manager-palette

	
<gesture> Abstract Instantiable Class

	The base class of all gestures.

	Superclasses:	<object> [http://opendylan.org/books/drm/Object_Classes#object]

	Init-Keywords:	
	keysym – An instance of type <symbol>. Required.

	button – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer]. Required.

	modifier-state – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer]. Required.

	modifiers – An instance of type <sequence>.

	Discussion:	The base class of all gestures.

	Operations:	
	add-command

	add-command-table-menu-item

	event-matches-gesture?

	gadget-accelerator-setter

	gesture-modifier-state

	gesture-spec-equal

	See also:	
	<keyboard-gesture>

	<pointer-gesture>

	
gesture-button Generic function

	Returns the button associated with the specified gesture.

	Signature:	gesture-button pointer-gesture => button

	Parameters:	
	pointer-gesture – An instance of type <pointer-gesture>.

	Values:	
	button – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns the button associated with pointer-gesture.

	See also:	
	<pointer-gesture>

	
gesture-keysym Generic function

	Returns the keysym associated with the specified gesture.

	Signature:	gesture-keysym keyboard-gesture => keysym

	Parameters:	
	keyboard-gesture – An instance of type <keyboard-gesture>.

	Values:	
	keysym – An instance of type <symbol>.

	Discussion:	Returns the keysym associated with keyboard-gesture.

	See also:	
	<keyboard-gesture>

	
gesture-modifier-state Generic function

	Returns the modifier-state associated with the specified gesture.

	Signature:	gesture-modifier-state gesture => modifier-state

	Parameters:	
	gesture – An instance of type <gesture>.

	Values:	
	modifier-state – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns the modifier-state associated with gesture.

	See also:	
	event-modifier-state

	<keyboard-gesture>

	make-modifier-state

	port-modifier-state

	
gesture-spec-equal Function

	Returns true if the two specified gestures are equivalent.

	Signature:	gesture-spec-equal gesture1 gesture2 => equal?

	Parameters:	
	gesture1 – An instance of type <gesture>.

	gesture2 – An instance of type <gesture>.

	Values:	
	equal? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if gesture1 and gesture2 are equivalent.

	See also:	
	=

	
get-clipboard-data-as Generic function

	Returns data of a given type from a clipboard.

	Signature:	get-clipboard-data-as type clipboard => data

	Parameters:	
	type – An instance of type-union(<symbol>, <type>).

	clipboard – An instance of <clipboard>.

	Values:	
	data – Instances of <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Discussion:	This generic function returns data of type from the clipboard. The
argument type is an instance of type-union(<symbol>, <type>).

	See also:	
	add-clipboard-data

	add-clipboard-data-as

	<clipboard>

	clipboard-data-available?

	
get-default-background Generic function

	Returns the default background for the specified sheet.

	Signature:	get-default-background port sheet #key background => background

	Parameters:	
	port – An instance of type <port>.

	sheet – An instance of type <sheet>.

	background – An instance of type <ink>.

	Values:	
	background – An instance of type <ink>.

	Discussion:	Returns the default background for sheet on port.

If background is specified, then this is used instead of the default.

	See also:	
	get-default-foreground

	get-default-text-style

	
get-default-foreground Generic function

	Returns the default foreground for the specified sheet.

	Signature:	get-default-foreground port sheet #key foreground => foreground

	Parameters:	
	port – An instance of type <port>.

	sheet – An instance of type <sheet>.

	foreground – An instance of type <ink>.

	Values:	
	foreground – An instance of type <ink>.

	Discussion:	Returns the default foreground for sheet on port.

If foreground is specified, then this is used instead of the default.

	See also:	
	get-default-background

	get-default-text-style

	
get-default-text-style Generic function

	Returns the default text style for the specified sheet.

	Signature:	get-default-text-style port sheet #key text-style => text-style

	Parameters:	
	port – An instance of type <port>.

	sheet – An instance of type <sheet>.

	text-style – An instance of type <text-style>.

	Values:	
	text-style – An instance of type <text-style>.

	Discussion:	Returns the default text style for sheet on port.

If text-style is specified, then this is used instead of the default.

	See also:	
	get-default-background

	get-default-foreground

	
handle-event Generic function

	Implements any defined policies of the specified sheet with respect to
the specified event.

	Signature:	handle-event sheet event => ()

	Parameters:	
	sheet – An instance of type <sheet>.

	event – An instance of type <event>.

	Discussion:	Implements any defined policies of sheet with respect to event.
Methods defined on this generic are called by DUIM to do the handling.

For example, to highlight a sheet in response to an event that informs
the sheet when the pointer has entered the region it occupies, there
should be a method to carry out the policy that specializes the
appropriate sheet and event classes.

DUIM itself implements no semantically meaningful handle-event
methods; It is the responsibility of any application to implement all of
its own handle-event methods. It is also the responsibility of the
application to decide the protocol and relationship between all of these
methods.

Take care when adding next-method() calls in any handle-event
methods that you write. Because DUIM itself supplies no built-in
methods, you must ensure that you have supplied a valid method yourself.
For each event class you are handling, you should decide whether a call
to next-method is actually required.

	See also:	
	handle-repaint

	queue-event

	
handle-repaint Generic function

	Implements region repainting for a given sheet class.

	Signature:	handle-repaint sheet medium region => ()

	Parameters:	
	sheet – An instance of type <sheet>.

	medium – An instance of type <medium>.

	region – An instance of type <region>.

	Discussion:	Implements region repainting for a given sheet class. Methods on this
generic are called by DUIM in an application thread in order to handle
repainting a given part of the screen. By calling available methods, it
repaints the region of the sheet on medium.

DUIM itself implements no semantically meaningful handle-repaint
methods; It is the responsibility of any application to implement all of
its own handle-repaint methods. It is also the responsibility of the
application to decide the protocol and relationship between all of these
methods.

Take care when adding next-method() calls in any handle-repaint
methods that you write. Because DUIM itself supplies no built-in
methods, you must ensure that you have supplied a valid method yourself.
For each sheet class you are handling, you should decide whether a call
to next-method is actually required.

The sheet on medium is repainted and region is the region to
repaint.

	See also:	
	<drawing-pane>

	pane-display-function

	queue-repaint

	repaint-sheet

	<simple-pane>

	<window-repaint-event>

	
$hyper-key Constant

	A constant that represents the HYPER key on the keyboard.

	Type:	<integer> [http://opendylan.org/books/drm/Number_Classes#integer]

	Value:	ash(1, %modifier_base + 4);

	Discussion:	A constant that represents the HYPER key on the keyboard.

	See also:	
	$alt-key

	$control-key

	$meta-key

	modifier-key-index

	modifier-key-index-name

	$modifier-keys

	$option-key

	$shift-key

	$super-key

	
<keyboard-event> Open Abstract Class

	The base class of all keyboard events.

	Superclasses:	<device-event>

	Init-Keywords:	
	key-name – An instance of type false-or(<symbol>). Default value: #f.

	character – An instance of type false-or(<character>). Default value: #f.

	Discussion:	The base class of all keyboard events.

The key-name: init-keyword represents the name of the key on the
keyboard that was pressed.

The character: init-keyword represents the keyboard character that was
pressed for characters in the standard character set.

	Operations:	
	event-character

	event-key-name

	event-matches-gesture?

	See also:	
	event-character

	event-key-name

	<key-press-event>

	<key-release-event>

	
<keyboard-gesture> Instantiable Sealed Class

	The base class of all keyboard gestures.

	Superclasses:	<gesture>

	Init-Keywords:	
	keysym – An instance of type <symbol>.

	modifier-state – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	The base class of all keyboard gestures.

The keysym: init-keyword represents the keysym for the gesture, and
the modifier-state: init-keyword represents its modifier state.

	Operations:	
	gesture-keysym

	See also:	
	gesture-keysym

	gesture-modifier-state

	
<key-press-event> Instantiable Sealed Class

	The class of events passed when a key is pressed.

	Superclasses:	<keyboard-event>

	Discussion:	The class of events passed when a key is pressed.

	Operations:	

	See also:	
	<keyboard-event>

	<key-release-event>

	
<key-release-event> Instantiable Sealed Class

	The class of events passed when a key is released.

	Superclasses:	<keyboard-event>

	Discussion:	The class of events passed when a key is released.

	Operations:	

	See also:	
	<keyboard-event>

	<key-press-event>

	
$left-button Constant

	
A constant that represents the left button on the attached pointing
device.

	Type:	<integer> [http://opendylan.org/books/drm/Number_Classes#integer]

	Value:	ash(1, %button_base + 0)

	Discussion:	A constant that represents the left button on the attached pointing
device.

	See also:	
	$middle-button

	$pointer-buttons

	$right-button

	
lower-sheet Generic function

	Lowers the specified sheet to the bottom of the current hierarchy of
sheets.

	Signature:	lower-sheet sheet => ()

	Parameters:	
	sheet – An instance of type <sheet>.

	Discussion:	Lowers sheet to the bottom of the current hierarchy of sheets.

	See also:	
	lower-frame

	raise-frame

	raise-sheet

	
make-frame-manager Generic function

	Returns an instance of <frame-manager> on the specified port.

	Signature:	make-frame-manager port #key palette => framem

	Parameters:	
	port – An instance of type <port>.

	palette – An instance of type <palette>.

	framem – An instance of type <frame-manager>.

	Discussion:	Returns an instance of <frame-manager> on port. If specified,
the palette described by palette is used.

	See also:	
	<frame-manager>

	
make-modifier-state Function

	Returns a modifier state for the specified modifiers.

	Signature:	make-modifier-state #rest modifiers => integer

	Parameters:	
	modifiers – An instance of type limited(<sequence>, of: <integer>).

	Values:	
	integer – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns a modifier state for modifiers.

	See also:	
	event-modifier-state

	gesture-modifier-state

	port-modifier-state

	
make-pane Generic function

	Selects and returns an instance of a suitable class of pane for the
supplied options.

	Signature:	make-pane pane-class #rest pane-options #key frame-manager => sheet

	Parameters:	
	pane-class – An instance of type <class>.

	pane-options – Instances of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	frame-manager – An instance of type <frame-manager>.

	Values:	
	sheet – An instance of type <sheet>.

	Discussion:	Selects a class that implements the behavior of pane-class and
constructs a pane of that class.

	
<medium> Open Abstract Instantiable Class

	The class of all mediums.

	Superclasses:	<object> [http://opendylan.org/books/drm/Object_Classes#object]

	Discussion:	The class of all mediums.Mediums have the following elements associated with them:

	A drawing plane, to which text and lines may be drawn

	A foreground color, which describes the default color of anything
drawn on the drawing plane

	A background color, which describes the background color of the
drawing plane

	A transformation which describes the position of the drawing plane
relative to the sheet which is its parent

	A clipping region, on which any editing operations (such as cutting,
copying, or pasting) will have effect.

	A line style that describes the appearance of any lines drawn on the
drawing plane

	A text style that describes the appearance of any text written to the
drawing plane

	Operations:	The following operations are exported from the DUIM-Sheets module.
	beep

	clear-box

	display

	do-with-drawing-options

	do-with-text-style

	do-with-transform

	force-display

	handle-repaint

	medium?

	medium-background

	medium-background-setter

	medium-brush

	medium-brush-setter

	medium-clipping-region

	medium-clipping-region-setter

	medium-default-text-style

	medium-default-text-style-setter

	medium-drawable

	medium-drawable-setter

	medium-foreground

	medium-foreground-setter

	medium-merged-text-style

	medium-pen

	medium-pen-setter

	medium-pixmap

	medium-pixmap-setter

	medium-sheet

	medium-text-style

	medium-text-style-setter

	medium-transform

	medium-transform-setter

	port

	synchronize-display

	text-size

The following operations are exported from the DUIM-Graphics module.

	copy-area

	copy-from-pixmap

	copy-to-pixmap

	do-with-output-to-pixmap

	draw-bezier-curve

	draw-image

	make-pixmap

The following operations are exported from the DUIM-Extended-Geometry
module.

	draw-design

	See also:	
	medium?

	<pixmap-medium>

	
medium? Generic function

	Returns true if the specified object is a medium.

	Signature:	medium? object => medium?

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	medium? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if object is a medium.

	See also:	
	<medium>

	sheet?

	
medium-background Generic function

	Returns the background for the specified medium.

	Signature:	medium-background medium => ink

	Parameters:	
	medium – An instance of type <medium>.

	Values:	
	ink – An instance of type <ink>.

	Discussion:	Returns the background for medium.

	See also:	
	medium-background-setter

	medium-foreground

	
medium-background-setter Generic function

	Sets the background for the specified medium.

	Signature:	medium-background-setter background medium => background

	Parameters:	
	background – An instance of type <ink>.

	medium – An instance of type <medium>.

	Values:	
	background – An instance of type <ink>.

	Discussion:	Sets the background for medium.

	See also:	
	medium-background

	medium-foreground-setter

	
medium-brush Generic function

	Returns the brush for the specified medium.

	Signature:	medium-brush medium => brush

	Parameters:	
	medium – An instance of type <medium>.

	Values:	
	brush – An instance of type <brush>.

	Discussion:	Returns the brush for medium. This brush is used by all subsequent
painting operations on medium.

	See also:	
	medium-brush-setter

	medium-pen

	
medium-brush-setter Generic function

	Sets the brush for the specified medium.

	Signature:	medium-brush-setter brush medium => brush

	Parameters:	
	brush – An instance of type <brush>.

	medium – An instance of type <medium>.

	Values:	
	brush – An instance of type <brush>.

	Discussion:	Sets the brush for medium. This brush is used by all subsequent
painting operations on medium.

	See also:	
	medium-brush

	medium-pen-setter

	
medium-clipping-region Generic function

	Returns the clipping region for the specified medium.

	Signature:	medium-clipping-region medium => region

	Parameters:	
	medium – An instance of type <medium>.

	Values:	
	region – An instance of type <region>.

	Discussion:	Returns the clipping region for medium.

	See also:	
	medium-clipping-region-setter

	
medium-clipping-region-setter Generic function

	Sets the clipping region for the specified medium.

	Signature:	medium-clipping-region-setter region medium => region

	Parameters:	
	region – An instance of type <region>.

	medium – An instance of type <medium>.

	Values:	
	region – An instance of type <region>.

	Discussion:	Sets the clipping region for medium.

	See also:	
	medium-clipping-region

	
medium-default-text-style Generic function

	Returns the default text style for the specified medium.

	Signature:	medium-default-text-style medium => text-style

	Parameters:	
	medium – An instance of type <medium>.

	Values:	
	text-style – An instance of type <text-style>.

	Discussion:	Returns the default text style for medium. This style is used for any
subsequent text that is written to medium.

	See also:	
	medium-default-text-style-setter

	medium-merged-text-style

	medium-text-style

	
medium-default-text-style-setter Generic function

	Sets the default text style for the specified medium.

	Signature:	medium-default-text-style-setter text-style medium => text-style

	Parameters:	
	text-style – An instance of type <text-style>.

	medium – An instance of type <medium>.

	Values:	
	text-style – An instance of type <text-style>.

	Discussion:	Sets the default text style for medium. This style is used for any
subsequent text that is written to medium.

	See also:	
	medium-default-text-style

	medium-text-style-setter

	
medium-drawable Generic function

	Returns the drawable for the specified medium.

	Signature:	medium-drawable medium => drawable

	Parameters:	
	medium – An instance of type <medium>.

	Values:	
	drawable – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Discussion:	Returns the drawable for medium.

	See also:	
	medium-drawable-setter

	
medium-drawable-setter Generic function

	Sets the drawable for the specified medium.

	Signature:	medium-drawable-setter drawable medium => object

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

	medium – An instance of type <medium>.

	Values:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Discussion:	Sets the drawable for medium.

	See also:	
	medium-drawable

	
medium-foreground Generic function

	Returns the foreground of the specified medium.

	Signature:	medium-foreground medium => ink

	Parameters:	
	medium – An instance of type <medium>.

	Values:	
	ink – An instance of type <ink>.

	Discussion:	Returns the foreground of medium.

	See also:	
	medium-background

	medium-foreground-setter

	
medium-foreground-setter Generic function

	Sets the foreground of the specified medium.

	Signature:	medium-foreground-setter foreground medium => foreground

	Parameters:	
	foreground – An instance of type <ink>.

	medium – An instance of type <medium>.

	Values:	
	foreground – An instance of type <ink>.

	Discussion:	Sets the foreground of medium.

	See also:	
	medium-background-setter

	medium-foreground

	
medium-merged-text-style Generic function

	Returns the merged text style of the specified medium.

	Signature:	medium-merged-text-style medium => text-style

	Parameters:	
	medium – An instance of type <medium>.

	Values:	
	text-style – An instance of type <text-style>.

	Discussion:	Returns the merged text style of medium.

	See also:	
	medium-default-text-style

	medium-text-style

	
medium-pen Generic function

	Returns the pen for the specified medium.

	Signature:	medium-pen medium => pen

	Parameters:	
	medium – An instance of type <medium>.

	Values:	
	pen – An instance of type <pen>.

	Discussion:	Returns the pen for medium. This brush is used by all subsequent
drawing operations on medium.

	See also:	
	medium-brush

	medium-pen-setter

	
medium-pen-setter Generic function

	Sets the pen for the specified medium.

	Signature:	medium-pen-setter pen medium => pen

	Parameters:	
	pen – An instance of type <pen>.

	medium – An instance of type <medium>.

	Values:	
	pen – An instance of type <pen>.

	Discussion:	Sets the pen for medium. This brush is used by all subsequent drawing
operations on medium.

	See also:	
	medium-brush-setter

	medium-pen

	
medium-pixmap Generic function

	Returns the pixmap for the specified medium.

	Signature:	medium-pixmap medium => value

	Parameters:	
	medium – An instance of type <medium>.

	Values:	
	value – An instance of type false-or(<pixmap>).

	Discussion:	Returns the pixmap for medium.This pixmap is used by all subsequent
pixmap operations on medium.

	See also:	
	medium-pixmap-setter

	
medium-pixmap-setter Generic function

	Sets the pixmap for the specified medium.

	Signature:	medium-pixmap-setter pixmap medium => value

	Parameters:	
	pixmap – An instance of type <pixmap>.

	medium – An instance of type <medium>.

	Values:	
	value – An instance of type false-or(<pixmap>).

	Discussion:	Returns the pixmap for medium.This pixmap is used by all subsequent
pixmap operations on medium.

	See also:	
	medium-pixmap

	
medium-sheet Generic function

	Returns the sheet for the specified medium.

	Signature:	medium-sheet medium => sheet

	Parameters:	
	medium – An instance of type <medium>.

	Values:	
	sheet – An instance of type false-or(<sheet>).

	Discussion:	Returns the sheet for medium, if there is one.

	
medium-text-style Generic function

	Returns the text style for the specified medium.

	Signature:	medium-text-style medium => text-style

	Parameters:	
	medium – An instance of type <medium>.

	Values:	
	text-style – An instance of type <text-style>.

	Discussion:	Returns the text style for medium.

	See also:	
	medium-default-text-style

	medium-merged-text-style

	medium-text-style-setter

	
medium-text-style-setter Generic function

	Sets the text style for the specified medium.

	Signature:	medium-text-style-setter text-style medium => text-style

	Parameters:	
	text-style – An instance of type <text-style>.

	medium – An instance of type <medium>.

	Values:	
	text-style – An instance of type <text-style>.

	Discussion:	Sets the text style for medium.

	See also:	
	medium-default-text-style-setter

	medium-text-style

	
medium-transform Generic function

	Returns the transform for the specified medium.

	Signature:	medium-transform medium => transform

	Parameters:	
	medium – An instance of type <medium>.

	Values:	
	transform – An instance of type <transform>.

	Discussion:	Returns the transform for medium.

	See also:	
	medium-transform-setter

	sheet-transform

	
medium-transform-setter Generic function

	Sets the transform for the specified medium.

	Signature:	medium-transform-setter transform medium => transform

	Parameters:	
	transform – An instance of type <transform>.

	medium – An instance of type <medium>.

	Values:	
	transform – An instance of type <transform>.

	Discussion:	Sets the transform for medium.

	See also:	
	medium-transform

	sheet-transform-setter

	
$meta-key Constant

	A constant that represents the META key on the keyboard.

	Type:	<integer> [http://opendylan.org/books/drm/Number_Classes#integer]

	Value:	ash(1, %modifier_base + 2);

	Discussion:	A constant that represents the META key on the keyboard, if it exists.
To deal with the case where there is no META key, the value of the
constant $alt-key is bound to this constant.

	See also:	
	$alt-key

	$control-key

	$hyper-key

	modifier-key-index

	modifier-key-index-name

	$modifier-keys

	$option-key

	$shift-key

	$super-key

	
$middle-button Constant

	A constant that represents the middle button on the attached pointing
device.

	Type:	<integer> [http://opendylan.org/books/drm/Number_Classes#integer]

	Value:	ash(1, %button_base + 1)

	Discussion:	A constant that represents the middle button on the attached pointing
device.

	See also:	
	$left-button

	$pointer-buttons

	$right-button

	
modifier-key-index Function

	Returns the index number of the specified modifier key.

	Signature:	modifier-key-index key-name => index

	Parameters:	
	key-name – An instance of type <symbol>.

	Values:	
	index – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns the index number of the specified modifier key. The key-name
specified may be any of the elements of $modifier-keys

The returned index value is either 0, 1, 2, 3, or 4.

	See also:	
	$alt-key

	$control-key

	$hyper-key

	$meta-key

	modifier-key-index-name

	$modifier-keys

	$option-key

	$shift-key

	$super-key

	
modifier-key-index-name Function

	Returns the key name of the specified modifier key index.

	Signature:	modifier-key-index-name index => key-name

	Parameters:	
	index – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Values:	
	key-name – An instance of type <symbol>.

	Discussion:	Returns the key name of the specified modifier key index. The index
specified is either 0, 1, 2, 3, or 4.

The key-name returned may be any of the elements of
$modifier-keys

	See also:	
	$alt-key

	$control-key

	$hyper-key

	$meta-key

	modifier-key-index

	$modifier-keys

	$option-key

	$shift-key

	$super-key

	
$modifier-keys Constant

	The default list of keys on the keyboard that are used as modifiers.

	Type:	<sequence>

	Value:	#[#”shift”, #”control”, #”meta”, #”super”, #”hyper”]

	Discussion:	The default list of keys on the keyboard that are used as modifiers for
keyboard accelerators and mnemonics.

	See also:	
	$alt-key

	$control-key

	$hyper-key

	$meta-key

	modifier-key-index

	modifier-key-index-name

	$option-key

	$shift-key

	$super-key

	
notify-user Generic function

	Creates and displays an alert dialog box with the specified criteria.

	Signature:	notify-user message-string #key frame owner title documentation exit-boxes name style foreground background text-style => boolean

	Parameters:	
	message-string – An instance of type <string> [http://opendylan.org/books/drm/Collection_Classes#string].

	frame – An instance of type <frame>. Default value: current-frame ().

	owner – An instance of type <sheet>.

	title – An instance of type <string> [http://opendylan.org/books/drm/Collection_Classes#string].

	documentation – An instance of type false-or(<string>). Default value: #f.

	exit-boxes – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	name – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	style – An instance of type one-of(#"information", #"question", #"warning", #"error", #"serious-error", #"fatal-error").

	foreground – An instance of type false-or(<ink>). Default value: #f.

	background – An instance of type false-or(<ink>). Default value: #f.

	text-style – An instance of type false-or(<text-style>). Default value: #f.

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Creates and displays an alert dialog box with the specified criteria.
Use this function as a way of easily displaying simple messages to the
user.

[image: _images/sheets-5.png]
Simple output from notify-user

The message-string is the message that is displayed in the dialog. The
arguments frame, owner, title, and documentation let you specify
different attributes for the dialog in the same way as they can be
specified for any other frame or dialog.

The exit-boxes argument lets you specify the buttons that are
available in the dialog. If not supplied, then a single OK button is
used by default, unless the style of the dialog is set to
#"question", in which case, two buttons are created, to allow the
user to respond “yes” or “no”.

The style argument lets you specify the style of dialog that is
produced. The different styles available reflect the Motif specification
for dialog box types. Depending on the style of dialog you choose, the
appearance of the dialog created may vary. For example, a different icon
is commonly used to distinguish between error, informational, and
warning messages.

The foreground, background, and text-style arguments let you
specify foreground and background colors, and the font to use in the
message text.

	See also:	
	choose-color

	choose-directory

	choose-file

	
open-clipboard Function

	Creates a clipboard lock for a sheet on a port.

	Signature:	open-clipboard port sheet => clipboard

	Parameters:	
	port – An instance of <port>.

	sheet – An instance of <sheet>.

	Values:	
	clipboard – An instance of <clipboard>.

	Discussion:	Creates a clipboard lock for sheet on port. Once a clipboard lock
has been created, you can manipulate the clipboard contents safely. An
instance of <clipboard> is returned, which is
used to hold the clipboard contents.

You should not normally call open-clipboard yourself to create
a clipboard lock. Use the macro with-clipboard to create and free
the lock for you.

	See also:	
	<clipboard>

	with-clipboard

	
$option-key Constant

	A constant that represents the OPTION key on the keyboard.

	Type:	<integer> [http://opendylan.org/books/drm/Number_Classes#integer]

	Value:	$super-key

	Discussion:	A constant that represents the OPTION key on the keyboard. This is set
to the same value as the SUPER key, to deal with the case where the
OPTION key is not present on the keyboard.

	See also:	
	$alt-key

	$control-key

	$hyper-key

	$meta-key

	modifier-key-index

	modifier-key-index-name

	$modifier-keys

	$shift-key

	$super-key

	
<pointer> Open Abstract Instantiable Class

	The class of all pointers.

	Superclasses:	<object> [http://opendylan.org/books/drm/Object_Classes#object]

	Init-Keywords:	
	port – An instance of type <port>.

	Discussion:	The class of all pointers.

	Operations:	The following operations are exported from the DUIM-Sheets module.

	display

	pointer?

	pointer-button-state

	pointer-cursor

	pointer-cursor-setter

	pointer-position

	pointer-sheet

	port

	set-pointer-position

	See also:	
	pointer?

	
pointer? Generic function

	Returns true if the specified object is a pointer.

	Signature:	pointer? object => pointer?

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	pointer? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if object is a pointer.

	See also:	
	<pointer>

	
<pointer-boundary-event> Instantiable Sealed Class

	The class that corresponds to a pointer motion event that crosses a
sheet boundary.

	Superclasses:	<pointer-motion-event>

	Init-Keywords:	
	kind – An instance of type one-of(#"ancestor", #"virtual", #"inferior", #"nonlinear", #"nonlinear-virtual", #f). Default value: #f.

	Discussion:	The class that corresponds to a pointer motion event that crosses some
sort of sheet boundary.

The kind: init-keyword represents the boundary event kind. These
correspond to the detail members for X11 enter and exit events.

	Operations:	The following operation is exported from the DUIM-Sheets module.

	boundary-event-kind

	See also:	
	boundary-event-kind

	<pointer-enter-event>

	<pointer-exit-event>

	
<pointer-button-event> Open Abstract Class

	The class of events that occur when mouse buttons are pressed.

	Superclasses:	<pointer-event>

	Init-Keywords:	
	button – An instance of type one-of($left-button, $middle-button, $right-button).

	Discussion:	The class of events that occur when mouse buttons are pressed.

	Operations:	The following operations are exported from the DUIM-Sheets module.

	event-button

	event-matches-gesture?

	handle-event

	See also:	
	event-button

	$left-button

	$middle-button

	pointer-button-state

	<pointer-drag-event>

	$right-button

	
$pointer-buttons Constant

	The constant representing the possible buttons on the pointing device.

	Type:	<sequence>

	Value:	#[#”left”, #”middle”, #”right”];

	Discussion:	The constant representing the possible buttons on the pointing device
attached to the computer, typically a mouse. Up to three buttons are
provided for.The order of the elements in this sequence must match the order of the
values of $left-button, $middle-button, and
$right-button.

	See also:	
	button-index

	button-index-name

	$left-button

	$middle-button

	$right-button

	
pointer-button-state Generic function

	Returns the state of the specified pointer.

	Signature:	pointer-button-state pointer => integer

	Parameters:	
	pointer – An instance of type <pointer>.

	Values:	
	integer – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns the state of pointer.

	
pointer-cursor Generic function

	Returns the cursor used for the specified pointer.

	Signature:	pointer-cursor pointer => cursor

	Parameters:	
	pointer – An instance of type <pointer>.

	Values:	
	cursor – An instance of type <cursor>.

	Discussion:	Returns the cursor used for pointer.

	See also:	
	pointer-cursor-setter

	
pointer-cursor-setter Generic function

	Sets the cursor used for the specified pointer.

	Signature:	pointer-cursor-setter cursor pointer => cursor

	Parameters:	
	cursor – An instance of type <cursor>.

	pointer – An instance of type <pointer>.

	Values:	
	cursor – An instance of type <cursor>.

	Discussion:	Sets the cursor used for pointer.

	See also:	
	pointer-cursor

	
<pointer-drag-event> Instantiable Sealed Class

	The class of events describing drag movements.

	Superclasses:	<pointer-motion-event> <pointer-button-event>

	Init-Keywords:	
	button – An instance of type one-of($left-button, $middle-button, $right-button).

	Discussion:	The class of events describing drag movements. This is the same as
<pointer-motion-event>, except that a button on the attached
pointing device must also be held down as the pointer is moving.

The button: init-keyword is inherited from the superclass
<pointer-button-event>.

	Operations:	

	See also:	
	<pointer-motion-event>

	
<pointer-enter-event> Instantiable Sealed Class

	The class of events that describe a pointer entering an area such as a
sheet.

	Superclasses:	<pointer-boundary-event>

	Discussion:	The class of events that describe a pointer entering an area such as a
sheet.

	Operations:	

	See also:	
	<pointer-exit-event>

	
<pointer-event> Open Abstract Class

	The base class of events occurring on pointers.

	Superclasses:	<device-event>

	Init-Keywords:	
	x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	pointer – An instance of type <pointer>.

	Discussion:	The base class of events occurring on pointers on the computer screen.

The x: and y: init-keywords specify the location of the pointer when
the event occurs. The pointer: init-keyword specifies the pointer to
which the event occurs.

	Operations:	

	See also:	
	<pointer-button-event>

	<pointer-exit-event>

	<pointer-motion-event>

	
<pointer-exit-event> Instantiable Sealed Class

	The class of events that describe a pointer leaving an area such as a
sheet.

	Superclasses:	<pointer-boundary-event>

	Discussion:	The class of events that describe a pointer leaving an area such as a
sheet.

	Operations:	

	See also:	
	<pointer-button-event>

	<pointer-enter-event>

	<pointer-motion-event>

	
<pointer-gesture> Instantiable Sealed Class

	The class of all gestures that occur on pointers.

	Superclasses:	<gesture>

	Init-Keywords:	
	button – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	modifier-state – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	The class of all gestures that occur on pointers.

The button: init-keyword specifies the button on the attached pointer
device on which the gesture has occurred, and the modifier-state:
init-keyword specifies the modifier-state of the gesture.

	Operations:	
	gesture-button

	
<pointer-motion-event> Instantiable Sealed Class

	The class of events that describe a pointer that is moving.

	Superclasses:	<pointer-event>

	Discussion:	The class of events that describe a pointer that is moving.

	Operations:	

	See also:	
	<pointer-button-event>

	<pointer-drag-event>

	<pointer-enter-event>

	<pointer-event>

	<pointer-exit-event>

	
pointer-position Generic function

	Returns the current position of the specified pointer.

	Signature:	pointer-position pointer #key sheet => x y

	Parameters:	
	pointer – An instance of type <pointer>.

	sheet – An instance of type <sheet>.

	Values:	
	x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Discussion:	Returns the current position of pointer. If sheet is specified,
then the pointer must be over it.

	See also:	
	pointer-sheet

	set-pointer-position

	
pointer-sheet Generic function

	Returns the sheet under the specified pointer.

	Signature:	pointer-sheet pointer => sheet

	Parameters:	
	pointer – An instance of type <pointer>.

	sheet – An instance of type false-or(<sheet>).

	Discussion:	Returns the sheet under pointer, or #f if there is no sheet under the
pointer.

	See also:	
	pointer-position

	
<port> Open Abstract Class

	The class of all ports.

	Superclasses:	<object> [http://opendylan.org/books/drm/Object_Classes#object]

	Discussion:	The class of all ports. A display, and all the sheets attached to a
display, is associated with a port that is a connection to a display
server. The port manages:
	A primary input device (usually a keyboard)

	A pointing device, such as a mouse or trackball

	An event processor that dispatched events to the appropriate sheet.

	Operations:	The following operations are exported from the DUIM-Sheets module.
	beep

	default-port-setter

	destroy-port

	force-display

	get-default-background

	get-default-foreground

	get-default-text-style

	port

	port?

	port-modifier-state

	port-pointer

	port-server-path

	synchronize-display

	text-size

	text-style-mapping

	text-style-mapping-setter

The following operation is exported from the DUIM-DCs module.

	find-color

	See also:	
	<display>

	<sheet>

	
port Generic function

	Returns the port for the specified object.

	Signature:	port object => value

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	value – An instance of type false-or(<port>).

	Discussion:	Returns the port used to display object.

	See also:	
	display

	frame-manager

	<port>

	port?

	
port? Generic function

	Returns true if the specified object is a port.

	Signature:	port? object => boolean

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if object is a port.

	See also:	
	<port>

	<port>

	
port-modifier-state Generic function

	Returns the modifier state of the specified port.

	Signature:	port-modifier-state port => integer

	Parameters:	
	port – An instance of type <port>.

	Values:	
	integer – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns the modifier state of port.

	See also:	
	event-modifier-state

	gesture-modifier-state

	make-modifier-state

	port-name

	port-pointer

	port-server-path

	port-type

	
port-name Generic function

	Returns the name of the specified port.

	Signature:	port-name port => name

	Parameters:	
	port – An instance of type <port>.

	Values:	
	name – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Discussion:	Returns the name of port.

	See also:	
	port-modifier-state

	port-pointer

	port-server-path

	port-type

	
port-pointer Generic function

	Returns the pointer used on the specified port.

	Signature:	port-pointer port => pointer

	Parameters:	
	port – An instance of type <port>.

	Values:	
	pointer – An instance of type <pointer>.

	Discussion:	Returns the pointer used on port.

	See also:	
	port-modifier-state

	port-name

	port-server-path

	port-type

	
port-server-path Generic function

	Returns the server path of the specified port.

	Signature:	port-server-path port => object

	Parameters:	
	port – An instance of type <port>.

	Values:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Discussion:	Returns the server path of port.

	See also:	
	port-modifier-state

	port-name

	port-pointer

	port-type

	
<port-terminated-event> Instantiable Sealed Class

	The class of events that describe the termination of a port.

	Superclasses:	<frame-event>

	Init-Keywords:	
	condition – An instance of type <condition>. Required.

	Discussion:	The class of events that describe the termination of a port.

The condition: init-keyword returns the error condition signalled when
the port was terminated.

	Operations:	

	
port-type Generic function

	Returns the type of the specified port.

	Signature:	port-type port => type

	Parameters:	
	port – An instance of type <port>.

	Values:	
	type – An instance of type <symbol>.

	Discussion:	Returns the type of port.

	See also:	
	port-modifier-state

	port-name

	port-pointer

	port-server-path

	
queue-event Generic function

	Queues an event for the specified sheet.

	Signature:	queue-event sheet event => ()

	Parameters:	
	sheet – An instance of type <sheet>.

	event – An instance of type <event>.

	Discussion:	Queues event on the event-queue for sheet.

	See also:	
	handle-event

	
queue-repaint Generic function

	Queues a repaint for the specified region of the specified sheet.

	Signature:	queue-repaint sheet region => ()

	Parameters:	
	sheet – An instance of type <sheet>.

	region – An instance of type <region>.

	Discussion:	Queues a repaint for the area** of sheet defined by region.

	See also:	
	handle-repaint

	repaint-sheet

	<window-repaint-event>

	
raise-sheet Generic function

	Raises the specified sheet to the top of the current hierarchy of
sheets.

	Signature:	raise-sheet sheet => ()

	Parameters:	
	sheet – An instance of type <sheet>.

	Discussion:	Raises sheet to the top of the current hierarchy of sheets.

	See also:	
	lower-frame

	lower-sheet

	raise-frame

	
remove-child Generic function

	Removes a child from the specified sheet.

	Signature:	remove-child sheet child => sheet

	Parameters:	
	sheet – An instance of type <sheet>.

	child – An instance of type <sheet>.

	Values:	
	sheet – An instance of type <sheet>.

	Discussion:	Removes child from sheet. The remaining children in the sheet are
laid out again appropriately.

	See also:	
	add-child

	replace-child

	
repaint-sheet Generic function

	Repaints the specified region of a sheet.

	Signature:	repaint-sheet sheet region #key medium => ()

	Parameters:	
	sheet – An instance of type <sheet>.

	region – An instance of type <region>.

	medium – An instance of type <medium>.

	Discussion:	Repaints the are of sheet defined by region. If specified, the
appropriate medium is used.

	See also:	
	handle-repaint

	queue-repaint

	<window-repaint-event>

	
replace-child Generic function

	Replaces a child from the specified sheet with a new one.

	Signature:	replace-child sheet old-child new-child => sheet

	Parameters:	
	sheet – An instance of type <sheet>.

	old-child – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	new-child – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	sheet – An instance of type <sheet>.

	Discussion:	Replaces old-child with new-child in sheet. The children in the
sheet are laid out again appropriately.

	See also:	
	add-child

	remove-child

	
$right-button Constant

	A constant that represents the right button on the attached pointing
device.

	Type:	<integer> [http://opendylan.org/books/drm/Number_Classes#integer]

	Value:	ash(1, %button_base + 2)

	Discussion:	A constant that represents the right button on the attached pointing
device.

	See also:	
	$left-button

	$middle-button

	$pointer-buttons

	
set-caret-position Generic function

	Sets the position of the specified cursor.

	Signature:	set-cursor-position cursor x y => ()

	Parameters:	
	cursor – An instance of type <caret>.

	x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Discussion:	Sets the position of cursor to (x , y).

	See also:	
	caret-position

	set-pointer-position

	
set-pointer-position Generic function

	Sets the position of the specified pointer.

	Signature:	set-pointer-position pointer x y #key sheet => ()

	Parameters:	
	pointer – An instance of type <pointer>.

	x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	sheet – An instance of type <sheet>.

	Discussion:	Sets the position of pointer to (x , y), relative to the
top left corner of sheet, if specified. Units are measured in pixels.

	See also:	
	pointer-position

	set-pointer-position

	
set-sheet-edges Generic function

	Sets the edges of the specified sheet relative to its parent.

	Signature:	set-sheet-edges sheet left top right bottom => ()

	Parameters:	
	sheet – An instance of type <sheet>.

	left – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	top – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	right – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	bottom – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Sets the edges of sheet to top, left, right, and bottom.
Each edge is specified relative to the corresponding edge of the parent
of sheet. The layout of sheet is recalculated automatically.

	See also:	
	set-sheet-position

	set-sheet-size

	sheet-edges

	
set-sheet-position Generic function

	Sets the position of the specified sheet relative to its parent.

	Signature:	set-sheet-position sheet x y => ()

	Parameters:	
	sheet – An instance of type <sheet>.

	x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Discussion:	Sets the position of sheet to (x , y) relative to the
position of its parent. The layout of sheet is recalculated
automatically.

	See also:	
	set-sheet-edges

	set-sheet-size

	sheet-position

	
set-sheet-size Generic function

	Sets the size of the specified sheet.

	Signature:	set-sheet-size sheet width height => ()

	Parameters:	
	sheet – An instance of type <sheet>.

	width – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	height – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Sets the size of sheet. The layout of sheet is recalculated
automatically.

	See also:	
	set-sheet-edges

	set-sheet-position

	
<sheet> Open Abstract Class

	The base object class for DUIM windows.

	Superclasses:	<object> [http://opendylan.org/books/drm/Object_Classes#object]

	Init-Keywords:	
	region – An instance of type <region>. Default value $nowhere.

	transform – An instance of type <transform>. Default value $identity-transform.

	port – An instance of type false-or(<port>). Default value #f.

	style-descriptor – An instance of type false-or(style-descriptor). Default value #f.

	help-context – An instance of type <object-table>. Default value make(<object-table>).

	help-source – An instance of type <object-table>. Default value make(<object-table>).

	parent – An instance of type false-or(<sheet>). Default value: #f.

	child – An instance of type false-or(<sheet>). Default value: #f.

	children – An instance of type limited(<sequence>, of: <sheet>). Default value: #[].

	x – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	y – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	withdrawn? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #f.

	accepts-focus? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #t.

	cursor – An instance of type <cursor>.

	caret – An instance of type type-union(<caret>, one-of(#f, #t)). Default value: #f.

	foreground – An instance of type <ink>.

	background – An instance of type <ink>.

	text-style – An instance of type <text-style>.

	fixed-width? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	fixed-height? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	resizable? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	The port: init-keyword is true if the pane (and its mirror, if it has
one) has been mapped, #f otherwise. In this case, the term mapped
means visible on the display, ignoring issues of occlusion.

The help-source: and help-context: keywords let you specify pointers
to valid information available in any online help you supply with your
application. The help-context: keyword should specify a context-ID
present in the online help. This context-ID identifies the help topic
that is applicable to the current pane. The help-source: init-keyword
identifies the source file in which the help topic identified by
help-context: can be found. A list of context-IDs should be provided
by the author of the online help system.

The parent:, child:, and children: init-keywords let you specify
a lineage for the sheet if you wish, specifying the parent of the sheet
and as many children as you wish.

The x: and y: init-keywords specify the initial position of the
sheet relative to its parent. When accepts-focus?: is true, the sheet
will accept the pointer focus.

The init-keywords cursor:, foreground:, background:, and
text-style: can be used to specify the appearance of elements in the
sheet.

The caret: init-keyword is used to specify the caret to be used within
the drawing pane, if one is to be used at all.

The fixed-width?: and fixed-height?: init-keywords are used to fix
the width or height of a sheet to the size defined by other appropriate
init-keywords. This is a useful way of ensuring that the default size
defined for a sheet is fixed in either direction. The init-keywords
force the space requirements for the sheet to make the minimum and
maximum sizes equal to the size defined at the time of creation. These
keywords are most useful when creating sheets of unknown size, when you
want to ensure that any child of that sheet is fixed at that size,
whatever it may be.

If resizable?: is #t then the sheet can be resized in either
direction. If resizable?: is #f then it cannot be resized in either
direction. If resizable?: is #t, but one of fixed-width?: or
fixed-height?: is #t, then the sheet can only be resized in one
direction as appropriate.

	Operations:	The following operations are exported from the DUIM-Sheets module.

	add-child

	beep

	child-containing-position

	children-overlapping-region

	clear-box

	destroy-sheet

	display

	do-children-containing-position

	do-children-overlapping-region

	do-sheet-children

	do-sheet-tree

	do-with-drawing-options

	do-with-pointer-grabbed

	do-with-sheet-medium

	do-with-text-style

	do-with-transform

	force-display

	frame-manager

	get-default-background

	get-default-foreground

	get-default-text-style

	handle-event

	handle-repaint

	medium-background

	medium-background-setter

	medium-brush

	medium-brush-setter

	medium-clipping-region

	medium-clipping-region-setter

	medium-default-text-style

	medium-default-text-style-setter

	medium-foreground

	medium-foreground-setter

	medium-pen

	medium-pen-setter

	medium-text-style

	medium-text-style-setter

	medium-transform

	medium-transform-setter

	port

	queue-event

	queue-repaint

	raise-sheet

	remove-child

	repaint-sheet

	replace-child

	set-sheet-edges

	set-sheet-position

	set-sheet-size

	sheet?

	sheet-ancestor?

	sheet-child

	sheet-children

	sheet-children-setter

	sheet-child-setter

	sheet-edges

	sheet-frame

	sheet-mapped?

	sheet-mapped?-setter

	sheet-medium

	sheet-parent

	sheet-parent-setter

	sheet-position

	sheet-region

	sheet-region-setter

	sheet-size

	sheet-state

	sheet-transform

	sheet-transform-setter

	sheet-withdrawn?

	synchronize-display

	text-size

	top-level-sheet

The following operations are exported from the DUIM-Gadgets module.

	scroll-position

	set-scroll-position

The following operations are exported from the DUIM-Layouts module.

	allocate-space

	compose-space

	do-allocate-space

	do-compose-space

	relayout-children

	relayout-parent

	space-requirement-height

	space-requirement-max-height

	space-requirement-max-width

	space-requirement-min-height

	space-requirement-min-width

	space-requirement-width

The following operations are exported from the DUIM-Frames module.

	exit-dialog

The following operations are exported from the DUIM-Graphics module.

	abort-path

	arc-to

	close-path

	copy-area

	curve-to

	do-with-output-to-pixmap

	draw-bezier-curve

	draw-ellipse

	draw-image

	draw-line

	draw-lines

	draw-pixmap

	draw-point

	draw-points

	draw-polygon

	draw-rectangle

	draw-text

	end-path

	fill-path

	line-to

	move-to

	restore-clipping-region

	start-path

	stroke-path

The following operations are exported from the DUIM-DCS module.

	default-background

	default-foreground

	default-text-style

The following operations are exported from the DUIM-Geometry module.

	box-edges

The following operations are exported from the DUIM-Extended-Geometry
module.

	draw-design

Examples

To make a text editor that is fixed at 10 lines high:

make(<text-editor>, lines: 10, fixed-height?: #t);

	See also:	
	<display>

	<port>

	
sheet? Generic function

	Returns true if the specified object is a sheet.

	Signature:	sheet? object => boolean

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if object is a sheet.

	See also:	
	medium?

	
sheet-ancestor? Generic function

	Returns true if the specified sheet has the specified ancestor.

	Signature:	sheet-ancestor? sheet putative-ancestor => boolean

	Parameters:	
	sheet – An instance of type <sheet>.

	putative-ancestor – An instance of type <sheet>.

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if putative-ancestor is an ancestor of sheet.

	See also:	
	sheet?

	
sheet-child Generic function

	Returns the child of the specified sheet.

	Signature:	sheet-child sheet => child

	Parameters:	
	sheet – An instance of type <sheet>.

	child – An instance of type false-or(<sheet>).

	Discussion:	Returns the child of sheet.

	See also:	
	sheet-children

	sheet-child-setter

	
sheet-children Generic function

	Returns a list of sheets that are the children of the specified sheet.

	Signature:	sheet-children sheet => sheets

	Parameters:	
	sheet – An instance of type <sheet>.

	sheets – An instance of type limited(<sequence>, of: <sheet>).

	Discussion:	Returns a list of sheets that are the children of sheet. Some sheet
classes support only a single child; in this case, the return value of
sheet-children is a list of one element.

	See also:	
	do-sheet-children

	sheet-child

	sheet-children-setter

	
sheet-children-setter Generic function

	Sets the children of the specified sheet.

	Signature:	sheet-children-setter children sheet => sheets

	Parameters:	
	children – An instance of type limited(<sequence>, of: <sheet>).

	sheet – An instance of type <sheet>.

	children – An instance of type limited(<sequence>, of: <sheet>).

	Discussion:	Sets the children of sheet. Some sheet classes support only a single
child; in this case, children is a list of one element.

	See also:	
	sheet-children

	sheet-child-setter

	
sheet-child-setter Generic function

	Sets the child of the specified sheet.

	Signature:	sheet-child-setter child sheet => child

	Parameters:	
	child – An instance of type <sheet>.

	sheet – An instance of type <sheet>.

	child – An instance of type false-or(<sheet>).

	Discussion:	Sets the child of sheet.

	See also:	
	sheet-child

	sheet-children-setter

	
sheet-edges Generic function

	Returns the edges of the specified sheet, relative to its parent.

	Signature:	sheet-edges sheet => left top right bottom

	Parameters:	
	sheet – An instance of type <sheet>.

	left – An instance of type <coordinate>.

	top – An instance of type <coordinate>.

	right – An instance of type <coordinate>.

	bottom – An instance of type <coordinate>.

	Discussion:	Returns the edges of sheet. Each edge is specified relative to the
corresponding edge of the parent of sheet.

	See also:	
	set-sheet-edges

	sheet-position

	sheet-size

	sheet-transform

	
<sheet-event> Open Abstract Class

	The class of events that can occur in sheets.

	Superclasses:	<event>

	Init-Keywords:	
	sheet – An instance of type false-or(<sheet>). Required.

	Discussion:	The class of events that can occur in sheets.

The required init-keyword sheet: specifies a sheet in which the event
occurs.

	Operations:	The following operation is exported from the DUIM-Sheets module.

	event-sheet

	See also:	
	<device-event>

	
sheet-event-mask Generic function

	Returns the event mask of the specified sheet.

	Signature:	sheet-event-mask sheet => integer

	Parameters:	
	sheet – An instance of type <sheet>.

	Values:	
	integer – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns the event mask of sheet.

	See also:	
	sheet-event-mask-setter

	sheet-event-queue

	
sheet-event-mask-setter Generic function

	Sets the event mask of the specified sheet.

	Signature:	sheet-event-mask-setter mask sheet => mask

	Parameters:	
	mask – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	sheet – An instance of type <sheet>.

	Values:	
	mask – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Sets the event mask of sheet.

	See also:	
	sheet-event-mask

	
sheet-event-queue Generic function

	Returns the event queue of the specified sheet.

	Signature:	sheet-event-queue sheet => event-queue

	Parameters:	
	sheet – An instance of type <sheet>.

	Values:	
	event-queue – An instance of type <event-queue>.

	Discussion:	Returns the event mask of sheet. This is a list of all the events
that are currently queued ready for execution.

	See also:	
	sheet-event-mask

	
sheet-frame Generic function

	Returns the frame associated with the specified sheet.

	Signature:	sheet-frame sheet => frame

	Parameters:	
	sheet – An instance of type <sheet>.

	frame – An instance of type false-or(<frame>).

	Discussion:	Returns the frame associated with sheet.

	See also:	
	sheet-medium

	sheet-parent

	
sheet-mapped? Generic function

	Returns true if the specified sheet is mapped.

	Signature:	sheet-mapped? sheet => mapped?

	Parameters:	
	sheet – An instance of type <sheet>.

	Values:	
	mapped? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if sheet is mapped, that is, displayed on screen (issues
of occluding windows notwithstanding).

	See also:	
	sheet-mapped?-setter

	sheet-withdrawn?

	
sheet-mapped?-setter Generic function

	Specifies whether the specified sheet is mapped.

	Signature:	sheet-mapped?-setter mapped? sheet => boolean

	Parameters:	
	mapped? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	sheet – An instance of type <sheet>.

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Specifies whether sheet is mapped, that is, displayed on screen
(issues of occluding windows notwithstanding). If #t, sheet is
mapped, if #f, it is not.

	See also:	
	sheet-mapped?

	
sheet-medium Generic function

	Returns the medium associated with the specified sheet.

	Signature:	sheet-medium sheet => medium

	Parameters:	
	sheet – An instance of type <sheet>.

	medium – An instance of type false-or(<medium>).

	Discussion:	Returns the medium associated with sheet.

	See also:	
	sheet-frame

	
sheet-parent Generic function

	Returns the parent of the specified sheet.

	Signature:	sheet-parent sheet => parent

	Parameters:	
	sheet – An instance of type <sheet>.

	parent – An instance of type false-or(<sheet>).

	Discussion:	Returns the parent of sheet.

	See also:	
	sheet-medium

	sheet-parent-setter

	sheet-position

	
sheet-parent-setter Generic function

	Sets the parent of the specified sheet.

	Signature:	sheet-parent-setter parent sheet => value

	Parameters:	
	parent – An instance of type false-or(<sheet>)``.

	sheet – An instance of type <sheet>.

	Values:	
	value – An instance of type false-or(<sheet>)``.

	Discussion:	Sets the parent of sheet.

	See also:	
	sheet-parent

	
sheet-pointer-cursor Generic function

	Returns the pointer cursor associated with the specified sheet.

	Signature:	sheet-pointer-cursor sheet => cursor

	Parameters:	
	sheet – An instance of type <sheet>.

	Values:	
	cursor – An instance of type <cursor>.

	Discussion:	Returns the pointer cursor associated with sheet. This is the cursor
used to represent the mouse pointer whenever the mouse pointer is inside
the boundary of sheet.

	See also:	
	sheet-pointer-cursor-setter

	sheet-text-cursor

	
sheet-pointer-cursor-setter Generic function

	Sets the pointer cursor associated with the specified sheet.

	Signature:	sheet-pointer-cursor-setter cursor sheet => cursor

	Parameters:	
	cursor – An instance of type <cursor>.

	sheet – An instance of type <sheet>.

	Values:	
	cursor – An instance of type <cursor>.

	Discussion:	Sets the pointer cursor associated with sheet. This is the cursor
used to represent the mouse pointer whenever the mouse pointer is inside
the boundary of sheet.

	See also:	
	sheet-pointer-cursor

	
sheet-position Generic function

	Returns the position of the specified sheet relative to its parent.

	Signature:	sheet-position sheet => x y

	Parameters:	
	sheet – An instance of type <sheet>.

	Values:	
	x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Discussion:	Returns the position of sheet. The position is represented by the
coordinate (x,y), as measured relative to the parent of sheet, or
relative to the top left of the screen if sheet has no parent.

	See also:	
	set-sheet-position

	sheet-edges

	sheet-parent

	sheet-size

	sheet-transform

	
sheet-region Generic function

	Returns the region associated with the specified sheet.

	Signature:	sheet-region sheet => region

	Parameters:	
	sheet – An instance of type <sheet>.

	Values:	
	region – An instance of type <region>.

	Discussion:	Returns an instance of <region> that represents
the set of points to which sheet refers. The region is expressed in
the same coordinate system as sheet.

	See also:	
	sheet-region-setter

	
sheet-region-setter Generic function

	Sets the region associated with the specified sheet.

	Signature:	sheet-region-setter region sheet => region

	Parameters:	
	region – An instance of type <region>.

	sheet – An instance of type <sheet>.

	Values:	
	region – An instance of type <region>.

	Discussion:	Creates or modifies an instance of <region> that represents the
set of points to which sheet refers. The region is expressed in the same
coordinate system as sheet.

	See also:	
	sheet-region

	
sheet-size Generic function

	Returns the width and height of the specified sheet.

	Signature:	sheet-size sheet => width height

	Parameters:	
	sheet – An instance of type <sheet>.

	Values:	
	width – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	height – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns the width and height of the specified sheet. Use
set-sheet-size to set or modify the size of a sheet.

	See also:	
	set-sheet-size

	sheet-edges

	sheet-position

	sheet-transform

	
sheet-state Generic function

	Returns the current state of the specified sheet.

	Signature:	sheet-state sheet => value

	Parameters:	
	sheet – An instance of type <sheet>.

	Values:	
	value – An instance of type one-of(#"withdrawn", #"managed", #"mapped", #"unknown").

	Discussion:	Returns the current state of sheet. The state of a sheet tells you
whether the sheet is currently mapped on screen, or whether it has been
withdrawn from the list of sheets.

	
sheet-text-cursor Generic function

	Returns the text cursor associated with the specified sheet.

	Signature:	sheet-text-cursor sheet => text-cursor

	Parameters:	
	sheet – An instance of type <sheet>.

	text-cursor – An instance of type false-or(<cursor>).

	Discussion:	Returns the text cursor associated with sheet. The text cursor
associated with a sheet is distinct from the pointer cursor associated
with the same sheet: the pointer cursor represents the current position
of the pointer associated with the attached pointer device, while the
text cursor represents the position in the sheet that any text typed
using the keyboard will be added. Only those sheets that contain
children that allow some form of text-based input have an associated
text cursor.

	See also:	
	sheet-pointer-cursor

	
sheet-transform Generic function

	Returns the transform associated with the specified sheet.

	Signature:	sheet-transform sheet => transform

	Parameters:	
	sheet – An instance of type <sheet>.

	Values:	
	transform – An instance of type <transform>.

	Discussion:	Returns the transform associated with sheet.

	See also:	
	medium-transform

	sheet-edges

	sheet-position

	sheet-size

	
sheet-transform-setter Generic function

	Sets the transform associated with the specified sheet.

	Signature:	sheet-transform-setter transform sheet => transform

	Parameters:	
	transform – An instance of type <transform>.

	sheet – An instance of type <sheet>.

	Values:	
	transform – An instance of type <transform>.

	Discussion:	Sets or modifies the transform associated with sheet.

	See also:	
	medium-transform-setter

	
sheet-withdrawn? Generic function

	Returns true if the specified sheet has been withdrawn from the display.

	Signature:	sheet-withdrawn? sheet => withdrawn?

	Parameters:	
	sheet – An instance of type <sheet>.

	Values:	
	withdrawn? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if sheet has been withdrawn from the display, and is no
longer mapped.

	See also:	
	sheet-mapped?

	
$shift-key Constant

	A constant that represents the SHIFT key on the keyboard.

	Type:	<integer> [http://opendylan.org/books/drm/Number_Classes#integer]

	Value:	ash(1, %modifier_base + 0);

	Discussion:	A constant that represents the SHIFT key on the keyboard.

	See also:	
	$alt-key

	$control-key

	$hyper-key

	$meta-key

	modifier-key-index

	modifier-key-index-name

	$modifier-keys

	$option-key

	$super-key

	
$super-key Constant

	A constant that represents the SUPER key on the keyboard.

	Type:	<integer> [http://opendylan.org/books/drm/Number_Classes#integer]

	Value:	ash(1, %modifier_base + 3);

	Discussion:	A constant that represents the SUPER key on the keyboard, if it exists.
To deal with the case where there is no SUPER key, the value of the
constant $option-key is bound to this
constant.

	See also:	
	$alt-key

	$control-key

	$hyper-key

	$meta-key

	modifier-key-index

	modifier-key-index-name

	$modifier-keys

	$option-key

	$shift-key

	
synchronize-display Generic function

	Synchronizes all displays on which the specified drawable is mapped.

	Signature:	synchronize-display drawable => ()

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

	Discussion:	Synchronizes all displays on which the specified drawable is mapped.

	
text-size Generic function

	Returns information about the size of the specified text on the
specified medium.

	Signature:	text-size medium text #key text-style start end do-newlines? => largest-x largest-y cursor-x cursor-y baseline

	Parameters:	
	medium – An instance of type <medium>.

	text – An instance of type type-union(<string>, <character>).

	text-style – An instance of type <text-style>.

	start – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer]. Default value: 0.

	end – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer]. Default value: size(text).

	do-newlines? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #f.

	do-tabs? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #f.

	Values:	
	largest-x – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	total-height – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	last-x – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	last-y – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	baseline – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns information about the size of text on medium.

If text-style is specified, then the information that text-size
returns is based on the text style it describes.

If start and end are specified, then these values represent a
portion of the string specified by text, and only the characters they
represent are examined by text-size. Both start and end represent
the index of each character in text, starting at 0. By default, the
whole of text is examined.

The do-newlines? and do-tabs? arguments let you specify how newline
or tab characters in text should be handled. If either of these
arguments is true, then any newline or tab characters in text are
examined, as appropriate. By default, newline characters are ignored.

	
text-style-mapping Generic function

	Returns the mapping for the specified text style on the specified port.

	Signature:	text-style-mapping port text-style #key character-set => font

	Parameters:	
	port – An instance of type <port>.

	text-style – An instance of type <text-style>

	character-set – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	font – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Discussion:	Returns the mapping for text-style on port. Mapping text styles
onto fonts lets you control how different text styles are displayed on
different servers, depending on the connection. For instance, it is
possible to define how colored text is displayed on monochrome displays,
or how fonts specified by text-style are mapped onto fonts available
on the display.

If character-set is specified, then this character set is used instead
of the default. This is most useful for non-English displays.

	See also:	
	text-style-mapping-exists?

	text-style-mapping-setter

	<undefined-text-style-mapping>

	
text-style-mapping-exists? Generic function

	Returns true if a mapping exists for the specified text style on the
specified port.

	Signature:	text-style-mapping-exists? port text-style #key character-set exact-size? => boolean

	Parameters:	
	port – An instance of type <port>.

	text-style – An instance of type <text-style>.

	character-set – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	exact-size? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #f.

	Values:	
	boolean – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if a mapping exists for text-style on port. This
control function is useful if, for example, you are setting up text
style mappings for a range of text styles in one go, or for a range of
different ports. Using this function, you can test for the existence of
a previous mapping before creating a new one, thereby ensuring that
existing mappings are not overwritten.

	See also:	
	text-style-mapping

	text-style-mapping-setter

	<undefined-text-style-mapping>

	
text-style-mapping-setter Generic function

	Sets the mapping for the specified text style on the specified port.

	Signature:	text-style-mapping-setter font port text-style #key character-set => font

	Parameters:	
	font – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	port – An instance of type <port>.

	text-style – An instance of type <text-style>.

	character-set – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	font – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Discussion:	Sets the mapping for text-style on port to the specified font.
This function lets you have some control over the way in which different
text styles are displayed on different servers, depending on the
connection. Using this function, for instance, it is possible to define
how colored text is displayed on monochrome displays, or how fonts
specified by text-style are mapped onto fonts available on the
display.

If character-set is specified, then this character set is used instead
of the default. This is most useful for non-English displays.

	See also:	
	text-style-mapping

	text-style-mapping-exists?

	<undefined-text-style-mapping>

	
<timer-event> Instantiable Sealed Class

	The class of timed events.

	Superclasses:	<frame-event>

	Discussion:	The class of timed events.

	Operations:	

	
top-level-sheet Generic function

	Returns the top level sheet for the specified object.

	Signature:	top-level-sheet object => top-level-sheet

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	top-level-sheet – An instance of type false-or(<sheet>).

	Discussion:	Returns the top level sheet for object. This is the sheet that has as
its descendents all of the panes of object.

	
<undefined-text-style-mapping> Instantiable Sealed Class

	The class of undefined text style mappings.

	Superclasses:	<error>

:keyword port:: An instance of type <port>. Required.
:keyword text-style:: An instance of type <text-style>. Required.

	Discussion:	The class of undefined text style mappings. This class is used for any
text styles that have not had mappings defined for a given port.

	Operations:	

	See also:	
	text-style-mapping

	text-style-mapping-exists?

	text-style-mapping-setter

	
<window-configuration-event> Instantiable Sealed Class

	The class of events involving changes to the window configuration.

	Superclasses:	<window-event>

	Discussion:	The class of events involving changes to the window configuration.

	Operations:	

	See also:	
	<window-repaint-event>

	
<window-event> Open Abstract Class

	The base class of events that occur in windows.

	Superclasses:	<sheet-event>

	Init-Keywords:	
	region – An instance of type <region>. Required.

	Discussion:	The base class of events that occur in windows. Two types of event can
occur:

	Changes to the configuration of the window.

	Changes that require the window to be repainted.

The region: init-keyword specifies a region in which the event occurs.

	Operations:	The following operation is exported from the DUIM-Sheets module.

	event-region

	See also:	
	event-region

	<window-configuration-event>

	<window-repaint-event>

	
<window-repaint-event> Instantiable Sealed Class

	The class of events involving repainting of a window.

	Superclasses:	<window-event>

	Discussion:	The class of events involving repainting of a window.

	Operations:	

	See also:	
	handle-repaint

	queue-repaint

	repaint-sheet

	<window-configuration-event>

	
with-brush Macro

	Executes the supplied code using the specified brush characteristics.

	Macro Call:	with-brush ({medium } #rest {brush-initargs }*) {body } end

	Parameters:	
	medium – A Dylan body*bnf*.

	brush-initargs – Dylan arguments*bnf*.

	body – A Dylan body*bnf*.

	Discussion:	Executes body using the brush characteristics specified by
brush-initargs, and applies the results to medium. The medium
specified should be an instance of type <medium>. The
brush-initargs can be any valid arguments that specify an instance of
<brush>.

	See also:	
	with-pen

	
with-clipboard Macro

	Evaluates a body of code with a clipboard grabbed.

	Macro Call:	with-clipboard (clipboard = sheet) body end

	Parameters:	
	clipboard – A Dylan variable-name bnf.

	sheet – A Dylan variable-name bnf.

	body – A Dylan body bnf.

	Values:	
	values – Instances of <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Discussion:	Evaluates body with the clipboard grabbed, returning the results to
the clipboard.

The macro grabs a lock on the clipboard, using open-clipboard, and
then executes body. Once the results of evaluating body have been
sent to the clipboard, the clipboard lock is freed using
close-clipboard. The clipboard argument is a
Dylan variable-name*bnf* used locally in the call to with-clipboard.
The sheet argument is a Dylan variable-name*bnf* that evaluates to the
sheet associated with clipboard.

This macro is the easiest way of manipulating the clipboard from DUIM,
since it removes the need to create and destroy a clipboard lock
yourself.

You can add more than one format of your data to the clipboard within
the scope of this macro. So, for example, you could place an arbitrary
object onto the clipboard, for use within your own application, and a
string representation for other tools applications to see.

	See also:	
	<clipboard>

	
with-clipping-region Macro

	Executes the supplied code using the specified clipping region.

	Macro Call:	with-clipping-region ({medium } {region }) {body } end

	Parameters:	
	medium – A Dylan expression*bnf*.

	region – A Dylan expression*bnf*.

	body – A Dylan body*bnf*.

	Discussion:	Executes body using the clipping region specified by region, and
applies the results to medium. The region and medium expressions
should evaluate to instances of <region> and
<medium>, respectively.

	
with-cursor-visible Macro

	Executes the supplied code using the specified cursor settings for a
sheet.

	Macro Call:	with-cursor-visible ({sheet } {visible? }) {body } end

	Parameters:	
	sheet – A Dylan expression*bnf*.

	visible? – A Dylan expression*bnf*.

	body – A Dylan body*bnf*.

	Discussion:	Executes body on the specified sheet. If visible? is true, then the
pointer cursor associated with sheet is visible throughout the
operation. If visible? is false, then the pointer cursor is hidden.

The expression sheet should evaluate to an instance of <sheet>.
The expression visible? should evaluate to a boolean value.

	
with-drawing-options Macro

	Runs a body of code in the context of a set of drawing options.

	Macro Call:	with-drawing-options ({medium } #rest {options }*) {body } end

	Parameters:	
	medium – A Dylan expression*bnf*.

	options – Dylan arguments*bnf*.

	body – A Dylan body*bnf*.

	Discussion:	Runs a body of code in the context of a set of drawing options. The
options specified are passed to the function do-with-drawing-options
for execution.

The medium expression should evaluate to an instance of <medium>.

Note that when using with-drawing-options in conjunction with a loop.
it is computationally much quicker to use a medium (as shown here) rather
than a sheet, and to place the call to with-drawing-options outside the
loop. If necessary, use with-sheet-medium to associate the sheet
with the medium, thus:

with-sheet-medium (medium = sheet)
 with-drawing-options (medium, brush: color)
 for (x :: <integer> from 0 to 199)
 for (y :: <integer> from 0 to 199)
 draw-point(medium, x, y)
 end
 end
 end
 end

	Example:	with-drawing-options (medium, brush: $red)
 draw-rectangle (medium, 0, 0, 100, 200, filled?: #t)
end;

	See also:	
	do-with-drawing-options

	with-sheet-medium

	
withdraw-sheet Generic function

	Withdraws the specified sheet from the current display.

	Signature:	withdraw-sheet sheet => ()

	Parameters:	
	sheet – An instance of type <sheet>.

	Discussion:	Withdraws the specified sheet from the current display.

	
with-frame-manager Macro

	Executes the supplied code in the context of the specified frame
manager.

	Macro Call:	with-frame-manager ({framem }) {body } end

	Parameters:	
	framem – A Dylan expression*bnf*.

	body – A Dylan body*bnf*.

	Discussion:	Executes body in the context of framem, by dynamically binding the
expression framem to *current-frame-manager*.

In practice, you do not need to use with-frame-manager unless you are
certain that your code needs to run on a non-primary frame manager.

The main place where you need to use this macro is when you call make
to create a gadget outside of one of the pane or layout clauses in
define frame.

Unless you are developing code that needs to run on more than one
platform, this is unlikely to be the case, and you can forego use of
this macro.

	See also:	
	<frame-manager>

	
with-identity-transform Macro

	Executes the supplied code while retaining the current transform.

	Macro Call:	with-identity-transform ({medium }) {body } end

	Parameters:	
	medium – A Dylan expression*bnf*.

	body – A Dylan body*bnf*.

	Discussion:	Executes body while retaining the current transform for medium.

The medium expression should evaluate to an instance of
<medium>.

	
with-pen Macro

	Executes the supplied code using the specified pen characteristics.

	Macro Call:	with-pen ({medium } #rest {pen-initargs }*) {body } end

	Parameters:	
	medium – A Dylan expression*bnf*.

	pen-initargs – Dylan arguments*bnf*.

	body – A Dylan body*bnf*.

	Discussion:	Executes body using the pen characteristics specified by
pen-initargs, and applies the results to the expression medium.

The medium specified should be an instance of type
<medium>. The pen-initargs can be any valid
arguments that specify an instance of <pen>.

	See also:	
	with-brush

	
with-pointer-grabbed Macro

	Executes a body of code, forwarding all pointer events to a sheet.

	Macro Call:	with-pointer-grabbed ({sheet } #rest {options }*) {body } end

	Parameters:	
	sheet – A Dylan expression*bnf*.

	options – Dylan arguments*bnf*.

	body – A Dylan body*bnf*.

	Discussion:	Executes a body of code, forwarding all pointer events to sheet, even
if the pointer leaves the sheet-region of sheet. The sheet
specified should be an instance of type <sheet>.

The macro calls methods for do-with-pointer-grabbed. The code
specified by body is used to create a stand-alone method that is used
as the code that is run by do-with-pointer-grabbed.

	See also:	
	do-with-pointer-grabbed

	
with-rotation Macro

	Executes a body of code with a specified rotation.

	Macro Call:	with-rotation ({medium } {angle }) {body } end

	Parameters:	
	medium – A Dylan expression*bnf*.

	angle – A Dylan argument*bnf*.

	body – A Dylan body*bnf*.

	Discussion:	Executes a body of code with a specified rotation. The rotation occurs
within the expression medium. This macro calls with-transform
to perform the rotation.

The medium specified should be an instance of type <medium>.
The angle should evaluate to an instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	See also:	
	with-scaling

	with-transform

	with-translation

	
with-scaling Macro

	Executes a body of code with a specified scaling.

	Macro Call:	with-scaling ({medium } {scale-x } {scale-y }) {body } end

	Parameters:	
	medium – A Dylan expression*bnf*.

	scale-x – A Dylan argument*bnf*.

	scale-y – A Dylan argument*bnf*.

	body – A Dylan body*bnf*.

	Discussion:	Executes a body of code with a specified scaling, denoted by scale-x
and scale-y. The scaling occurs within the expression medium. This
macro calls with-transform to perform the
scaling.

The medium specified should be an instance of type <medium>.
The scale-x and scale-y should evaluate to an instance of type
<real> [http://opendylan.org/books/drm/Number_Classes#real].

	See also:	
	with-rotation

	with-transform

	with-translation

	
with-sheet-medium Macro

	Associates a sheet with a medium.

	Macro Call:	with-sheet-medium ({medium = sheet }) {body } end

	Parameters:	
	medium – A Dylan name*bnf*.

	sheet – A Dylan expression*bnf*.

	body – A Dylan body*bnf*.

	Discussion:	Associates a sheet with a medium.

Within body, the variable medium is bound to the medium allocated to
sheet. The sheet specified should be an instance of type
<sheet>. If sheet does not have a medium permanently
allocated, one is allocated and associated with sheet for the duration
of body, and then unassociated from sheet and deallocated when body
has been exited. The values of the last form of body are returned as the
values of with-sheet-medium.

The medium argument is not evaluated, and must be a symbol that is bound
to a medium. The body may have zero or more declarations as its first
forms.

This macro is a useful way of speeding up drawing operations, since
drawing on a sheet requires finding the medium for that sheet. You can use
with-sheet-medium to associate a known sheet with a medium, and then
draw directly onto that medium, as shown in the example.

	Example:	with-sheet-medium (medium = sheet)
 with-drawing-options (medium, brush: color)
 for (x :: <integer> from 0 to 199)
 for (y :: <integer> from 0 to 199)
 draw-point(medium, x, y)
 end
 end
 end
end

	See also:	
	do-with-sheet-medium

	with-drawing-options

	
with-text-style Macro

	Runs a body of code in the context of a text style.

	Macro Call:	with-text-style ({medium } #rest {style-initargs }*) {body } end

	Parameters:	
	medium – A Dylan expression*bnf*.

	style-initargs – Dylan arguments*bnf*.

	body – A Dylan body*bnf*.

	Discussion:	Executes body using the text style characteristics specified by
style-initargs, and applies the results to medium.

The medium specified should be an instance of type <medium>.
The style-initargs can be any valid arguments that specify an instance
of <text-style>.

Methods for do-with-text-style are invoked to run the code.

	See also:	
	do-with-text-style

	
with-transform Macro

	Executes a body of code with a specified transform.

	Macro Call:	with-transform ({medium } {transform }) {body } end

	Parameters:	
	medium – A Dylan expression*bnf*.

	transform – A Dylan expression*bnf*.

	body – A Dylan body*bnf*.

	Discussion:	Executes a body of code with a specified transform. The transform occurs
within medium. This macro is used by with-rotation,
with-scaling, and with-translation, and calls methods
for do-with-transform.

The medium specified should be an instance of type <medium>.
The transform specified should be an instance of type
<transform>.

	See also:	
	do-with-transform

	with-rotation

	with-scaling

	with-translation

	
with-translation Macro

	Executes a body of code with a specified translation.

	Macro Call:	with-translation ({medium } {dx } {dy }) {body } end

	Parameters:	
	medium – A Dylan expression*bnf*.

	dx – A Dylan argument*bnf*.

	dy – A Dylan argument*bnf*.

	body – A Dylan body*bnf*.

	Discussion:	Executes a body of code with a specified translation, denoted by dx
and dy. The translation occurs within medium. This macro calls
with-transform to perform the translation.

The medium specified should be an instance of type <medium>.
The dx and*dy* should evaluate to an instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	See also:	
	with-rotation

	with-scaling

	with-transform

 Copyright 2011, Dylan Hackers.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 api |

 	
 next |

 	
 previous |

 	DUIM Reference 1.0 documentation

DUIM-Graphics Library

Overview

The DUIM-Graphics library contains interfaces that define a wide variety
drawing operations for use in your GUI applications, as well as two
classes. The library contains a single module, duim-graphics, from
which all the interfaces described in this chapter are exposed.
DUIM-Graphics Module contains complete reference
entries for each exposed interface.

The DUIM graphic drawing model is an idealized model of graphical
pictures. The model provides the language that application programs use
to describe the intended visual appearance of textual and graphical
output. Usually not all of the contents of the screen are described
using the graphic drawing model. For example, menus and scroll bars
would usually be described in higher-level terms.

An important aspect of the DUIM graphic drawing model is its extreme
device independence. The model describes ideal graphical images and
ignores limitations of actual graphics devices. One consequence of this
is that the actual visual appearance of the screen can only be an
approximation of the appearance specified by the model: however, another
important consequence of this is that the model is highly portable.

DUIM separates output into two layers:

A text/graphics layer in which you specify the desired visual appearance
independent of device resolution and characteristics

	A rendering layer in which some approximation of the desired visual
appearance is created on the device.

Of course application programs can inquire about the device resolution
and characteristics if they wish and modify their desired visual
appearance on that basis. There is also a third layer above these two
layers, the adaptive toolkit layer where one specifies the desired
functionality rather than the desired visual appearance.

Definitions

This section contains definitions of terms that will be used in this
chapter.

	Drawing plane A drawing plane is an infinite two-dimensional plane
on which graphical output occurs. The drawing plane contains an
arrangement of colors and opacities that is modified by each
graphical output operation. It is not possible to read back the
contents of a drawing plane, except by examining the output-history.
Normally each window has its own drawing plane.

	Coordinates Coordinates are a pair of real numbers in
implementation-defined units that identify a point in the drawing
plane.

	Mediums In this chapter, we use a medium as a destination for
output. The medium has a drawing plane, two designs (called the
medium’s foreground and background), a transformation, a clipping
region, a line style, and a text style. There are per-medium,
dynamically scoped, default drawing options. Different medium classes
are provided to allow you to draw on different sorts of devices, such
as displays, printers, and virtual devices such as bitmaps.

	Sheets Many sheets can be used for doing output, so the drawing
functions can also take a sheet as the output argument. In this case,
drawing function “trampolines” to the sheet’s medium. So, while the
functions defined here are specified to be called on mediums, they
can also be called on sheets.

	Streams A stream is a special kind of sheet that implements the
stream protocol; streams include additional state such as the current
text cursor (which is some point in the drawing plane).

	By default, the “fundamental” coordinate system of a DUIM stream (not
a general sheet or medium, whose fundamental coordinate system is not
defined) is a left handed system with x increasing to the right, and
y increasing downward. (0,0) is at the upper left corner.

	For more general information about DUIM streams, you should refer to
the manual Library Reference: System and I/O.

Drawing is approximate

Note that although the drawing plane contains an infinite number of
mathematical points, and drawing can be described as an infinite number
of color and opacity computations, the drawing plane cannot be viewed
directly and has no material existence: it is only an abstraction. What
can be viewed directly is the result of rendering portions of the
drawing plane onto a medium. No infinite computations or objects of
infinite size are required to implement DUIM, because the results of
rendering have finite size and finite resolution.

A drawing plane is described as having infinitely fine spatial, color,
and opacity resolution, and as allowing coordinates of unbounded
positive or negative magnitude. A viewport into a drawing plane, on the
other hand, views only a finite region (usually rectangular) of the
drawing plane. Furthermore, a viewport has limited spatial resolution
and can only produce a limited number of colors. These limitations are
imposed by the display hardware on which the viewport is displayed. A
viewport also has limited opacity resolution, determined by the finite
arithmetic used in the drawing engine.

Coordinates are real numbers in implementation-defined units. Often
these units equal the spatial resolution of a viewport, so that a line
of thickness 1 is equivalent to the thinnest visible line. However, this
equivalence is not required and should not be assumed by application
programs.

DUIM can be quite restrictive in the size and resolution of its
viewports. For example, the spatial resolution might be only a few dozen
points per inch, the maximum size might be only a few hundred points on
a side, and there could be as few as two displayable colors (usually
black and white). Fully transparent and fully opaque opacity levels are
supported, but a DUIM implementation might support only a few opacity
levels in between (or possibly even none). A DUIM implementation might
implement color blending and unsaturated colors by stippling, although
it is preferred, when possible, for a viewport to display a uniform
color as a uniform color rather than as a perceptible stipple.

However, there are no such limitations when DUIM records the output to a
sheet, since DUIM just remembers the drawing operations that were
performed, not the results of rendering.

The application programmer uses the DUIM graphic drawing model as an
interface to describe the intended visual appearance. DUIM then
approximates that ideal appearance in a viewport, within its limitations
of spatial resolution, color resolution, number of simultaneously
displayable colors, and drawing speed.

Naturally, doing this usually requires trade-offs, for example between
speed and accuracy, and these trade-offs depend on the hardware and
software environment and the user concerns in any given situation. For
example:

	If the device only supports a limited number of colors, the desired
color may be approximated using techniques such as dithering or
stippling.

	If the device cannot draw curves precisely, they may be approximated,
with or without anti-aliasing.

	If the device has limited opacity resolution, color blending may be
approximate. A viewport might display colors that do not appear in
the drawing plane, both because of color and opacity approximation
and because of anti-aliasing at the edges of drawn shapes.

Drawing computations are always carried out “in color”, even if the
viewport is only capable of displaying black and white. In other words,
the DUIM drawing model is always the fully general model, even if an
implementation’s color resolution is limited enough that full use of the
model is not possible. Of course an application that fundamentally
depends on color will not work well on a viewport that cannot display
color. Other applications will degrade gracefully.

Whether the implementation uses raster graphics or some other display
technique is invisible at this interface. DUIM does not specify the
existence of pixels nor the exact details of scan conversion, which will
vary from one drawing engine to the next.

Rendering conventions for geometric shapes

This section describes the conventions for how DUIM renders a shape on a
display device.

When DUIM draws a geometric shape on a display device, the idealized
geometric shape must somehow be rendered on that device. This involves
mapping points on the idealized geometric shape onto points on the
display device.

Idealized geometric shapes are made up of a set of mathematical points
which have no size. The rendering of these shapes on the display device
is usually composed of pixels, which are roughly square, and are
specified in “device coordinates”. Device coordinates are calculated by
transforming the user-supplied coordinates by each of the following:

	The user-supplied transformation

	The medium transformation

	The transformation that maps from the sheet to the display device

Note

If the last of these is a pure translation that translates by an
integer multiple of device units, then it has no effect on the rendering
other than placement of the figure drawn on the display device.

Roughly speaking, a pixel is affected by drawing a shape only when it is
inside that shape. Since pixels are little squares, and the abstract
points in an idealized geometric shape have no size, most shapes will
have many pixels that lie only partially inside the shape. It is
important, therefore, to describe which pixels will be affected when
rendering a shape, and which will not.

On devices that support color or grayscale, the rendering engine uses
anti-aliasing techniques to render pixels that lie only partially inside
the shape. That is, the affected pixels are drawn a little lighter than
pixels that are wholly within the shape, the precise shade depending on
how much of it is inside the shape.

The conventions used by DUIM are the same as the conventions used by
X11:

	A pixel is a addressed by its upper-left corner.

	A pixel is considered to be inside a shape, and hence affected by the
rendering of that shape, if the center of the pixel is inside the
shape. If the center of the pixel lies exactly on the boundary of the
shape, it is considered to be inside the shape if the inside of the
shape is immediately to the right of the center point of the pixel
(that is, an increasing x direction on the display device). If the
center of the pixel lies exactly on a horizontal boundary, it is
considered to be inside the shape if the inside of the shape is
immediately below the center point of the pixel (that is, an
increasing y direction on the display device). This situation is
illustrated in How pixels are defined to be “inside” and “outside” shapes.

	An unfilled idealized geometric shape is drawn by calculating an
artificial area for the shape, and then deciding which pixels are
inside or outside that area, using the rules described above. The
artificial area is calculated by taking the filled shape consisting
of those points that are within half the line thickness from the
outline curve (using a normal distance function, that is, the length
of the line drawn at right angles to the tangent to the outline curve
at the nearest point). To visualize this, imagine a filled shape the
same size as the unfilled shape, and overlay on this filled shape an
identical, but slightly smaller, unfilled shape.

[image: _images/graphics-3.png]
How pixels are defined to be “inside” and “outside” shapes

It is important to note that these rules imply that the decision point
used for insideness checking is offset from the point used for
addressing the pixel by half a device unit in both the x and y
directions. It is worth considering the motivations for these
conventions.

When two shapes share a common edge, it is important that only one of the
shapes own any pixel. The two triangles in Two triangles illustrate
this. The pixels along the diagonal belong to the lower figure. When the
decision point of the pixel (its center) lies to one side of the line or the
other, there is no issue. When the boundary passes through a decision point,
which side the inside of the figure is on is used to decide.

[image: _images/graphics-4.png]
Two triangles

The reason for choosing the decision point half a pixel offset from the
address point is to reduce the number of common figures (such as
rectilinear lines and rectangles with integral coordinates) that invoke
the boundary condition rule. This usually leads to more symmetrical
results. For instance, shows a circle drawn when the decision point is
the same as the address point. The four lighter points are
indeterminate: it is not clear whether they are inside or outside the
shape. Since each boundary case is determined according to which side
has the figure on it, and since the same rule must be applied uniformly
for all figures, there is no choice but to pick only two of the four
points, leading to an undesirable lopsided figure.

[image: _images/graphics-5.png]
Choosing any two of the shaded pixels causes asymmetry

If all four boundary points had been chosen instead, the result would be
a symmetrical figure. However, since this figure is symmetrical about a whole
pixel, it is one pixel wider than it ought to be. The problem with this can be
seen clearly in Two forms of a circle inscribed in a square, in which
a circle is drawn over a square. In the left-hand figure, the decision point
is at the center of the pixel, but in the right-hand figure, it is not.

[image: _images/graphics-6.png]
Two forms of a circle inscribed in a square

It is for this reason that the decision point is at the center of the
pixel. This draws circles that look like the one in
An aesthetically pleasing circle

[image: _images/graphics-7.png]
An aesthetically pleasing circle

A consequence of these rendering conventions is that, when the start or
end coordinate (minus half the line thickness, if the shape is a path)
is not an integer, then rendering is not symmetric under reflection
transformations. Thus, to correctly and portably draw an outline of
thickness 1 around a (rectilinear) rectangular area with integral
coordinates, the outline path must have half-integral coordinates.
Drawing rectilinear areas whose boundaries are not on pixel boundaries
cannot be guaranteed to be portable. In other words, the “control
points” for a rectangular area are at the corners, while the control
points for a rectilinear path are in the center of the path, not at the
corners. Therefore, in order for a path and an area to abut seamlessly,
the coordinates of the path must be offset from the coordinates of the
area by half the thickness of the path.

Permissible alternatives during rendering

Some platforms may distinguish between lines of the minimum thinness
from lines that are thicker than that. The two rasterizations depicted
in Two examples of lines of thickness 1 are
both perfectly reasonable rasterizations of tilted lines that are a
single device unit wide. The right-hand line is drawn as a tilted
rectangle, the left as the “thinnest visible” line.

[image: _images/graphics-8.png]
Two examples of lines of thickness 1

For thick lines, a platform may choose to draw the exact tilted fractional
rectangle, or the coordinates of that rectangle might be rounded so that it is
distorted into another polygonal shape. The latter case may be prove to be
faster on some platforms. The two rasterizations depicted in
Two examples of lines of thickness 2 are both reasonable.

[image: _images/graphics-9.png]
Two examples of lines of thickness 2

The decision about which side of the shape to take when a boundary line
passes through the decision point is made arbitrarily, although this is
compatible with the X11 definition. This is not necessarily the most
convenient decision. The main problem with this is illustrated by the
case of a horizontal line (see
Two possible definitions of horizontal lines.
Left figure is X11 definition).
The DUIM definition draws the rectangular slice above the coordinates,
since those pixels are the ones whose centers have the figure
immediately above them. This definition makes it simpler to draw
rectilinear borders around rectilinear areas.

[image: _images/graphics-10.png]
Two possible definitions of horizontal lines.
Left figure is X11 definition

Drawing using path related functions

A number of functions are provided that let you perform a number of
connected drawing operations by encapsulating all the operations as a
single path, rendering the graphic itself only when the whole path has
been defined explicitly. You can use these functions by following the
general procedure below:

	Create a new path using start-path.

	Define the appearance of the path using any combination of line-to,
move-to, curve-to, and arc-to.

	Optionally, use close-path to create a closed path from the
segments defined in step 2 above.

	End the current path definition using end-path (if you have not
already used close-path).

	Render the outline of the path to the drawable object using
stroke-path.

	If the path you created is closed, flood fill the path using
fill-path.

Each of these functions is described in a little more in the following
sections. For full details about each individual function, refer to its
full reference entry in DUIM-Graphics Module.

Functions for controlling the definition of a path

The following generic functions provide overall control of the
definition of a path. In each case, the argument drawable is either a
sheet or a medium.

	
start-path Generic function

	

	Signature:	start-path drawable => ()

	Discussion:	Starts a new path on drawable. The path can be created with any
number of calls to line-to, curve-to, arc-to,
and move-to. Its appearance can also be manipulated using
fill-path and stroke-path.After creating the path, use either close-path or end-path to
finish the path, or abort-path to abandon it altogether.

	
end-path Generic function

	

	Signature:	end-path drawable => ()

	Discussion:	Ends the definition of the current path in drawable. Once the
definition has been ended, the path can be rendered to the drawable
using fill-path or stroke-path.The function close-path can also be used to end the definition of a
path.

	
close-path Generic function

	

	Signature:	close-path drawable => ()

	Discussion:	Closes the current path on the drawable: that is, creates a closed
figure from the elements already defined.For example, if you create a path that has four connected lines (using
line-to), you can use close-path to join the first and last lines
in the path to create a closed, five-sided figure.

	
abort-path Generic function

	

	Signature:	abort-path drawable => ()

	Discussion:	Aborts the current path on drawable. Any operations that have been
performed since the last call to start-path are discarded.

	
fill-path Generic function

	

	Signature:	fill-path drawable => ()

	Discussion:	Uses the current brush to fill the current path on drawable. Only
closed paths can be filled. If the path has not already been closed
using close-path, it is closed
automatically.

	
stroke-path Generic function

	

	Signature:	stroke-path drawable => ()

	Discussion:	Uses the current pen to draw the current path on drawable. Note that
the path must not have been previously filled. This function does not
close the path: you must use close-path if you wish to do this.

Functions for describing the appearance of a path

The following generic functions actually perform drawing operations
within a path. Again, in each case, the argument drawable is either a
sheet or a medium. All other arguments are instances of <real> [http://opendylan.org/books/drm/Number_Classes#real].

	
line-to Generic function

	

	Signature:	line-to drawable x y => ()

	Discussion:	Draws a line from the current position in the path to (x, y).

	
curve-to Generic function

	

	Signature:	curve-to drawable x1 y1 x2 y2 x3 y3 => ()

	Discussion:	Draws a curve in the current path on drawable starting from the
current position, and passing through (x1, y1), (x2, y2), and
(x3, y3).

	
move-to Generic function

	

	Signature:	move-to drawable x y => ()

	Discussion:	Move the position in the current path on drawable to (x, y).The function move-to can be used several times within the definition
of a path, allowing for the definition of several visually separate
sections within the same path.

	
arc-to Generic function

	

	Signature:	arc-to drawable center-x center-y radius-1-dx radius-1-dy radius-2-dx radius-2-dy #key start-angle end-angle => ()

	Discussion:	Draws an arc in the current path on drawable.
[image: _images/graphics-11.png]

Description of the arguments for arc-to

The center of the arc is defined by (center-x, center-y), the
points furthest away from the center for each radius are calculated by
adding radius-1-dx and radius-1-dy to center-x and center-y
respectively (to calculate the outermost points for the first radius),
and adding radius-2-dx and radius-2-dy to center-x and center-y
respectively (to calculate the outermost points for the second radius).

The arguments start-angle and end-angle define the extent of the arc
that is drawn.

For each function listed above, an equivalent function is also provided
that passes composite objects in its arguments, rather than separate
coordinates. These functions take the same name as the functions above,
but with a * character appended. (Thus, line-to* performs the same
operation as line-to, but passes composite objects in its arguments).
You should be aware that using these composite object functions may lead
to a loss of performance. For more details, see the full reference
entries for each function.

DUIM-Graphics Module

This section contains a complete reference of all the interfaces that
are exported from the duim-graphics module.

	
abort-path Generic function

	Aborts the current path on the specified drawable object.

	Signature:	abort-path drawable => ()

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

	Discussion:	Aborts the current path on drawable. Any operations that have been
performed since the last call to start-path are discarded.

	See also:	
	close-path

	end-path

	start-path

	
arc-to Generic function

	Draws an arc in the current path on the specified drawable.

	Signature:	arc-to drawable center-x center-y radius-1-dx radius-1-dy radius-2-dx radius-2-dy #key start-angle end-angle => ()

	Signature:	arc-to* drawable center radius-1-dx radius-1-dy radius-2-dx radius-2-dy #key start-angle end-angle => ()

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

	radius-1-dx – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	radius-1-dy – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	radius-2-dx – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	radius-2-dy – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	start-angle – An instance of type false-or(<real>).

	end-angle – An instance of type false-or(<real>).

The following arguments are specific to arc-to.

	Parameters:	
	center-x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	center-y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

The following argument is specific to arc-to*.

	Parameters:	
	center – An instance of type <transform>.

	Discussion:	Draws an arc in the current path on the specified drawable.

This function is used, in combination with line-to, curve-to,
and move-to, to define a path. The function start-path should
be used to start the definition of the path, and end-path can be
used to finish the definition.

The center of the arc is defined by (center-x, center-y), and the
extreme points of the virtual ellipse around the arc (that is, the
points furthest away from the center for each radius) are calculated by
adding the radius vectors radius-1-dx and radius-1-dy to center-x
and center-y respectively (to calculate the outermost points for the
first radius), and adding the radius vectors radius-2-dx and
radius-2-dy to center-x and center-y respectively (to calculate
the outermost points for the second radius).

Please note that arc-to does not currently support arcs whose
orientation is not axis-aligned ellipses. For all practical purposes,
this means that radius-1-dy and radius-2-dx must always be 0.

[image: _images/graphics-12.png]

The arguments start-angle and end-angle define the extent of the arc
that is drawn.

The function arc-to* is identical to arc-to, except that it passes
composite objects, rather than separate coordinates, in its arguments.
You should be aware that using this function may lead to a loss of
performance.

	See also:	
	curve-to

	draw-bezier-curve

	draw-line

	line-to

	move-to

	
close-path Generic function

	Closes the current path on the specified drawable.

	Signature:	close-path drawable => ()

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

	Discussion:	Closes the current path on the drawable: that is, creates a closed
figure from the elements already defined.

For example, if you create a path that has four connected lines (using
line-to), you can use close-path to join the first and last lines
in the path to create a closed, five-sided figure.

Only closed paths can be filled, although fill-path will close
a non-closed path automatically.

	See also:	
	abort-path

	end-path

	start-path

	
copy-area Generic function

	Copies a rectangle of pixels from a specified medium to the same medium.

	Signature:	copy-area medium from-x from-y width height to-x to-y #key function => ()

	Parameters:	
	medium – An instance of type <medium>.

	from-x – An instance of type <coordinate>.

	from-y – An instance of type <coordinate>.

	width – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	height – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	to-x – An instance of type <coordinate>.

	to-y – An instance of type <coordinate>.

	function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function]. Default value: $boole-1.

	Discussion:	Copies the pixels from the medium starting at the position specified
by (from-x, from-y) to the position (to-x, to-y) on the same
medium. A rectangle whose width and height is specified by width and
height is copied. If medium is a medium or a stream, then the x and
y values are transformed by the user transformation. The copying must be
done by medium-copy-copy.

	See also:	
	copy-from-pixmap

	copy-to-pixmap

	
copy-from-pixmap Generic function

	Copies a rectangle of pixels from the specified pixmap to the specified
medium.

	Signature:	copy-from-pixmap pixmap pixmap-x pixmap-y width height medium medium-x medium-y #key function => ()

	Parameters:	
	pixmap – An instance of type <pixmap>.

	pixmap-x – An instance of type <coordinate>.

	pixmap-y – An instance of type <coordinate>.

	width – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	height – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	medium – An instance of type <coordinate>.

	medium-x – An instance of type <coordinate>.

	medium-y – An instance of type <coordinate>.

	function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function]. Default value: $boole-1.

	Discussion:	Copies a rectangle of pixels from pixmap starting at the position
specified by (pixmap-x, pixmap-y) into medium at the position
(medium-x, medium-y). A rectangle whose width and height is
specified by width and height is copied. If medium is a medium or
a stream, then medium-x and medium-y are transformed by the user
transformation. The copying must be done by medium-copy-copy.

	See also:	
	copy-area

	copy-to-pixmap

	<pixmap>

	
copy-to-pixmap Generic function

	Copies a rectangle of pixels from the specified medium to the specified
pixmap.

	Signature:	copy-to-pixmap medium medium-x medium-y width height pixmap pixmap-x pixmap-y #key function => ()

	Parameters:	
	medium – An instance of type <medium>.

	medium-x – An instance of type <coordinate>.

	medium-y – An instance of type <coordinate>.

	width – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	height – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	pixmap – An instance of type <pixmap>.

	pixmap-x – An instance of type <coordinate>.

	pixmap-y – An instance of type <coordinate>.

	function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function]. Default value: $boole-1.

	Discussion:	Copies the pixels from the medium starting at the position specified
by (medium-x, medium-y) into pixmap at the position specified by
(pixmap-x, pixmap-y). A rectangle whose width and height is
specified by width and height is copied. If medium is a medium or
a stream, then medium-x and medium-y are transformed by the user
transformation. The copying must be done by medium-copy-copy.

If pixmap is not supplied, a new pixmap will be allocated.

	See also:	
	copy-area

	copy-from-pixmap

	
curve-to Generic function

	Draws a curve through three specified points in the current path on the
specified drawable.

	Signature:	curve-to drawable x1 y1 x2 y2 x3 y3 => ()

	Signature:	curve-to* drawable point1 point2 point3 => ()

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

The following arguments are specific to curve-to.

	Parameters:	
	x1 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y1 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	x2 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y2 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	x3 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y3 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

The following arguments are specific to curve-to*.

	Parameters:	
	point1 – An instance of type <transform>.

	point2 – An instance of type <transform>.

	point3 – An instance of type <transform>.

	Discussion:	Draws a curve in the current path on drawable starting from the
current position, and passing through (x1, y1), (x2, y2), and
(x3, y3).

This function is used, in combination with :gf:line-to`, move-to,
and arc-to, to define a path. The function start-path should
be used to start the definition of the path, and end-path can be
used to finish the definition.

The function curve-to* is identical to curve-to, except that it
passes composite objects, rather than separate coordinates, in its
arguments. You should be aware that using this function may lead to a
loss of performance.

	See also:	
	arc-to

	draw-bezier-curve

	draw-line

	line-to

	move-to

	
destroy-pixmap Generic function

	Destroys the specified pixmap.

	Signature:	destroy-pixmap pixmap => ()

	Parameters:	
	pixmap – An instance of type <pixmap>.

	Discussion:	Destroys pixmap.

	See also:	
	draw-pixmap

	
do-with-output-to-pixmap Generic function

	Returns a pixmap for the specified medium.

	Signature:	do-with-output-to-pixmap medium continuation #key width height clear? => pixmap

	Parameters:	
	medium – An instance of type <medium>.

	continuation – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	width – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	height – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	clear? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #t.

	Values:	
	pixmap – An instance of type <pixmap>.

	Discussion:	Returns a pixmap for the specified medium. This function is called by
with-output-to-pixmap and returns the pixmap that is operated on. If
you are subclassing :class:<medium>`, you must define new methods on this
function.

The width and height are integers that give the width and height of
the pixmap. If they are unsupplied, the result pixmap will be large
enough to contain all of the output done by the body of code executed by
with-output-to-pixmap.

	See also:	
	with-output-to-pixmap

	
draw-arrow Generic function

	Draws an arrow between two specified points.

	Signature:	draw-arrow drawable x1 y1 x2 y2 #key from-head? to-head? head-length head-width => ()

	Signature:	draw-arrow* drawable point1 point2 #key from-head? to-head? head-length head-width => ()

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

	from-head? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #f.

	to-head? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #t.

	head-length – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer]. Default value: 10.

	head-width – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer]. Default value: 5.

The following arguments are specific to draw-arrow.

	Parameters:	
	x1 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y1 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	x2 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y2 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

The following arguments are specific to draw-arrow*.

	Parameters:	
	point1 – An instance of type <transform>.

	point2 – An instance of type <transform>.

	Discussion:	Draws an arrow on drawable between two (x1, y1) and (x2, y2
), using the current pen. Dashed lines start dashing from the first
point.

If from-head? is #t, then the arrow-head points from (x1, y1)
to (x2, y2). If to-head? is #t, then the arrow-head points
from (x2, y2) to (x1, y1).

If both from-head? and to-head? are #t, then a double-headed
arrow is drawn.

The arguments head-length and head-width specify the length and
width of the arrow-head respectively, in pixels.

[image: _images/graphics-13.png]

The function draw-arrow* is identical to draw-arrow, except that
it passes composite objects, rather than separate coordinates, in its
arguments. You should be aware that using this function may lead to a
loss of performance.

	See also:	
	draw-line

	
draw-bezier-curve Generic function

	Draws a bezier curve through the specified set of points.

	Signature:	draw-bezier-curve sheet coord-seq #key filled? => ()

	Signature:	draw-bezier-curve* drawable points #key filled? => ()

	Parameters:	
	filled? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #t.

The following arguments are specific to draw-bezier-curve.

	Parameters:	
	sheet – An instance of type <sheet>.

	coord-seq – An instance of type limited(<sequence>, of: <coordinate>).

The following arguments are specific to draw-bezier-curve*.

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

	points – An instance of type limited(<sequence>, of: <point>).

	Discussion:	Draws a bezier curve on sheet or drawable (depending on the function
you use) through the sequence of coordinates given by coord-seq,
using the current pen. Dashed lines start dashing from the first point.

If filled? is #t then the bezier-curve will be filled, using the
current brush.

The function draw-bezier-curve* is identical to draw-bezier-curve,
except that it passes composite objects, rather than separate
coordinates, in its arguments. You should be aware that using this
function may lead to a loss of performance.

	See also:	
	curve-to

	draw-line

	
draw-circle Generic function

	Draws a circle with the specified center and radius.

	Signature:	draw-circle drawable center-x center-y radius #key start-angle end-angle filled? => ()

	Signature:	draw-circle* drawable center radius #key start-angle end-angle filled? => ()

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

	radius – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	start-angle – An instance of type false-or(<real>).

	end-angle – An instance of type false-or(<real>).

	filled? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #t.

The following arguments are specific to draw-circle.

	Parameters:	
	center-x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	center-y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

The following argument is specific to draw-circle*.

	Parameters:	
	center – An instance of type <transform>.

	Discussion:	Draws a circle on drawable with center (center-x, center-y) and a
radius of radius pixels, using the current pen.

The start-angle and end-angle arguments let you draw a sector of a
circle rather than a whole circle.

If filled? is #t, then the circle will be filled, using the current
brush.

The function draw-circle* is identical to draw-circle, except that
it passes composite objects, rather than separate coordinates, in its
arguments. You should be aware that using this function may lead to a
loss of performance.

	See also:	
	draw-ellipse

	draw-oval

	
draw-ellipse Generic function

	Draws an ellipse with the specified center and radius vectors.

	Signature:	draw-ellipse drawable center-x center-y radius-1-dx radius-1-dy radius-2-dx radius-2-dy #key start-angle end-angle filled? => ()

	Signature:	draw-ellipse* drawable center radius-1-dx radius-1-dy radius-2-dx radius-2-dy #key start-angle end-angle filled? => ()

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

	radius-1-dx – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	radius-1-dy – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	radius-2-dx – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	radius-2-dy – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	start-angle – An instance of type false-or(<real>).

	end-angle – An instance of type false-or(<real>).

	filled? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #t.

The following arguments are specific to draw-ellipse.

	Parameters:	
	center-x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	center-y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

The following argument is specific to draw-ellipse*.

	Parameters:	
	center – An instance of type <transform>.

	Discussion:	Draws an ellipse on drawable with the specified center and extreme
points, using the current pen.

The center of the ellipse is defined by (center-x, center-y), and
the extreme points of the ellipse (that is, the points furthest away
from the center for each radius) are calculated by adding the radius
vectors radius-1-dx and radius-1-dy to center-x and center-y
respectively (to calculate the outermost points for the first radius),
and adding the radius vectors radius-2-dx and radius-2-dy to
center-x and center-y respectively (to calculate the outermost
points for the second radius).

Please note that draw-ellipse does not currently support
non-axis-aligned ellipses. For all practical purposes, this means that
radius-1-dy and radius-2-dx must always be 0.

[image: _images/graphics-14.png]

The arguments start-angle and end-angle let you draw just a section
of the ellipse, rather than the whole ellipse.

If filled? is #t then the ellipse will be filled, using the current
brush.

The function draw-ellipse* is identical to draw-ellipse, except
that it passes composite objects, rather than separate coordinates, in
its arguments. You should be aware that using this function may lead to
a loss of performance.

	See also:	
	draw-circle

	draw-oval

	
draw-image Generic function

	Draws the specified image at the specified position.

	Signature:	draw-image drawable image x y => ()

	Signature:	draw-image* drawable image point => ()

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

	image – An instance of type <image>.

The following arguments are specific to draw-image.

	Parameters:	
	x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

The following argument is specific to draw-image*.

	Parameters:	
	point – An instance of type <transform>.

	Discussion:	Draws image on drawable at (x, y).

The function draw-image* is identical to draw-image, except that
it passes composite objects, rather than separate coordinates, in its
arguments. You should be aware that using this function may lead to a
loss of performance.

	See also:	
	draw-pixmap

	draw-text

	
draw-line Generic function

	Draws a line between the specified points.

	Signature:	draw-line drawable x1 y1 x2 y2 => ()

	Signature:	draw-line* drawable point1 point2 => ()

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

The following arguments are specific to draw-line.

	Parameters:	
	x1 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y1 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	x2 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y2 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

The following arguments are specific to draw-line*.

	Parameters:	
	point1 – An instance of type <transform>.

	point2 – An instance of type <transform>.

	Discussion:	Draws a line on drawable between (x1, y1) and (x2, y2),
using the current pen. Dashed lines start dashing from the first point.

The function draw-line* is identical to draw-line, except that it
passes composite objects, rather than separate coordinates, in its
arguments. You should be aware that using this function may lead to a
loss of performance.

	See also:	
	curve-to

	draw-arrow

	draw-bezier-curve

	draw-lines

	draw-point

	line-to

	
draw-lines Generic function

	Draws a series of lines between the specified sequence of points.

	Signature:	draw-lines drawable coord-seq => ()

	Signature:	draw-lines* drawable points => ()

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

The following argument is specific to draw-lines.

	Parameters:	
	coord-seq – An instance of type limited(<sequence>, of: <coordinate>).

The following argument is specific to draw-lines*.

	Parameters:	
	points – An instance of type limited(<sequence>, of: <point>).

	Discussion:	Draws a series of lines on drawable between the specified sequence of
points, using the current pen. Dashed lines start dashing from the first
point of each line.

The function draw-lines* is identical to draw-line, except that it
passes composite objects, rather than separate coordinates, in its
arguments. You should be aware that using this function may lead to a
loss of performance.

Example

draw-lines(medium,
 vector(100, 150,
 200, 250,
 300, 350,
 400, 450));

	See also:	
	draw-line

	draw-points

	draw-rectangles

	
draw-oval Generic function

	Draws an oval with the specified center and radii.

	Signature:	draw-oval drawable center-x center-y x-radius y-radius #key filled? => ()

	Signature:	draw-oval* drawable center x-radius y-radius #key filled? => ()

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

	x-radius – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y-radius – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	filled? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #t.

The following arguments are specific to draw-oval.

	Parameters:	
	center-x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	center-y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

The following argument is specific to draw-oval*.

	Parameters:	
	center – An instance of type <transform>.

	Discussion:	Draws an oval on drawable with center (center-x, center-y) and
radii defined by x-radius and y-radius, using the current pen.

Ovals are similar to ellipses, except that they have straight edges.

[image: _images/graphics-15.png]

If filled? is #t then the oval will be filled, using the current
brush.

The function draw-oval* is identical to draw-oval, except that it
passes composite objects, rather than separate coordinates, in its
arguments. You should be aware that using this function may lead to a
loss of performance.

	See also:	
	draw-circle

	draw-ellipse

	
draw-pixmap Generic function

	Draws the contents of the specified pixmap at the specified point.

	Signature:	draw-pixmap drawable pixmap x y #key function => ()

	Signature:	draw-pixmap* drawable pixmap point #key function => ()

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

	pixmap – An instance of type <pixmap>.

	function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function]. Default value: $boole-1.

The following arguments are specific to draw-pixmap.

	Parameters:	
	x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

The following argument is specific to draw-pixmap*.

	Parameters:	
	point – An instance of type <transform>.

	Discussion:	Draws the contents of pixmap on drawable at (x, y).

The function draw-pixmap* is identical to draw-pixmap, except that
it passes composite objects, rather than separate coordinates, in its
arguments. You should be aware that using this function may lead to a
loss of performance.

	See also:	
	destroy-pixmap

	draw-image

	draw-text

	make-pixmap

	
draw-point Generic function

	Draws a single point at the specified position.

	Signature:	draw-point drawable x y => ()

	Signature:	draw-point* drawable point => ()

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

The following arguments are specific to draw-point.

	Parameters:	
	x – The x coordinate.

	y – The y coordinate.

The following argument is specific to draw-point*.

	Parameters:	
	point – An instance of type <transform>.

	Discussion:	Draws a single point on drawable at (x, y).

The function draw-point* is identical to draw-point, except that
it passes composite objects, rather than separate coordinates, in its
arguments. You should be aware that using this function may lead to a
loss of performance.

	See also:	
	draw-line

	draw-points

	
draw-points Generic function

	Draws a sequence of points at the specified positions.

	Signature:	draw-points drawable coord-seq => ()

	Signature:	draw-points* drawable points => ()

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

The following argument is specific to draw-points.

	Parameters:	
	coord-seq – An instance of type limited(<sequence>, of: <coordinate>).

The following argument is specific to draw-points*.

	Parameters:	
	points – An instance of type limited(<sequence>, of: <point>).

	Discussion:	Draws a sequence of points on drawable at the specified positions.

The function draw-points* is identical to draw-points, except that
it passes composite objects, rather than separate coordinates, in its
arguments. You should be aware that using this function may lead to a
loss of performance.

	See also:	
	draw-lines

	draw-point

	draw-rectangles

	
draw-polygon Generic function

	Draws a polygon joining the specified points.

	Signature:	draw-polygon drawable coord-seq #key closed? filled? => ()

	Signature:	draw-polygon* drawable points #key closed? filled? => ()

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

	closed? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #t.

	filled? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #t.

The following argument is specific to draw-polygon.

	Parameters:	
	coord-seq – An instance of type limited(<sequence>, of: <coordinate>).

The following argument is specific to draw-polygon*.

	Parameters:	
	points – An instance of type limited(<sequence>, of: <point>).

	Discussion:	Draws a polygon on drawable joining the specified points, using the
current pen. Dashed lines start dashing at the starting point of the
first segment.

If closed? is #t, then the polygon is closed, that is, a line is
drawn from the last point in the sequence back to the first.

If filled? is #t then the polygon will be filled, using the current
brush.

The function draw-polygon* is identical to draw-polygon, except
that it passes composite objects, rather than separate coordinates, in
its arguments. You should be aware that using this function may lead to
a loss of performance.

	See also:	
	draw-rectangle

	draw-regular-polygon

	draw-triangle

	
draw-rectangle Generic function

	Draws a rectangle at the specified position.

	Signature:	draw-rectangle drawable x1 y1 x2 y2 #key filled? => ()

	Signature:	draw-rectangle* drawable point1 point2 #key filled? => ()

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

	filled? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #t.

The following arguments are specific to draw-rectangle.

	Parameters:	
	x1 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y1 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	x2 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y2 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

The following arguments are specific to draw-rectangle*.

	Parameters:	
	point1 – An instance of type <transform>.

	point2 – An instance of type <transform>.

	Discussion:	Draws a rectangle on drawable with left and right corners at (x1,
y1) and (x2, y2), using the current pen. Dashed lines start dashing
at the starting point of the first segment.

Note that the specified points could represent either top or bottom
corners: only one rectangle is possible between and pair of points.

[image: _images/graphics-16.png]

If filled? is #t then the rectangle will be filled, using the
current brush.

The function draw-rectangle* is identical to draw-rectangle, except
that it passes composite objects, rather than separate coordinates, in its
arguments. You should be aware that using this function may lead to a loss
of performance.

	See also:	
	draw-polygon

	draw-rectangles

	draw-regular-polygon

	draw-triangle

	
draw-rectangles Generic function

	Draws a sequence of rectangles at the specified positions.

	Signature:	draw-rectangles drawable coord-seq #key filled? => ()

	Signature:	draw-rectangles* drawable points #key filled? => ()

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

	filled? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #t.

The following argument is specific to draw-rectangles.

	Parameters:	
	coord-seq – An instance of type limited(<sequence>, of: <coordinate>).

The following argument is specific to draw-rectangles*.

	Parameters:	
	points – An instance of type limited(<sequence>, of: <point>).

	Discussion:	Draws a sequence of rectangles on drawable with left and right corners
at the specified positions, using the current pen. Dashed lines start
dashing at the starting point of the first segment of each rectangle.

If filled? is #t then the rectangles will be filled, using the
current brush.

The function draw-rectangles* is identical to draw-rectangles,
except that it passes composite objects, rather than separate
coordinates, in its arguments. You should be aware that using this
function may lead to a loss of performance.

	See also:	
	draw-lines

	draw-points

	draw-rectangle

	
draw-regular-polygon Generic function

	Draws a regular polygon that touches the specified points, and has the
specified number of sides.

	Signature:	draw-regular-polygon drawable x1 y1 x2 y2 nsides #key handedness closed? filled? => ()

	Signature:	draw-regular-polygon* drawable point1 point2 nsides #key handedness closed? filled? => ()

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

	nsides – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	handedness – Default value: #"left".

	closed? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #t.

	filled? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #t.

The following arguments are specific to draw-regular-polygon.

	Parameters:	
	x1 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y1 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	x2 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y2 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

The following arguments are specific to draw-regular-polygon*.

	Parameters:	
	point1 – An instance of type <transform>.

	point2 – An instance of type <transform>.

	Discussion:	Draws a regular polygon on drawable, using the current pen, that
touches the specified points, and has the specified number of sides.
Dashed lines start dashing at the starting point of the first segment.

[image: _images/graphics-17.png]

If filled? is #t then the polygon will be filled, using the current
brush.

The function draw-regular-polygon* is identical to
draw-regular-polygon, except that it passes composite objects, rather
than separate coordinates, in its arguments. You should be aware that
using this function may lead to a loss of performance.

	See also:	
	draw-polygon

	draw-rectangle

	draw-triangle

	
draw-text Generic function

	Draws text at the specified point, in a specified direction.

	Signature:	draw-text drawable text x y #key start end align-x align-y towards-point transform-glyphs? => ()

	Signature:	draw-text* drawable text point #key start end align-x align-y towards-point transform-glyphs? => ()

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

	text – An instance of type type-union(<string>, <character>).

	start – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer]. Default value: 0.

	end – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer]. Default value: size(text).

	align-x – An instance of type one-of(#"left", #"right", #"center"). Default value: #"left".

	align-y – An instance of type one-of(#"top", #"bottom", #"baseline"). Default value: #"baseline".

	transform-glyphs? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #f.

	do-tabs? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #f

The following arguments are specific to draw-text.

	Parameters:	
	towards-x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	towards-y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

The following arguments are specific to draw-text*.

	Parameters:	
	towards-point – An instance of type <transform>.

	point – An instance of type <transform>.

	Discussion:	Draws text from text on drawable at (x, y). Text is drawn in
the direction of the point (towards-x, towards-y).

[image: _images/graphics-18.png]

If start and end are specified, then only a section of text is
drawn, starting at character start, and ending with character end.
By default, the whole of text is drawn.

The align-x and align-y arguments let you specify the left-right
alignment and the top-bottom alignment (respectively) of the text that
is written to drawable.

For align-x, the whole of the distance between (x, y) and
(towards-x, towards-y) is used to align text. Thus, if align-x
is #”right”, the text will appear closer to (towards-x, towards-y)
than to (x, y), assuming text occupies less space than the
distance between these two points.

The argument transform-glyphs? controls whether the text is reversed
in cases when towards-x is less than x. If transform-glyphs? is
#t, then text is reversed in these cases, that is, the last character
of text to be written is still closest to the point (towards-x,
towards-y), and the text appears reversed. If transform-glyphs? is
#f, then the first character of text to be written is closest to
the point (towards-x, towards-y), and the text does not appear
reversed.

If do-tabs? is #t, then any tab characters in text are honored,
and are drawn as tabs. If do-tabs? is #f, then tab characters are
replaced by spaces.

The function draw-text* is identical to draw-text, except that it
passes composite objects, rather than separate coordinates, in its
arguments. You should be aware that using this function may lead to a
loss of performance.

	See also:	
	draw-image

	draw-pixmap

	
draw-triangle Generic function

	Draws a triangle between the specified points.

	Signature:	draw-triangle drawable x1 y1 x2 y2 x3 y3 #key filled? => ()

	Signature:	draw-triangle* drawable p1 p2 p3 #key filled? => ()

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

	filled? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #t.

The following arguments are specific to draw-triangle.

	Parameters:	
	x1 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y1 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	x2 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y2 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	x3 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y3 – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

The following arguments are specific to draw-triangle*.

	Parameters:	
	p1 – An instance of type <transform>.

	p2 – An instance of type <transform>.

	p3 – An instance of type <transform>.

	Discussion:	Draws a triangle on drawable between the specified points, using the
current pen. Dashed lines start dashing at the starting point of the
first segment.

[image: _images/graphics-19.png]

If filled? is #t then the triangle will be filled, using the current
brush.

The function draw-triangle* is identical to draw-triangle, except
that it passes composite objects, rather than separate coordinates, in
its arguments. You should be aware that using this function may lead to
a loss of performance.

	See also:	
	draw-polygon

	draw-rectangle

	draw-regular-polygon

	
end-path Generic function

	Ends the definition of the current path in the specified drawable
object.

	Signature:	end-path drawable => ()

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

	Discussion:	Ends the definition of the current path in drawable. Once the definition
has been ended, the path can be rendered to the drawable using
fill-path or stroke-path.

The function close-path can also be used to end the definition of
a path.

	See also:	
	abort-path

	close-path

	start-path

	
fill-path Generic function

	Uses the current brush to fill the current path on the specified
drawable object.

	Signature:	fill-path drawable => ()

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

	Discussion:	Uses the current brush to fill the current path on drawable. If the
path has not already been closed using
close-path, it is closed automatically.

	See also:	
	stroke-path

	close-path

	
line-to Generic function

	Draws a line from the current position in the path to a new position.

	Signature:	line-to drawable x y => ()

	Signature:	line-to* drawable point => ()

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

The following arguments are specific to line-to.

	Parameters:	
	x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

The following argument is specific to line-to*.

	Parameters:	
	point – An instance of type <transform>.

	Discussion:	Draws a line from the current position in the path to (x, y).

This function is used, in combination with move-to, curve-to,
and arc-to, to define a path. The function start-path should
be used to start the definition of the path, and end-path can be
used to finish the definition.

The function line-to* is identical to line-to, except that it
passes composite objects, rather than separate coordinates, in its
arguments. You should be aware that using this function may lead to a
loss of performance.

	See also:	
	arc-to

	curve-to

	draw-bezier-curve

	draw-line

	move-to

	
make-pixmap Generic function

	Creates a pixmap from the specified medium with a specified size.

	Signature:	make-pixmap medium width height => pixmap

	Parameters:	
	medium – An instance of type <medium>.

	width – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	height – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Values:	
	pixmap – An instance of type <pixmap>.

	Discussion:	Creates a pixmap from medium with a specified size, in pixels, given
by width and height.

	See also:	
	draw-pixmap

	<pixmap>

	pixmap?

	
move-to Generic function

	Move the position in the current path on the specified drawable.

	Signature:	move-to drawable x y => ()

	Signature:	move-to* drawable point => ()

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

The following arguments are specific to move-to.

	Parameters:	
	x – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	y – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

The following argument is specific to move-to*.

	Parameters:	
	point – An instance of type <transform>.

	Discussion:	Move the position in the current path on drawable to (x, y).

This function is used, in combination with line-to, curve-to,
and arc-to, to define a path. The function start-path should
be used to start the definition of the path, and end-path can be
used to finish the definition.

The function move-to can be used several times within the definition
of a path, allowing for the definition of several visually separate
drawings within the same path.

The function move-to* is identical to move-to, except that it
passes composite objects, rather than separate coordinates, in its
arguments. You should be aware that using this function may lead to a
loss of performance.

	See also:	
	arc-to

	curve-to

	line-to

	
<pixmap> Open Abstract Instantiable Class

	The class of pixmap objects.

	Superclasses:	<image>

	Discussion:	The class of pixmap objects.A pixmap can be thought of as an “off-screen window”, that is, a medium
that can be used for graphical output, but is not visible on any display
device. Pixmaps are provided to allow you to generate a piece of output
associated with some display device that can then be rapidly drawn on
a real display device. For example, an electrical CAD system might
generate a pixmap that corresponds to a complex, frequently used part in
a VLSI schematic, and then use copy-from-pixmap to draw the part
as needed.

	Operations:	The following operation is exported from the DUIM-Graphics module.
	copy-from-pixmap

	destroy-pixmap

	draw-image

	draw-pixmap

	pixmap?

The following operation is exported from the DUIM-DCs module.

	image-height

	image-width

	See also:	
	draw-pixmap

	make-pixmap

	pixmap?

	
pixmap? Generic function

	Returns true if the specified object is a pixmap.

	Signature:	pixmap? object => pixmap?

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	pixmap? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if object is a pixmap.

	See also:	
	<pixmap>

	
<pixmap-medium> Open Abstract Instantiable Class

	The class of pixmap mediums.

	Superclasses:	<medium>

	Discussion:	The class of pixmap mediums, that, is mediums capable of doing output to
a pixmap.

	Operations:	
	with-output-to-pixmap

	See also:	
	<medium>

	with-output-to-pixmap

	
restore-clipping-region Generic function

	

	
start-path Generic function

	Starts a new path on the specified drawable object.

	Signature:	start-path drawable => ()

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

	Discussion:	Starts a new path on drawable. The path can be created with any number
of calls to line-to, curve-to and move-to. Its
appearance can also be manipulated using fill-path and
stroke-path.

After creating the path, use either close-path or end-path to
finish the path, or abort-path to abandon it altogether.

	See also:	
	abort-path

	close-path

	end-path

	
stroke-path Generic function

	Uses the current pen to draw the current path on the specified drawable
object.

	Signature:	stroke-path drawable => ()

	Parameters:	
	drawable – An instance of type type-union(<sheet>, <medium>).

	Discussion:	Uses the current pen to draw the current path on drawable. Note that
the path must not have been previously filled. This function does not
close the path: you must use close-path if
you wish to do this.

	See also:	
	close-path

	fill-path

	
with-output-to-pixmap Macro

	Executes a body of code, returning the results to a pixmap.

	Macro Call:	with-output-to-pixmap (medium, #rest options) body end => pixmap

	Parameters:	
	medium – An instance of type <pixmap-medium>.

	options – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	body – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	pixmap – An instance of type <pixmap>.

	Discussion:	Executes a body of code, returning the results to a pixmap.Binds
medium to a pixmap medium, that is, a medium that does output to a
pixmap, and then evaluates body in that context. All the output done
to medium inside of body is drawn on the pixmap stream. The pixmap
medium supports the medium output protocol, including all of the
graphics functions.

The returned value is a pixmap that can be drawn onto medium using
copy-from-pixmap.

	See also:	
	do-with-output-to-pixmap

	<pixmap-medium>

 Copyright 2011, Dylan Hackers.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 api |

 	
 next |

 	
 previous |

 	DUIM Reference 1.0 documentation

DUIM-Layouts Library

Overview

The DUIM-Layouts library contains interfaces that define a number of
layouts for use in your GUI applications, as well as the necessary
functions, generic functions, and macros for creating, manipulating, and
calculating them automatically. The library contains a single module,
duim-layouts, from which all the interfaces described in this chapter
are exposed. DUIM-Layouts Module contains
complete reference entries for each exposed interface.

Layouts are sheet objects that determine how the interface elements are
presented on the screen. A layout object takes a number of children,
expressed as a vector, and lays out those children according to certain
constraints. Each child of a layout must be an instance of a DUIM class.

The class hierarchy for DUIM-Layouts

This section presents an overview of the available classes of layout,
and describes the class hierarchy present.

The <layout> class and its subclasses

The base class for the majority of DUIM layouts is the <layout> class,
which is itself a subclass of <sheet>. All other layout-oriented
classes are subclasses of <sheet>.

The immediate subclasses of <sheet> that are exposed by the
DUIM-Layouts library are shown in The class hierarchy for
DUIM-Layouts. Only <basic-composite-pane>, <leaf-pane>,
and <layout> have any subclasses defined. See Subclasses of
<layout> for details of the subclasses of <layout>.

Overall class hierarchy for the DUIM-Layouts library

 DUIM-Gadgets Library

 Navigation

 	
 index

 	
 api |

 	
 next |

 	
 previous |

 	DUIM Reference 1.0 documentation

DUIM-Gadgets Library

Overview

The elements that comprise a Graphical User Interface (GUI) are arranged
in a hierarchical ordering of object classes. At the top level of the
DUIM hierarchy there are three main classes, <sheet>,
<gadget>, and <frame>, all of which are subclasses of
<object> [http://opendylan.org/books/drm/Object_Classes#object].

The DUIM-Gadgets library contains classes that define a wide variety of
gadgets for use in your GUI applications, such as push buttons, radio
buttons, and check boxes. The library also provides the necessary
functions, generic functions, and macros for creating and manipulating
these classes. The library contains a single module, duim-gadgets,
from which all the interfaces described in this chapter are exposed.
DUIM-Gadgets Module contains complete
reference entries for each exposed interface.

Gadgets are the basic behavioral GUI element (above the level of
events).

	Gadgets do not need to have a visual presence, though in practice
every gadget provided by DUIM does, since all general instances of
<gadget> are also general instances of <sheet>.

	Many classes of gadget maintain some kind of state for their
behavior, and in practice some of this is usually reflected in the
UI. For example, you can tell that a check box is selected just by
looking at it.

	They handle events and turn these into callbacks, for convenience.

Some of the more important types of gadget are as follows:

	Buttons

	A wide variety of buttons are provided by DUIM. These
include not only standard buttons such as push buttons and radio
buttons, but items that can be placed within menus.

	Action gadgets

	An action gadget is any gadget that can be used to
perform an action, such as a button, or menu command.

	Value gadgets

	A value gadget is any gadget that can have a value
associated with it. In principle, this is true of the majority of
gadgets, but the value of a gadget is more important for certain
types of gadget (for instance, lists or radio boxes) than for others
(for instance, push buttons).

	Value range gadgets

	Value range gadgets are those value gadgets for which the possible
value sits within a defined range. This includes gadgets such as
scroll bars and sliders.

	Collection gadgets

	Collection gadgets are those gadgets that can contain a number of
“child” gadgets, the specification of which can be described in terms
of a Dylan collection, and includes gadgets such as list controls and
groups of buttons. Usually, the behavior of each of the “child”
gadgets is interdependent in some way; for example, only one button
in a group of radio buttons may be selected at any time. With
collection gadgets, you can specify the “child” gadgets very simply,
without having to worry about defining each “child” explicitly.

Each of these types of gadget is described in more detail in subsequent
sections, and full reference entries for every interface exposed in the
DUIM-Gadgets library are available in DUIM-Gadgets
Module. For a more general introduction to the
gadgets provided in DUIM, see the tour in the Building Applications
using DUIM book. See the same book for a more practical example of
implementing an application using the DUIM library.

Callbacks and keys

When an event occurs in a user interface (for example, a button is
pressed, a menu command is chosen, or an item in a list is
double-clicked), you usually want some operation to be performed. If the
user of your application chooses the File > Open command, a File Open
dialog should be displayed. If the user clicks on an OK button in a
dialog, the dialog should be dismissed and the appropriate changes to
the application state to be performed. In DUIM, you can provide this
functionality by specifying a function known as a callback.

Generally speaking, a callback gets passed a single argument, which is
the gadget that is affected. Thus, the argument passed to the callback
for a button is the button itself. Callbacks do not need to have a
return value, although they are not forbidden either. If a value is
returned by a callback function, then it is just ignored.

Callbacks are used in preference to event handlers because Dylan does
not let you write methods that specialize on individual instances. In
languages such as C, you uniquely name each element in an interface, and
then provide behavior for each element by writing event handlers that
contain case statements that let you discriminate on individual
elements. This is a somewhat inelegant solution. Instead, in Dylan you
specify the names of the callbacks for each element in an interface when
you create the elements. It is then a simple matter for the system to
know what behavior goes with what elements, and is much less tedious
than having to write many cumbersome methods for handle-event.

In Dylan, you use events in order to create new kinds of class. If you
were creating a new kind of button, you would need to define a new
method for handle-event in order to describe what happens when
you click on an instance of that button. You would then write callbacks
to deal with particular instance of the new class of button.

By contrast with callbacks, you can also provide functions in DUIM known
as keys, which are specific to collection gadgets. A key is used to
set the value of some aspect of the collection gadget for which the key
is defined. With keys, therefore, the values returned by the function
are fundamental to the operation of the gadget. There are two keys that
are generally used by gadgets, known as the value key and the label key.
The value key is a function that is used to calculate the value of the
gadget for which the key is defined. The label key is used to calculate
the printed representation, or label, of all the items in a collection
gadget.

Gadget protocols

Gadgets are objects that make up an interface: the menus, buttons,
sliders, check lists, tool bars, menu bars, and so on. Gadget classes
may support three protocols, value, items, and activate.

	Gadgets that support the value protocol respond to the
gadget-value message, a value-changed callback, and have a setter
function associated with them.

	Gadgets that support the items protocol respond to gadget-items
and have a gadget setter function associated with them.

	Gadgets that support the activate protocol have an activation
callback associated with them.

Gadgets have a set of slots, or properties, associated with them:
gadget-label, gadget-value, gadget-items, and
gadget-enabled?. Every gadget has some or all of these properties.

	gadget-label

	This slot holds the label that appears on the gadget on the screen.
If a gadget does not have a label, the gadget-label function
returns #f.

	gadget-value

	This slot holds the value(s) of the gadget. If a gadget does not have
any values, the gadget-value function returns #f.

	gadget-items

	This slot is a list of the contents of the gadget. If the gadget does
not have items, for example a button, gadget-items returns nothing.

	gadget-enabled?

	This slot tests whether or not the gadget is active. All gadgets have
a gadget-enabled? slot.

An introduction to the protocols supported by different sorts of gadget
can also be found in the Building Applications using DUIM book.

The class hierarchy for DUIM-Gadgets

This section presents an overview of the available classes of gadget,
and describes the class hierarchy present.

In each table below, classes that support the items protocol are
displayed in bold text, and classes that support the activate
protocol are displayed using italic text.

Note: In `Subclasses of the \<collection-gadget\> class`_, every
subclass shown supports the items protocol, though for clarity,
no bold is used.

All subclasses of <value-gadget> support the value protocol. These
are described in Subclasses of <value-gadget>, Subclasses of
<button>, and Subclasses of <collection-gadget>.

The <gadget> class and its subclasses

The base class for the majority of DUIM gadgets is the <gadget> class,
which is itself a subclass of <object>. All other DUIM gadgets are
subclasses of <gadget>, with the exception of <list-item>,
<tree-node>, and <table-item>.

The immediate subclasses of <gadget> are shown in `Overall class
hierarchy for the DUIM-Gadgets library`_. Only <value-gadget>
and <page> have any subclasses defined. See
Subclasses of <value-gadget> and Subclasses of <page> for details
of these subclasses.

The <gadget> class provides a number of subclasses that allow
particular parts of a user interface to be created:

	<menu>

	Use this class to add a menu to the menu bar of any application
frame. Menus themselves contain commands created using the
menu-specific button and collection gadgets described in
Subclasses of <button> and Subclasses of <collection-gadget>.

	<tool-bar>

	This class is used to add a tool bar to an application frame. A
tool bar is a row of buttons that duplicates the functionality
of the most commonly used menu commands, thereby providing the
user with quick access to the most useful operations in the
application.

	<scroller>

	This is a generic scrolling gadget that can be used in a number
of situations.

	<viewport>

	A viewport can be used to create a generic pane for displaying
specialized contents that you may have defined. Use this
class when there is no other class provided for displaying the
objects in question.

	<splitter>

	This class can be used to split the current view in half. This
allows the user, for example, to create a second view of the
same document.

The <gadget> class provides a number of subclasses that allow
general spatial and grouping capability, in addition to the layout
functionality described in DUIM-Layouts Library.
These are as follows:

	<label>

	This class is used to assign label to many other types of
gadget. Many gadgets can be assigned one or more labels, usually by
means of a label: init-keyword. This class is used to assign any
label.

	<separator>

	This allows a line to be drawn between any two gadgets
or groups of gadgets, so as to provide a visible barrier between
them.

	<spacing>

	This allows you to specify how much space should be
placed between any two gadgets or groups of gadgets.

	<border>

	This allows a visible border to be placed around any number of gadgets.

	<group-box>

	This allows you to group together any number of related
gadgets in a frame. Grouped elements are usually displayed with a
border and label identifying the grouping.

Overall class hierarchy for the DUIM-Gadgets library

<object>

<gadget>

<action-gadget>

<value-gadget>

See Subclasses of <value-gadget>

<label>

<menu>

<tool-bar>

<scroller>

<separator>

<viewport>

<spacing>

<border>

<group-box>

<splitter>

<page>

See Subclasses of <page>

<list-item>

<tree-node>

<table-item>

Subclasses of <value-gadget>

Any gadget that can take a value of some sort is a subclass of
<value-gadget>. As might be expected, this includes the majority of
the gadgets in the DUIM-Gadgets library.

Every subclass of <value-gadget> supports the value protocol, as
described in Overview.

Several subclasses of <value-gadget> themselves have a number of
subclasses defined. These include:

	<text-gadget>

	Any gadget into which you can type text. These
include both text editors (multiple line edit controls) and text
fields (single line edit controls).

	<value-range-gadget>

	Value gadgets whose value can vary within a known range, such as
scroll bars.

	<button>

	Any button, such as a radio button, check button, or push
button. See Subclasses of <button> for
more details about the classes of button available.

	<collection-gadget>

	Any gadget whose contents form a collection, such as a list, a tree
control, or a group of buttons. See Subclasses of
<collection-gadget> for more details about the
classes of collection gadget available.

Also provided are the following specific GUI elements:

	<menu-bar>

	This used to create the standard menu bar that is
commonly found across the top of an application frame.

	<status-bar>

	This is used to create a status bar, usually placed at
the bottom of an application frame. A status bar is used to display
miscellaneous information about the current state of the application.

	<tab-control>

	Tab controls are analogous to dividers in a filing
cabinet or notebook, with multiple logical pages of information
displayed within the same window. Clicking on any of the tabs
displayed in a tab control displays a new page of information.

The subclasses of <value-gadget> are as shown in `Subclasses of
the \<value-gadget\> class`_.

Subclasses of the <value-gadget> class

<value-gadget>

<text-gadget>

<password-field>

<text-editor>

<text-field>

<value-range-gadget>

<slider>

<scroll-bar>

<progress-bar>

<button>

See Subclasses of <button>

<menu-bar>

<status-bar>

<tab-control>

<collection-gadget>

See Subclasses of <collection-gadget>

Subclasses of <page>

The <page> class is the base class of gadgets that are used to display
a whole page of information within a “parent” element, with the page
itself optionally containing other layouts or gadgets. Pages are used in
situations where different sets of information (the pages themselves)
need to be displayed in a common parent.

The subclasses of <page> are as shown in `Subclasses of the <page>
class`_.

Subclasses of the <page> class

<page>

<tab-control-page>

<property-page>

<wizard-page>

The <tab-control-page> class is used to define the elements that are
associated with each tab in a tab control.

[image: _images/gadgets-3.png]
A tab control page

The <property-page> class performs a similar job for property frames
(visually, a property frame looks like a tab control in a dialog box,
and is one way of implementing a dialog box that has several pages of
information. Property frames are so named because they are often used to
display the user-configurable properties of an application.

[image: _images/gadgets-4.png]
A property page

The <wizard-page> class is used to define the elements in each
page of a wizard frame. Wizard frames are another form of multi-page
dialog, but consist of several physically distinct windows that are
presented to the user in a strict order.

[image: _images/gadgets-5.png]
A wizard page

Subclasses of <button>

The subclasses of <button> are as shown in `Subclasses of the
\<button\> class`_. These subclasses include not only
buttons that can appear in any sheet, but also their equivalent classes
of menu item. Thus, an instance of <check-button> represents a button
whose state can toggle a specific value on and off, and an instance of
<check-menu-button> represents a menu item whose state can toggle a
specific value on and off in the same way.

Since all the subclasses of <button> are themselves value gadgets,
each one supports the value protocol, as described in Overview.

Subclasses of the <button> class

<button>

<check-button>

<check-menu-button>

<menu-button>

<push-button>

<push-menu-button>

<radio-button>

<radio-menu-button>

Subclasses of <collection-gadget>

The subclasses of <collection-gadget> are as shown in `Subclasses
of the \<collection-gadget>\ class`_. All of these
subclasses support the items protocol, even though they are not
displayed in bold.

Subclasses of the <collection-gadget> class

<collection-gadget>

<button-box>

<check-box>

<push-box>

<radio-box>

<list-box>

<menu-box>

<check-menu-box>

<push-menu-box>

<radio-menu-box>

<option-box>

<combo-box>

<spin-box>

<list-control>

<tree-control>

<table-control>

Two subclasses themselves have a number of subclasses defined: those
subclasses representing collections of buttons:

	<button-box>

	These are used to create collections of buttons of the
same type. You can create collections of any of the three basic types
of button available: check buttons, radio buttons, or push buttons.

	<menu-box>

	These are used to create collections of menu items of the same type.
As with <button-box>, you can create collections of
any of the three basic types of menu button available: check, radio,
or push menu buttons.

In addition, the following types of list are provided:

	<list-box>

	These are standard list boxes, allowing a list of items
to be displayed in a pane, with a scroll bar allowing the complete
list to be viewed if necessary. List boxes may be single, multiple,
or no selection.

	<option-box>

	A standard drop-down list box. This is similar to a
list box, except that the entire list of options is only displayed on
demand. In its closed state, only the current selection is visible.

	<combo-box>

	A combo box combines an option box with a text field,
providing a list box whose contents can be displayed on demand, or
edited by typing into the box in its closed state. Any new values
typed in by the user are automatically added to the list of options
subsequently displayed.

	<spin-box>

	A spin box is a text box that will only accept a limited
number of input values, themselves making up a loop. A typical
example might be the integers between 0 and 10. Spin boxes also
incorporate small buttons (up-down controls) that allow the user to
change the value by clicking the button in the appropriate direction.

Three controls are also available for displaying more general pieces of
information:

	<list-control>

	List controls provide an extended list box
functionality that let you display a collection of items, each item
consisting of an icon and a label. A number of different views are
available, allowing you to view the items in different ways.

	<tree-control>

	Tree controls are a special list control that
displays a set of objects in an indented outline based on the logical
hierarchical relationship between the objects.

	<table-control>

	These allow you to display information as a table, with information
divided into a number of column headings.

Since all the subclasses of <collection-gadget> are themselves
value gadgets, each one supports the value protocol, as described in
Overview.

Button gadgets

Broadly speaking, buttons are gadgets whose value can be changed, or for
which some user-defined functionality can be invoked, by clicking on the
gadget with the pointer device. Buttons encompass obvious controls such
as push buttons, radio buttons, and check boxes, and, less obviously,
menu items.

[image: _images/gadgets-6.png]
A selection of button and equivalent menu buttons

Text gadgets

A text gadget is a gadget into which you can type textual information.
There are three different classes of text gadget available in DUIM, each
of which is a subclass of the <text-gadget> class.

	<text-field>

	This is the most basic type of text gadget: the single line.

<text-editor>

<password-field>

Collection gadgets

A collection gadget is any gadget whose items may themselves form a
Dylan collection. Often, a collection gadget is used to group together a
number other gadgets, such as buttons, in such a way that the
functionality of those gadgets is connected in some way. For example, a
<radio-box> is a collection of radio buttons connected in such a way
that only one of the buttons can be selected at any time (as is the
standard behavior for a group of radio buttons). The items contained in
a collection gadget are expressed using the gadget-items slot.

Note that collection gadgets are not defined as collections of other
gadgets, even though this might be a convenient way to think of them.
When defining a collection gadget, you give the gadget-items slot a
standard Dylan collection. The type of collection gadget you are
creating then determines the type of gadget that is contained in the
resulting collection gadget.

The most simple types of collection gadget mirror the standard buttons
and menu buttons available, allowing you to create collections of push
buttons, radio buttons, check buttons, and their menu button
equivalents. Separators are automatically added to collections of menu
buttons so as to delineate them visually from other menu buttons in the
same menu.

[image: _images/gadgets-10.png]
A variety of simple collection gadgets

Value range gadgets

A value range gadget is any gadget whose value falls within a defined
Dylan range.

[image: _images/gadgets-11.png]
A variety of value range gadgets

Sliders, scroll bars, and scroll bars are all examples of value range
gadgets. Value range gadgets provide immediate visual feedback of the
value of the gadget at any time, as shown in `A variety of value
range gadgets`_. In the case of sliders and scroll
bars, the user can set the gadget-value by dragging the appropriate
part of the gadget to a new point on the scale. Progress bars are
typically used only to provide the user with feedback about the progress
of a task.

Page gadgets

A page gadget is used to define the contents of a page in any control
that consists of multiple pages. Different classes of page gadget are
used for different types of multi-page control. There are three types of
page available:

	<tab-control-page>

	These are pages that are used within a tab control. Clicking on any
tab in a tab control displays a different page of information.

	<property-page>

	These are pages that are displayed in property frames: modeless
dialog boxes that contain several pages of information displayed as
tabbed pages. This class is similar to <tab-control-page>,
except that its use is limited to modeless dialog boxes. For more
information about property frames, see ` <frames.htm#89815>`_.

	<wizard-page>

	This type of page is used exclusively in wizard frames, in which the
user is guided through a sequence of steps in order to perform a
specified operation. For more information about wizard frames,
see ` <frames.htm#89815>`_.

[image: _images/gadgets-12.png]
A tab control page, a property page, and a wizard page

Note

The <wizard-page> and <property-page> classes
are actually exposed by the DUIM-Frames library, rather than the
DUIM-Gadgets library. See ` <frames.htm#89815>`_for full details
on this library.

Gadgets that can have children

Most gadgets cannot have any children associated with them; they are
leaf elements in the sheet hierarchy. However, a number of specialized
gadgets exist which can take children. This section describes those
classes.

For all the classes described in this section, the children of any
instance of the class are defined using the children: init-keyword. In
addition, the children of an instance of any of these classes must
themselves be gadgets of some kind. In some cases (menu bars, for
instance), the type of gadgets that can be defined as a child is
constrained.

Menus and menu bars

You can define a system of menus for a DUIM application by creating a
hierarchy of menu bar, menu, and menu button objects. Menu bars can be
defined for any application written using DUIM using the <menu-bar>
class. For most applications, a single menu bar is defined for each
window in the application that contains a system of menus. Each menu bar
contains a number of menus: the children of the menu bar. Each menu in
an application is an instance of the <menu> class. The menus of an
application can be populated using several different classes of gadget,
all of which are subclasses of the <menu-button> class.

Status bars

You can add a status bar to a window in a DUIM application by creating
an instance of the <status-bar> class. A status bar is typically used
to provide feedback to the user, and by default shows displays the
documentation string for any menu command currently under the mouse
cursor. In addition, you can define status bars that display any textual
information your application requires, and to this end, status bars can
take a number of children.

[image: _images/gadgets-13.png]
A status bar

In word processing applications, the status bar may also display the
current position of the insertion point, and information about the
current font family, size, and variation, if appropriate. In an e-mail
client application, the status bar may display the number of messages in
the current folder. Often, the system time is displayed in the status
bar for an application.

Tab controls

An instance of the class <tab-control> lets you define a sheet that
contains several “pages” of information. Each page of information is
displayed by clicking on the appropriate tab along the top of the sheet.

[image: _images/gadgets-14.png]
A tab control

This children of a tab control are the pages of information themselves.
Each child should be an instance of the <page> class. The various
types of page available are described in Page gadgets.

Group boxes

[image: image0] The <group-box> class allows you to group together any number
of gadgets that are associated to some degree in an interface. A group
box creates a purely visual grouping, and does not affect the behavior
or interaction between its children in any way. For this reason, there
are no constraints on the types of gadget that you can group together;
the children of a group box can be any type of gadget.

DUIM-Gadgets Module

This section contains a complete reference of all the interfaces that
are exported from the duim-gadgets module.

	
<action-gadget> Open Abstract Class

	The protocol class for gadgets that have action callbacks.

	Superclasses:	<gadget>

	Init-Keywords:	
	activate-callback – An instance of type false-or(<function>). Default value: #f.

	Discussion:	The class used by gadgets that have an action callback that allows some
type of action to be performed, such as a push button. Action gadgets
can only be activated when they are enabled.

	Operations:	
	gadget-activate-callback

	gadget-activate-callback-setter

	See also:	
	<gadget>

	
activate-gadget Generic function

	Activates the specified gadget.

	Signature:	activate-gadget gadget => ()

	Parameters:	
	gadget – An instance of type <gadget>.

	Discussion:	Activates gadget by calling the activate callback. For example, in the
case of a button, calling this generic function would be as if the user
had pressed the button.

	
add-column Generic function

	Adds a column to the specified table.

	Signature:	add-column table heading generator index => ()

	Parameters:	
	table – An instance of type <table-control>.

	heading – An instance of type type-union(<string>, <label>).

	generator – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	index – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Adds a column table, with a table heading given by heading. The
contents of the column are generated by calling the generator function
on the item for each row of table. The index specifies where in the
column order the new column should be added.

	See also:	
	remove-column

	
add-item Generic function

	Adds an item to the specified list or table control.

	Signature:	add-item list-or-table item #key after => item

	Parameters:	
	list-or-table – An instance of type-union(<list-control>, <table-control>).

	item – An instance of type type-union(<list-item>, <table-item>).

	after (#key) – An instance of type type-union(<list-item>, <table-item>).

	Values:	
	item – An instance of type type-union(<list-item>, <table-item>).

	Discussion:	Adds an item to the specified list-or-table. The new item is
created via a call to make-item.

The after argument indicates which item to place the new item after.

	See also:	
	find-item

	<list-control>

	<list-item>

	make-item

	remove-item

	<table-control>

	<table-item>

	
add-node Generic function

	Adds node to the specified tree control.

	Signature:	add-node tree parent node #key after setting-roots? => node

	Parameters:	
	tree – An instance of <tree-control>.

	parent – An instance of <tree-control>.

	node – An instance of type <tree-node>.

	after (#key) – An instance of type <tree-node>.

	setting-roots? (#key) – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Values:	
	node – An instance of type <tree-node>.

	Discussion:	Adds a node to the specified tree with the specified parent. The
new item is created via a call to make-node.

The after argument indicates which node to place the new node after.
If setting-roots? is true, then the new node is added at the root of
tree.

	See also:	
	find-node

	make-node

	remove-node

	<tree-control>

	
<border> Open Abstract Instantiable Class

	The class of bordering gadgets.

	Superclasses:	<gadget> <single-child-composite-pane>

	Init-Keywords:	
	thickness – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer]. Default value: 1.

	type – An instance of type one-of(#f, #"flat", #"sunken",
#"raised", #"ridge", #"groove", #"input", #"output"). Default
value: #f.

	Discussion:	The base class of gadgets that provide borders to their children.

The thickness of the border is specified by the thickness:
init-keyword, and is given in pixels.

The type: init-keyword represents the kind of border to be created.
Borders may appear raised from the area they surround, or lowered with
respect to it. Alternatively, a border may be displayed as a thin ridge
or groove. Input and output borders represent “logical” borders.

[image: _images/gadgets-16.png]
Different types of border

Borders are usually created using the with-border macro, rather
than by making direct instances of this class.

	See also:	
	<group-box>

	with-border

	
<button> Open Abstract Instantiable Class

	The class of all button gadgets.

	Superclasses:	<value-gadget>

	Init-Keywords:	
	accelerator – An instance of type false-or(<gesture>). Default value: #f.

	mnemonic – An instance of type false-or(<character>). Default value: #f.

	Discussion:	The class of all button gadgets.

The accelerator: init-keyword is used to specify a keyboard
accelerator for the button. This is a key press that gives the user a
method for activating the button using a short key sequence rather than
by clicking the button itself. Keyboard accelerators usually combine the
CONTROL and possibly SHIFT keys with an alphanumeric character.

When choosing accelerators, you should be aware of style guidelines that
might be applicable for the operating system you are developing for. For
example, a common accelerator for the command File > Open in Windows
is CTRL+O.

Keyboard accelerators are mostly used in menu buttons, though they can
be applied to other forms of button as well.

The mnemonic: init-keyword is used to specify a keyboard mnemonic for
the button. This is a key press that involves pressing the ALT key
followed by a number of alphanumeric keys.

Note that the choice of keys is more restrictive than for keyboard
accelerators. They are determined in part by the names of button itself
(and, in the case of menu buttons, the menu that contains it), as well
as by any appropriate style guidelines. For example, a common mnemonic
for the File > Open command is ALT, F, O.

Mnemonics have the advantage that the letters forming the mnemonic are
automatically underlined in the button label on the screen (and, for
menu buttons, the menu itself). This means that they do not have to be
remembered. In addition, when the user makes use of a mnemonic in a
menu, the menu itself is displayed on screen, as if the command had been
chosen using the mouse. This does not happen if the keyboard accelerator
is used.

Buttons are intrinsically “non-stretchy” gadgets. That is, the width and
height of a button is generally calculated on the basis of the button’s
label, and the button will be sized so that it fits the label
accordingly. Sometimes, however, you want a button to occupy all the
available space that is given it, however large that space may be. To
force a button to use all the available width or height, specify
max-width: $fill or max-height: $fill accordingly in the button
definition. See the second example below to see how this is done.

	Operations:	
	<frames.htm#56017>

	<frames.htm#56015>

	<frames.htm#24406>

	<frames.htm#37806>

	<frames.htm#48310>

	<frames.htm#91817>

	<frames.htm#56017>

	Example:	contain
 (make(<button>, label: "Hello",
 activate-callback:
 method (gadget)
 notify-user
 (format-to-string
 ("Pressed button %=", gadget),
 owner: gadget)
 end));

The following example creates a column layout that contains two
elements.

	The first is a row layout that itself contains two buttons with short
labels.

	The second is a button with a long label.

The use of equalize-widths?: in the call to vertically ensures that
these two elements have the same width.

The interesting part of this example is in the use of max-width: $fill
in the definition of the buttons with shorter labels. If this was not
used, then each button would be sized such that it just fit its own
label, and there would be empty space in the row layout. However, using
max-width: $fill ensures that each button is made as large as
possible, so as to fit the entire width of the row layout.

vertically (equalize-widths?: #t)
 horizontally ()
 make(<button>, label: "Red", max-width: $fill);
 make(<button>, label: "Ultraviolet",
 max-width: $fill);
 end;
 make(<button>,
 label:
 "A button with a really really long label");
end

	See also:	
	<button-box>

	<check-button>

	$fill

	gadget-accelerator

	<menu-button>

	<radio-button>

	<space-requirement>

	
<button-box> Open Abstract Instantiable Class

	A class that groups buttons.

	Superclasses:	<collection-gadget> <multiple-child-composite-pane>

	Init-Keywords:	
	rows – An instance of type false-or(<integer>).

	columns – An instance of type false-or(<integer>).

	orientation – An instance of type
one-of(#"horizontal", #"vertical").
Default value: #"horizontal".

	layout-class – An instance of type subclass(<layout>).
Default value: <column-layout> or
<row-layout>, depending on orientation.

	child – An instance of type false-or(<sheet>). Default value: #f.

	Discussion:	The class of grouped buttons; the superclass of <check-box> and
<radio-box>.

The rows: and columns: init-keywords allow you to specify how many
rows or columns should be used to lay out the buttons. In addition, you
can set the orientation of the button box by specifying the
orientation: init-keyword.

An instance of the class that is specified by layout-class: is used to
parent the buttons that are created, and any extra arguments that are
specified, such as x-alignment: and x-spacing:, are passed along to
this layout.

You can use the child: init-keyword to specify a sheet hierarchy to be
used in place of a list of items. Under normal circumstances, the items
defined for any button box are realized in terms of their “natural”
gadget class. For example, if you create a radio button box, DUIM
creates a radio button for each item that you specify. By using the
child: init-keyword, you can define sheet hierarchies that override
these “natural” gadget classes, letting you specify more complex
arrangements of gadgets: in this way, you could create a check button
box where each check button is itself surrounded by a group box. For an
example of the use of the child: init-keyword, look at the initial
dialog box that is displayed when you first start the Dylan environment.
In this dialog, a number of radio buttons are presented, each delineated
by its own group box. In fact, this dialog is implemented s a radio
button box in which the child: init-keyword has been used rather than
the items: init-keyword.

If you use child:, then the gadget-value returned by the gadget is
the gadget-id of the selected button. Contrast this with items:,
where the selected item is returned as the :gf:gadget-value`.

	Examples:	contain(make(<button-box>,
 selection-mode: #"multiple",
 items: range(from: 0, to: 20)));

The following examples illustrate the use of some of the init-keywords
described. They each create an instance of a subclass of
<button-box>. Note that the selection-mode: init-keyword
may be used instead, rather than creating a direct instance of one of
the subclasses.

contain(make(<check-box>, items: range(from: 1, to: 9),
 columns: 3));
contain(make(<radio-box>, items: #("Yes", "No"),
 orientation: #"vertical");
contain(make(<check-box>, items: #(1, 2, 3. 4),
 layout-class: <table-layout>
 rows: 2));

	See also:	
	<check-box>

	<push-box>

	<radio-box>

	
<check-box> Open Abstract Instantiable Class

	The class of check boxes, or groups of check buttons.

	Superclasses:	<button-box> <action-gadget>

	Discussion:	[image: image1] The instantiable class that implements an abstract check box,
that is, a gadget that constrains a number of toggle buttons, zero or
more of which may be selected at any one time.

The value of a check box is a sequence of all the currently selected
items in the check box.

	Examples:	contain(make(<check-box>, items: #(1, 2, 3, 4, 5)));
contain(make(<check-box>, items: range(from: 1, to: 9),
 columns: 3));
contain(make(<check-box>, items: #(1, 2, 3, 4),
 layout-class: <table-layout>
 rows: 2));

	See also:	
	<group-box>

	<push-box>

	<radio-box>

	
<check-button> Open Abstract Instantiable Class

	The class of check buttons.

	Superclasses:	<button> <action-gadget>

	Discussion:	[image: image2] The class of check buttons. The value of a check button is
either #t or #f, depending whether or not it is currently selected.

Internally, this class maps into the check box Windows control.

	Example:	contain(make(<check-button>, label: "Check button"));

	See also:	
	<check-menu-button>

	<push-button>

	<radio-button>

	
<check-menu-box> Open Abstract Instantiable Class

	The class of groups of check buttons displayed in a menu.

	Superclasses:	<menu-box> <action-gadget>

	Discussion:	The class of groups of check buttons displayed in a menu|image3| .

Internally, this class maps into the menu Windows control.

	Example:	The following example creates a menu that shows an example of a check
menu box.

contain(make(<menu>,
 label: "Hello...",
 children: vector
 (make(<radio-menu-box>,
 items:
 #("You", "All",
 "Everyone")),
)));

	See also:	
	<menu-box>

	<push-menu-box>

	<radio-menu-box>

	
<check-menu-button> Open Abstract Instantiable Class

	The class of check buttons that can be displayed in a menu.

	Superclasses:	<menu-button>

	Discussion:	[image: image4] The class of check buttons that can be displayed in a menu. The
values of a menu button is either #t or #f.

Internally, this class maps into the menu item Windows control.

	Example:	contain
 (make(<check-menu-button>,
 label: "Menu button",
 activate-callback:
 method (gadget)
 notify-user(format-to-string
 ("Toggled button %=", gadget)) end));

	See also:	
	<check-button>

	<radio-menu-button>

	
<collection-gadget> Open Abstract Class

	The class of all gadgets that contain collections.

	Superclasses:	<value-gadget>

	Init-Keywords:	
	items – An instance of type <sequence> [http://opendylan.org/books/drm/Collection_Classes#sequence]. Default value: #[].

	label-key – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	value-key – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function]. Default value: identity [http://opendylan.org/books/drm/Coercing_and_Copying_Objects#identity].

	test – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function]. Default value: ==.

	selection – An instance of type limited(<sequence>, of: <integer>).
Default value: #[].

	selection-mode – An instance of type one-of(#"single", #"multiple", #"none").
Default value: #"single".

	key-press-callback – An instance of type
false-or(<frames.htm#40934>, <function>).

	Discussion:	The class of all gadgets that can contain collections.

The items: init-keyword is used to specify the collection of items
that the collection gadget contains.

The label-key: and value-key: init-keywords are functions that are
used to calculate the labels and the value of the gadget respectively.

The value of a collection gadget is determined by calling the value key
of the gadget on each selected item in the gadget. The “printed
representation” of a collection gadget is determined by calling the
label key of the gadget on each item.

By default, the label key returns the numeric label of the gadget items
(for example, the buttons in a button box would be labeled 1, 2, 3, and
so on). In general, the label key can be trusted to “do the right thing”
by default.

By default, the value key returns the collection gadget itself.

Note also that the gadget-value method for collection gadgets
is different for single and multiple selection gadgets. For single
selection, the item that is selected is returned. For multiple
selection, a sequence of the selected items is returned.

The test: init-keyword is the function used to test whether two items
of the collection are considered identical.

The selection: init-keyword is available only to those subclasses
of <collection-gadget> that contain items that may be
selected. The selection is a collection containing the selected
keys from the items collection.

Subclasses of <collection-gadget> that can have selections
are:

	<list-box>

	<option-box>

	<list-control>

	<tree-control>

	<table-control>

	<radio-box>

	<check-box>

	<check-menu-box>

	<radio-menu-box>

	<combo-box>

The key-press-callback: init-keyword lets you specify a key-press
callback. This type of callback is invoked whenever a key on the
keyboard is pressed while the gadget has focus. It applies only to graph
controls, list controls, tab controls, and table controls. See
gadget-key-press-callback, for a fuller description of
key-press callbacks.

	Operations:	
	gadget-items

	gadget-items-setter

	gadget-key-press-callback

	gadget-key-press-callback-setter

	gadget-label-key

	gadget-selection

	gadget-selection-mode

	gadget-selection-setter

	gadget-test

	gadget-value-key

	See also:	
	<button-box>

	<check-box>

	<check-menu-box>

	<combo-box>

	<list-box>

	<list-control>

	<option-box>

	<radio-box>

	<radio-menu-box>

	<table-control>

	<tree-control>

	
<combo-box> Open Abstract Instantiable Class

	The class of combo boxes, which combine options boxes with text fields.

	Superclasses:	<collection-gadget> <action-gadget> <text-gadget>

	Init-Keywords:	
	borders – An instance of type one-of(#f, #"none", #"flat",
#"sunken", #"raised", #"ridge", #"groove", #"input", #"output").
Default value: #f.

	scroll-bars – An instance of type one-of(#f, #"none",
#"horizontal", #"vertical", #"both", #"dynamic"). Default value:
#"both".

	Discussion:	The class of combo boxes. Combo boxes are similar to option boxes,
except that the text field is editable, so that new values can be
specified in addition to those already provided in the drop-down list.
Users may either choose an existing option from the list, or type in
their own.|image5|

It is common for additional items typed by the user to be added to the
list of options available. A combo box is often used to specify text in
a Find dialog box, for example, and any previous search terms can be
recalled by choosing them from the list. If you wish to provide this
functionality, then you can do so using a combination of add-item
and find-item, to search for the presence of an item and add it
if it does not already exist.

The borders: init-keyword lets you specify a border around the combo
box. If specified, a border of the appropriate type is drawn around the
gadget.

The scroll-bars: init-keyword lets you specify the scroll bar behavior
for the gadget.

Internally, this class maps into the Windows combo box control.

	Example:	contain(make(<combo-box>, value-type: <integer>
 items: range(from: 1 to: 5)));

	See also:	
	<option-box>

	<text-field>

	
contract-node Generic function

	Contracts the specified node in a tree control.

	Signature:	contract-node tree-control node => ()

	Parameters:	
	tree-control – An instance of <tree-control>.

	node – An instance of type <tree-node>.

	Discussion:	Contracts the specified node in tree-control, thereby hiding any
children of the node that were displayed.

	See also:	
	expand-node

	
display-menu Generic function

	Displays the specified menu.

	Signature:	display-menu menu #key x y => ()

	Parameters:	
	menu – An instance of type <menu>.

	x (#key) – An instance of type false-or(<integer>). Default value: #f.

	y (#key) – An instance of type false-or(<integer>). Default value: #f.

	Discussion:	Displays the specified menu, optionally at a precise position on the
screen, specified by x and y, where x and y are both relative
to the owner of the menu.

The function returns when the menu has been popped down again.

	See also:	
	<menu>

	
expand-node Generic function

	Expands the specified node in a tree control.

	Signature:	expand-node tree-control node #key sort-function => ()

	Parameters:	
	tree-control – An instance of <tree-control>.

	node – An instance of type <tree-node>.

	sort-function (#key) – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	Discussion:	Expands the specified node in a tree-control, thereby displaying any
children that the node has.

If no children have been explicitly added to the node before it is
expanded, they are generated by calling the tree’s children generating
function on the node.

	See also:	
	contract-node

	tree-control-children-generator

	
find-item Generic function

	Finds an item in a list control or a table control.

	Signature:	find-item list-or-table object #key => found-item

	Parameters:	
	list-or-table – An instance of type-union(<list-control>, <table-control>).

	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	found-item – An instance of type type-union(<list-item>, <table-item>, #f).

	Discussion:	Finds the item in a list control or a table control that corresponds to
object.

	See also:	
	add-item

	<list-control>

	<list-item>

	make-item

	remove-item

	<table-control>

	<table-item>

	
find-node Generic function

	Finds a node in a tree control.

	Signature:	find-item tree object #key parent-node => found-item

	Parameters:	
	tree – An instance of <tree-control>.

	object – An instance of <object> [http://opendylan.org/books/drm/Object_Classes#object].

	parent-node (#key) – An instance of type <tree-node>.

	Values:	
	found-item – An instance of type <tree-node>.

	Discussion:	Finds the item in a tree control that corresponds to object.

	See also:	
	add-node

	make-node

	remove-node

	<tree-control>

	
<gadget> Open Abstract Class

	The protocol class of all gadgets.

	Superclasses:	<object> [http://opendylan.org/books/drm/Object_Classes#object]

	Init-Keywords:	
	id – An instance of type false-or(<object>). Default value: #f.

	client – An instance of type false-or(<object>). Default value: #f.

	label – An instance of type type-union(<string>, <image>). Required.

	documentation – An instance of type false-or(<string>). Default value: #f.

	enabled? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #t.

	read-only? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #f.

	Discussion:	The class of all gadgets. You should not create a direct instance of
this class.

The id: init-keyword lets you specify a unique identifier for the
action gadget. This is a useful way of identifying gadgets, and provides
you with an additional way of controlling execution of your code,
allowing you to create simple branching statements such as:

select (gadget-id)
 #"ok" => do-okay();
 #"cancel" => do-cancel();
end select;

Note, however, that specifying id: is not generally necessary. The
id: init-keyword is useful in the case of tab controls, where it is
returned by gadget-value.

Every gadget has a client: that is specified when the gadget is
created. Typically, client: is a frame or a composite sheet.

The label: init-keyword lets you assign a label to any gadget. A label
may be any string, or an image of an appropriate size (usually a small
icon).

The documentation: init-keyword is used to provide a short piece of
online help for the gadget. Any documentation supplied for a gadget may
be used in a tooltip or a status bar. For example, moving the mouse over
a menu command may display the supplied documentation for that command
in the status bar of your application, or moving the mouse over any of
the buttons in a tool bar may display a tooltip (a piece of pop-up text)
that contains the supplied documentation.

If enabled?: is true, then the gadget is enabled; that is, the user
can interact with the gadget in an appropriate way. If the gadget is not
enabled, then the user cannot interact with it. For example, if a push
button is not enabled, it cannot be clicked, or if a check box is not
enabled, its setting cannot be switched on or off. Gadgets that are not
enabled are generally grayed out on the screen.

If read-only?: is true, then the user cannot alter any of the values
displayed in the gadget; this typically applies to text gadgets. Note
that this is not the same as disabling the gadget — if a gadget is set
to read-only, it is not grayed out, and the user may still interact with
it: only the values cannot be changed.

	Operations:	
	activate-gadget

	choose-from-dialog

	gadget-accelerator

	gadget-accelerator-setter

	gadget-client

	gadget-client-setter

	gadget-command

	gadget-command-setter

	gadget-default?

	gadget-default?-setter

	gadget-documentation

	gadget-documentation-setter

	gadget-value-changing-callback

	gadget-value-changing-callback-setter

	gadget-enabled?

	gadget-enabled?-setter

	gadget-id

	gadget-id-setter

	gadget-label

	gadget-label-setter

	gadget-mnemonic

	gadget-mnemonic-setter

	gadget-orientation

	gadget-popup-menu-callback

	gadget-popup-menu-callback-setter

	gadget-read-only?

	gadget-scrolling-horizontally?

	gadget-scrolling-vertically?

	update-gadget

	See also:	
	<action-gadget>

	<border>

	gadget-value

	<group-box>

	<label>

	<menu>

	<page>

	<separator>

	<spacing>

	<tool-bar>

	<value-gadget>

	<viewport>

	
gadget? Generic function

	Returns true if the specified object is a gadget.

	Signature:	gadget? object => gadget?

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	gadget? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if object is a gadget.

	Example:	*gadget* := contain(make
 (<radio-menu-box>,
 items: range(from: 0, to: 20)));
gadget?(*gadget*);

	See also:	
	<gadget>

	
gadget-accelerator Generic function

	Returns the keyboard accelerator of the specified gadget.

	Signature:	gadget-accelerator gadget => accelerator

	Parameters:	
	gadget – An instance of type <gadget>.

	Values:	
	accelerator – An instance of type <gesture>.

	Discussion:	Returns the keyboard accelerator of the specified gadget. An accelerator
is a keyboard gesture that activates a gadget (that is, it invokes the
activate callback for the gadget) without needing to use the mouse.

Accelerators are of most use with button gadgets, and in particular menu
button gadgets.

	See also:	
	<button>

	gadget-accelerator-setter

	<gesture>

	<menu-button>

	
gadget-accelerator-setter Generic function

	Sets the keyboard accelerator of the specified gadget.

	Signature:	gadget-accelerator-setter accelerator gadget => accelerator

	Parameters:	
	accelerator – An instance of type <gesture>.

	gadget – An instance of type <gadget>.

	Values:	
	accelerator – An instance of type <gesture>.

	Discussion:	Sets the keyboard accelerator of the specified gadget. An accelerator is
a keyboard gesture that invokes the activate callback of a gadget
without needing to use the mouse.

Accelerators are of most use with button gadgets, and in particular menu
button gadgets.

	See also:	
	<button>

	gadget-accelerator

	<gesture>

	<menu-button>

	
gadget-activate-callback Generic function

	Returns the activate callback of the specified gadget.

	Signature:	gadget-activate-callback gadget => activate-callback

	Parameters:	
	gadget – An instance of type <action-gadget>.

	Values:	
	activate-callback – An instance of type false-or(<function>).

	Discussion:	Returns the function that will be called when gadget is activated.
This function will be invoked with one argument, the gadget itself.

When this function returns #f, this indicates that there is no
activate callback for the gadget.

	See also:	
	gadget-activate-callback-setter

	
gadget-activate-callback-setter Generic function

	Sets the activate callback for the specified gadget.

	Signature:	gadget-activate-callback-setter activate-callback gadget => activate-callback

	Parameters:	
	activate-callback – An instance of type false-or(<function>).

	gadget – An instance of type <action-gadget>.

	Values:	
	activate-callback – An instance of type false-or(<function>).

	Discussion:	Sets the activate callback for gadget to activate-callback.

	See also:	
	gadget-activate-callback

	
gadget-client Generic function

	Returns the client of the specified gadget.

	Signature:	gadget-client gadget => client

	Parameters:	
	gadget – An instance of type <gadget>.

	client – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Discussion:	Returns the client of gadget. The client is the gadget or frame that
gadget should look to for callback information.

In any sheet hierarchy, the client is usually the immediate parent of
gadget. This often means that the client is a frame, but it can also be
another gadget. In the majority of cases, you need not be concerned with
the client of a gadget. However, rather like the gadget-id, you are free
to assign your own client to a given gadget whenever it is necessary for
your code.

In less obvious cases, the client may not be the immediate parent: for
example, in the case of a radio box, the client of each button in the
radio box is the radio box itself. At the implementation level, the
radio box is not the immediate parent of the buttons that it contains,
since there is an intervening layout object that arranges the buttons
within the box. See <action-gadget>, for more details.

Gadget clients enable you to pass messages between the gadget and its
client when a callback is received.

	See also:	
	gadget-client-setter

	
gadget-client-setter Generic function

	Sets the client of the specified gadget.

	Signature:	gadget-client-setter client gadget => client

	Parameters:	
	client – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	gadget – An instance of type <gadget>.

	Values:	
	client – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Discussion:	Sets the client of the specified gadget.

The client is often a frame, but it could be another gadget (for
example, in the case of a push button that is contained in a radio box,
the client of the button could be the radio box). See
<action-gadget>, for more details.

Gadget clients enable you to pass messages between the gadget and its
client when a callback is received.

	See also:	
	gadget-client

	
gadget-command Generic function

	Returns the command associated with the specified gadget.

	Signature:	gadget-command gadget => command

	Parameters:	
	gadget – An instance of type <gadget>.

	Values:	
	command – An instance of type false-or(<frames.htm#40934>).

	Discussion:	Returns the command associated with gadget.

A command is typically associated with a gadget if that gadget has been
created by using a command table. For example, the command associated
with a menu button would represent the callback that is invoked when the
user chooses the relevant menu command.

	See also:	
	gadget-command-setter

	
gadget-command-setter Generic function

	Sets the command of the specified gadget.

	Signature:	gadget-command-setter command gadget => command

	Parameters:	
	command – An instance of type false-or(<frames.htm#40934>).

	gadget – An instance of type <gadget>.

	Values:	
	command – An instance of type false-or(<frames.htm#40934>).

	Discussion:	Sets the command of the specified gadget.

A command is typically associated with a gadget if that gadget has been
created by using a command table. For example, the command associated
with a menu button would represent the callback that is invoked when the
user chooses the relevant menu command.

	See also:	
	gadget-command

	
gadget-default? Generic function

	
Returns true if the specified gadget is the default gadget in a frame.

	Signature:	gadget-default? gadget => default?

	Parameters:	
	gadget – An instance of type <gadget>.

	Values:	
	default? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if the specified gadget is the default gadget for the frame
it is part of.

It is generally useful to set a default gadget in a frame, or a default
menu if there is no suitable gadget.

When a default gadget is specified, using the default keyboard gesture
in the frame invokes the activate callback for the default gadget. The
default gesture is usually pressing the RETURN button.

	See also:	
	gadget-default?-setter

	
gadget-default?-setter Generic function

	Toggles whether the specified button is the default for the current
frame.

	Signature:	gadget-default?-setter default? button => default?

	Parameters:	
	default? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	button – An instance of type <button>.

	Values:	
	default? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	If default? is true, button becomes the default gadget for the
current frame. If default? is #f, button is not the default
gadget for the current frame, regardless of any previous value the
gadget-default? slot may have had.

It is generally useful to set a default gadget in a frame, or a default
menu if there is no suitable gadget.

When a default gadget is specified, using the default keyboard gesture
in the frame invokes the activate callback for the default gadget. The
default gesture is usually pressing the RETURN button.

	See also:	
	gadget-default?

	
gadget-documentation Generic function

	Returns the documentation string for the specified gadget.

	Signature:	gadget-documentation gadget => documentation

	Parameters:	
	gadget – An instance of type <gadget>.

	Values:	
	documentation – An instance of type false-or(<string>).

	Discussion:	Returns the documentation string for gadget.

The documentation string can be used to specify a short piece of online
help text describing the action performed by the gadget. This text can
then be displayed in a number of different ways. On Windows, for
example, the documentation for a menu button might be displayed in the
status bar of the application, and the documentation for a button might
be displayed as a tooltip (a piece of pop-up text that appears next to
the mouse pointer when the pointer is inside the region occupied by the
gadget).

You are strongly encouraged to supply documentation strings for
significant gadgets in your application. Because of the nature of their
presentation, you should keep them as short as possible.

	See also:	
	gadget-documentation-setter

	
gadget-documentation-setter Generic function

	Sets the documentation string for the specified gadget.

	Signature:	gadget-documentation-setter documentation gadget => documentation

	Parameters:	
	documentation – An instance of type <string> [http://opendylan.org/books/drm/Collection_Classes#string].

	gadget – An instance of type <gadget>.

	Values:	
	documentation – An instance of type <string> [http://opendylan.org/books/drm/Collection_Classes#string].

	Discussion:	Sets the documentation string for gadget to documentation.

The documentation string can be used to specify a short piece of online
help text describing the action performed by the gadget. This text can
then be displayed in a number of different ways. On Windows, for
example, the documentation for a menu button might be displayed in the
status bar of the application, and the documentation for a button might
be displayed as a tooltip (a piece of pop-up text that appears next to
the mouse pointer when the pointer is inside the region occupied by the
gadget).

You are strongly encouraged to supply documentation strings for
significant gadgets in your application. Because of the nature of their
presentation, you should keep them as short as possible.

	See also:	
	gadget-documentation

	<status-bar>

	
gadget-enabled? Generic function

	Returns true if the gadget is enabled.

	Signature:	gadget-enabled? gadget => enabled?

	Parameters:	
	gadget – An instance of type <gadget>.

	Values:	
	enabled? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if gadget is enabled.

If the gadget is enabled, the user can interact with it in an
appropriate way. If the gadget is not enabled, then the user cannot
interact with it. For example, if a push button is not enabled, it
cannot be clicked, or if a check box is not enabled, its setting cannot
be switched on or off. Gadgets that are not enabled are generally grayed
out on the screen.

	Example:	*gadget* := contain(make
 (<radio-box>,
 items: range(from: 0, to: 20)));
gadget-enabled?(*gadget*);

	See also:	
	<gadget>

	gadget-enabled?-setter

	
gadget-enabled?-setter Generic function

	Toggles the enabled state of the specified gadget.

	Signature:	gadget-enabled?-setter enabled? gadget => enabled?

	Parameters:	
	enabled? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	gadget – An instance of type <gadget>.

	Values:	
	enabled? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Causes gadget to become active (that is, available for input) or
inactive, by toggling its enabled state. If enabled? is true, then
gadget is enabled, otherwise, gadget is not enabled.

If the gadget is enabled, the user can interact with it in an
appropriate way. If the gadget is not enabled, then the user cannot
interact with it. For example, if a push button is not enabled, it
cannot be clicked, or if a check box is not enabled, its setting cannot
be switched on or off. Gadgets that are not enabled are generally grayed
out on the screen.

	Example:	*gadget* := contain(make
 (<radio-box>,
 items: range(from: 0, to: 20)));
gadget-enabled?(*gadget*) := #f;

	See also:	
	<gadget>

	gadget-enabled?

	
gadget-id Generic function

	Returns the ID of the specified gadget.

	Signature:	gadget-id gadget => id

	Parameters:	
	gadget – An instance of type <gadget>.

	Values:	
	id – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Discussion:	Returns the identifier of gadget. The identifier is typically a
simple Dylan object that uniquely identifies the gadget. For most
gadgets, it is usually not necessary. Making use of a gadget ID provides
you with an additional way of controlling execution of your code,
allowing you to create simple branching statements such as:

select (gadget-id)
 #"modify" => do-modify();
 #"add" => do-add();
 #"remove" => do-remove();
 #"done" => do-done();
end select;

In the specific case of tab controls, it is more important that you
specify an ID. The gadget ID for a tab control is returned as the gadget
value for that tab control.

	Example:	*gadget* := contain(make(<button>, id: #test,
 label: "Test"));
gadget-id(*gadget*);

	See also:	
	gadget-id-setter

	gadget-value

	<tab-control>

	
gadget-id-setter Generic function

	Sets the ID of the specified gadget.

	Signature:	gadget-id-setter id gadget => id

	Parameters:	
	id – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	gadget – An instance of type <gadget>.

	Values:	
	id – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Discussion:	Sets the identifier of gadget. The identifier is typically a simple
Dylan object that uniquely identifies the gadget. For most gadgets, it
is usually not necessary, though it does provide you with an additional
way of controlling execution of your code based on the gadget returned.

In the specific case of tab controls, it is more important that you
specify an ID. The gadget ID for a tab control is returned as the gadget
value for that tab control.

	Example:	*gadget* := contain(make(<button>, id: #test,
 label: "Test"));
gadget-id(*gadget*) := #test-two;
gadget-id(*gadget*);

	See also:	
	gadget-id

	gadget-value

	<tab-control>

	
gadget-items Generic function

	Returns the items for the specified gadget.

	Signature:	gadget-items gadget => items

	Parameters:	
	gadget – An instance of type <collection-gadget>.

	Values:	
	items – An instance of type <sequence> [http://opendylan.org/books/drm/Collection_Classes#sequence]. Default value: #[].

	Discussion:	Returns the items for gadget. The items of any collection gadget is
the collection of items that the collection gadget contains. In a list
box, for example, the items are the list items themselves.

	Example:	The following code creates a list box whose items are the lower-cased
equivalents of the symbols stated. Note that the label key for a gadget
is a function that computes the label for the items in that gadget.

gadget := contain(make(<list-box>,
 items: #(#"One", #"Two", #"Three"),
 label-key:
 method (symbol)
 as-lowercase
 (as(<string>, symbol)) end));

You can return the items in the gadget as follows:

gadget-items(*g*);

This returns the symbol: #(#"one", #"two", #"three").

	See also:	
	gadget-items-setter

	gadget-label-key

	gadget-selection

	gadget-value-key

	
gadget-items-setter Generic function

	Sets the items for the specified gadget.

	Signature:	gadget-items-setter items gadget => items

	Parameters:	
	items – An instance of type <sequence> [http://opendylan.org/books/drm/Collection_Classes#sequence].

	gadget – An instance of type <collection-gadget>.

	Values:	
	items – An instance of type <sequence> [http://opendylan.org/books/drm/Collection_Classes#sequence].

	Discussion:	Sets the items for gadget to the items specified by items.

	Example:	*gadget* := contain(make
 (<radio-box>,
 items: range(from: 0, to: 20)));

gadget-items(*gadget*) := range(from: 0, to: 15);

	See also:	
	gadget-items

	
gadget-key-press-callback Generic function

	Returns the key-press callback for the specified gadget.

	Signature:	gadget-key-press-callback gadget => key-press-callback

	Parameters:	
	gadget – An instance of type <collection-gadget>.

	Values:	
	key-press-callback – An instance of type false-or(<frames.htm#40934>, <function>).

	Discussion:	Returns the key-press callback for gadget. The key-press callback is
the callback invoked when a key on the keyboard is pressed while the
gadget has focus. They are of most use in tab controls, list controls,
table controls, graph controls, and tree controls.

In Windows, a good use for the key-press callback would be to mirror the
behavior of Windows Explorer, where typing a filename, or part of a
filename, selects the first file in the current folder whose name
matches that typed.

	See also:	
	gadget-key-press-callback-setter

	<list-control>

	<tab-control>

	<table-control>

	<tree-control>

	
gadget-key-press-callback-setter Generic function

	Sets the key-press callback for the specified gadget.

	Signature:	gadget-key-press-callback-setter key-press-callback gadget * => *key-press-callback

	Parameters:	
	key-press-callback – An instance of type false-or(<frames.htm#40934>, <function>).

	gadget – An instance of type <collection-gadget>.

	Values:	
	key-press-callback – An instance of type false-or(<frames.htm#40934>, <function>).

	Discussion:	Sets the key-press callback for gadget. The key-press callback is the
callback invoked when a key on the keyboard is pressed while the gadget
has focus. They are of most use in tab controls, list controls, table
controls, graph controls, and tree controls.

In Windows, a good use for the key-press callback would be to mirror the
behavior of Windows Explorer, where typing a filename, or part of a
filename, selects the first file in the current folder whose name
matches that typed.

	See also:	
	gadget-key-press-callback

	<list-control>

	<tab-control>

	<table-control>

	<tree-control>

	
gadget-label Generic function

	Returns the label for the specified gadget.

	Signature:	gadget-label gadget => label

	Parameters:	
	gadget – An instance of type <gadget>.

	Values:	
	label – An instance of type type-union(<string>, <image>).

	Discussion:	Returns the label for gadget.

	Example:	*gadget* := contain(make(<button>, label: "Hello"));
gadget-label(*gadget*);

	See also:	
	gadget-label-key

	gadget-label-setter

	
gadget-label-key Generic function

	Returns the function that is used to compute the label for the items in
the specified gadget.

	Signature:	gadget-label-key gadget => label-key

	Parameters:	
	gadget – An instance of type <collection-gadget>.

	Values:	
	label-key – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	Discussion:	Returns the function that is used to compute the labels for the items in
gadget. Using a label key can be a useful way of consistently
specifying labels that are a mapping of, but not directly equivalent to,
the item names. As shown in the example, it is possible to force the
case of item labels, and this is useful if the items are specified as
symbol names, rather than strings.

	Example:	The following code creates a list box whose items are the lower-cased
equivalents of the symbols stated.

gadget := contain
 (make(<list-box>,
 items: #(#"One", #"Two", #"Three"),
 label-key:
 method (symbol)
 as-lowercase
 (as(<string>, symbol))
 end));

The label key function can be returned as follows:

gadget-label-key(*gadget*);

	See also:	
	gadget-label

	gadget-label-setter

	gadget-value-key

	
gadget-label-setter Generic function

	Sets the label for the specified gadget.

	Signature:	gadget-label-setter label gadget => label

	Parameters:	
	label – An instance of type type-union(<string>, <image>).

	gadget – An instance of type <gadget>.

	Values:	
	label – An instance of type type-union(<string>, <image>).

	Discussion:	Sets the label for gadget to label. The label must be #f, a
string, or an instance of <image>. Changing the
label of a gadget may result in invoking the layout protocol on the
gadget and its ancestor sheets, if the new label occupies a different
amount of space than the old label.

	Example:	*gadget* := contain(make(<button>, label: "Hello"));
gadget-label(*gadget*) := "Hello world";

	See also:	
	gadget-label

	gadget-label-key

	
gadget-mnemonic Generic function

	Returns the mnemonic for the specified gadget.

	Signature:	gadget-mnemonic gadget => mnemonic

	Parameters:	
	gadget – An instance of type <gadget>.

	Values:	
	mnemonic – An instance of type false-or(<character>).

	Discussion:	Returns the mnemonic for gadget. On Windows, the mnemonic is
displayed as an underlined character in the label of the gadget, and
pressing the key for that character activates the gadget or gives it the
focus.

	See also:	
	gadget-accelerator

	gadget-mnemonic-setter

	
gadget-mnemonic-setter Generic function

	Sets the mnemonic for the specified gadget.

	Signature:	gadget-mnemonic-setter mnemonic gadget => mnemonic

	Parameters:	
	mnemonic – An instance of type false-or(<character>).

	gadget – An instance of type <gadget>.

	Values:	
	mnemonic – An instance of type false-or(<character>).

	Discussion:	Sets the mnemonic for gadget to mnemonic. On Windows, the mnemonic
is displayed as an underlined character in the label of the gadget, and
pressing the key for that character activates the gadget or gives it the
focus.

	See also:	
	gadget-accelerator-setter

	gadget-mnemonic

	
gadget-orientation Generic function

	Returns the orientation of the specified gadget.

	Signature:	gadget-orientation gadget => orientation

	Parameters:	
	gadget – An instance of type <gadget>.

	Values:	
	orientation – An instance of type one-of(#"horizontal", #"vertical", #"none").

	Discussion:	Returns the orientation of gadget: either horizontal or vertical.

	Example:	The following code creates a vertical row of buttons:

buttons := contain(make(<button-box>,
 selection-mode: #"multiple",
 orientation: #"vertical",
 items: range(from: 0, to: 5)));

The orientation can be returned as follows:

gadget-orientation(*buttons*);

	
gadget-popup-menu-callback Generic function

	Returns the popup menu callback of the specified gadget.

	Signature:	gadget-popup-menu-callback gadget => popup-menu-callback

	Parameters:	
	gadget – An instance of type <gadget>.

	Values:	
	popup-menu-callback – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	Discussion:	Returns the popup menu callback of gadget. This is typically a
function that is used to create a context-sensitive menu of available
commands. It is generally invoked when the user right clicks on the
gadget.

	See also:	
	gadget-popup-menu-callback-setter

	
gadget-popup-menu-callback-setter Generic function

	Sets the popup menu callback of the specified gadget.

	Signature:	gadget-popup-menu-callback-setter popup-menu-callback gadget => popup-menu-callback

	Parameters:	
	popup-menu-callback – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	gadget – An instance of type <gadget>.

	Values:	
	popup-menu-callback – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	Discussion:	Sets the popup menu callback of gadget to function. The function
should typically create a menu of commands suited to the context in
which the function is called. The function is generally invoked by
right-clicking on the gadget.

	See also:	
	gadget-popup-menu-callback

	
gadget-ratios Generic function

	Returns the ratios of the windows in splitter. This generic function
lets you query the position of a splitter.

	Signature:	gadget-ratios splitter => ratios

	Parameters:	
	splitter – An instance of type <splitter>.

	Values:	
	ratios – An instance of type false-or(<sequence>).

	
gadget-ratios-setter Generic function

	Sets the ratios of the windows in splitter. This generic function
lets you set the position of a splitter.

	Signature:	gadget-ratios-setter ratios splitter => ratios

	Parameters:	
	ratios – An instance of type false-or(<sequence>).

	splitter – An instance of type <splitter>.

	Values:	
	ratios – An instance of type false-or(<sequence>).

	Discussion:	Set ratios to #f if you do not care what ratios are used.

	
gadget-read-only? Generic function

	Returns true if the gadget is editable.

	Signature:	gadget-read-only? gadget => read-only?

	Parameters:	
	gadget – An instance of type <gadget>.

	Values:	
	read-only? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if gadget is read-only. The read-only attribute of a
gadget is of most use with text gadgets.

	See also:	
	gadget-enabled?

	
gadget-scrolling-horizontally? Generic function

	Returns true if the specified gadget has an associated horizontal scroll
bar.

	Signature:	gadget-scrolling-horizontally? gadget => horizontal?

	Parameters:	
	gadget – An instance of type <gadget>.

	Values:	
	horizontal? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if the gadget has an associated horizontal scroll bar,
false otherwise.

	See also:	
	gadget-scrolling-vertically?

	
gadget-scrolling-vertically? Generic function

	Returns true if the specified gadget has an associated vertical scroll
bar.

	Signature:	gadget-scrolling-vertically? gadget => vertical?

	Parameters:	
	gadget – An instance of type <gadget>.

	Values:	
	vertical? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if the gadget has an associated vertical scroll bar,
false otherwise.

	See also:	
	gadget-scrolling-horizontally?

	
gadget-selection Generic function

	Returns the currently selected items of the specified gadget.

	Signature:	gadget-selection gadget => selection

	Parameters:	
	gadget – An instance of type <collection-gadget>.

	Values:	
	selection – An instance of type limited(<sequence>, of: <integer>).
Default value: #[].

	Discussion:	Returns the keys for the currently selected items of gadget.
Generally, you should use gadget-value to
return the selected item, rather than gadget-selection, which is best
used for handling repeated items.

Single selection gadgets (such as radio boxes) always have exactly one
key selected. Multiple selection gadgets (such as check boxes) have zero
or more keys selected. The value of a collection gadget is determined by
calling the value key of the gadget on each selected item in the gadget.

	Example:	Create a radio box as follows:

radio := contain(make(<radio-box>,
 items: range(from: 0, to: 5)));

Select one of the items in the radio box. This selection can be returned
with:

gadget-selection(*radio*);

	See also:	
	gadget-items

	gadget-selection-mode

	gadget-selection-setter

	gadget-value

	
gadget-selection-mode Generic function

	Returns the type of selection for the specified gadget.

	Signature:	gadget-selection-mode gadget => selection-mode

	Parameters:	
	gadget – An instance of type <collection-gadget>.

	selection-mode – An instance of type one-of(#"single", #"multiple",
#"none").

	Discussion:	Returns the selection mode for gadget. Typically, gadgets are either
single or multiple selection (that is, either only one item can be
selected at a time, or any number of items can be selected), or there is
no selection behavior (items cannot be selected). Some gadgets, such as
list boxes and button boxes, can choose a selection mode at
initialization time using the selection-mode: init-keyword.

	Example:	Create a radio box as follows:

radio := contain(make(<radio-box>,
 items: range(from: 0, to: 5)));

The selection mode of the radio box is returned with:

gadget-selection-mode(*radio*);

Because the gadget is a radio box, only one item of which may be
selected at a time, the selection mode returned is #"single".

	See also:	
	<button-box>

	gadget-selection

	gadget-selection-setter

	<list-box>

	
gadget-selection-setter Generic function

	Sets the selection of the specified gadget.

	Signature:	gadget-selection-setter selection gadget #key do-callback? => selection

	Parameters:	
	selection – An instance of type limited(<sequence>, of: <integer>).

	gadget – An instance of type <collection-gadget>.

	do-callback? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #f.

	Values:	
	selection – An instance of type limited(<sequence>, of: <integer>).

	Discussion:	Sets the selection of gadget. When setting the selection, you need to
be wary of the selection mode for gadget. It is an error to try to
set multiple items in a single selection mode gadget.

If do-callback? is true, the selection callback for gadget is
invoked.

As with gadget-selection, you should usually
use gadget-value-setter to set the selected
item, rather than gadget-selection-setter, which is best used for
handling repeated items. See gadget-selection
for more details.

	Example:	Create a radio box as follows:

radio := contain(make(<radio-box>,
 items: range(from: 0, to: 5)));

You can select the third item with:

gadget-selection(*radio*, do-callback?: #t) := #[3];

This sets the appropriate item, and invokes the callback that would have
been invoked had the item been set manually, rather than
programmatically (assuming that such a callback has been defined).

	See also:	
	gadget-selection

	gadget-selection-mode

	gadget-value-setter

	
gadget-slug-size Generic function

	Returns the slug size of the specified gadget.

	Signature:	gadget-slug-size gadget => slug-size

	Parameters:	
	gadget – An instance of type <scroll-bar>.

	Values:	
	slug-size – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Discussion:	Returns the slug size of gadget. The slug is the part of gadget
that can be dragged using the mouse. The value returned uses the same
units as those used for gadget-value-range.

Note

The Microsoft Windows Interface Guidelines refer to the slug as
a scroll-box, and the area in which the slug can slide as the
scroll-shaft. You should be aware of this difference if you are using
those guidelines as a reference.

	See also:	
	gadget-slug-size-setter

	gadget-value-range

	
gadget-slug-size-setter Generic function

	Sets the slug size of the specified gadget.

	Signature:	gadget-slug-size-setter slug-size gadget => slug-size

	Parameters:	
	slug-size – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	gadget – An instance of type <gadget>.

	Values:	
	slug-size – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Discussion:	Sets the slug size of gadget. The value should use the same units as
those used for gadget-value-range.

Note

The Microsoft Windows Interface Guidelines refer to the slug as
a scroll-box, and the area in which the slug can slide as the
scroll-shaft. You should be aware of this difference if you are using
those guidelines as a reference.

	See also:	
	gadget-slug-size

	
gadget-test Generic function

	Returns the test function for the specified gadget.

	Signature:	gadget-test gadget => gadget-test

	Parameters:	
	gadget – An instance of type <collection-gadget>.

	Values:	
	gadget-test – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	Discussion:	Returns the test function for the specified gadget. This function is
used to test whether two items of the collection are considered
identical.

	
gadget-text Generic function

	Returns the text for the specified gadget.

	Signature:	gadget-text gadget => gadget-text

	Parameters:	
	gadget – An instance of type <text-gadget>.

	Values:	
	gadget-text – An instance of type <string> [http://opendylan.org/books/drm/Collection_Classes#string].

	Discussion:	Returns the text for the specified gadget.

	Example:	First, create and display a text field by typing the following into an
interactor:

g := contain(make(<text-field>,
 value-type: <integer>));

Next, type something into the text field. You can return the text string
that you just typed with the following form:

gadget-text(*g*);

	See also:	
	gadget-text-setter

	<text-gadget>

	
gadget-text-setter Generic function

	Sets the text for the specified gadget.

	Signature:	gadget-text gadget-text gadget => gadget-text

	Parameters:	
	gadget-text – An instance of type <string> [http://opendylan.org/books/drm/Collection_Classes#string].

	gadget – An instance of type <text-gadget>.

	Values:	
	gadget-text – An instance of type <string> [http://opendylan.org/books/drm/Collection_Classes#string].

	Discussion:	Sets the text for the specified gadget.

	Example:	First, create and display a text field by typing the following into an
interactor:

g := contain(make(<text-field>,
 value-type: <integer>));

Next, set the value of the text field with the following form:

gadget-text-setter("Hello world", *g*);

	See also:	
	gadget-text

	<text-gadget>

	
gadget-value Generic function

	Returns the gadget value of the specified gadget.

	Signature:	gadget-value gadget => gadget-value

	Parameters:	
	gadget – An instance of type <value-gadget>.

	Values:	
	gadget-value – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Discussion:	Returns the gadget value of the specified gadget.

The interpretation of the value varies from gadget to gadget. Most
gadgets conceptually have “raw” values that can be determined directly
using the generic function appropriate to the gadget class concerned
(gadget-text for an instance of <text-gadget>,
gadget-selection for an instance of <collection-gadget>,
and so on). These gadget classes also have a convenience method on
gadget-value that wraps up the raw value in some useful way. So,
text gadgets have a method on gadget-value that converts the
gadget-text based on the gadget-value-type, for example
converting the string to an integer for value-type: <integer>.

The gadget-value method for collection gadgets is different for single
and multiple selection gadgets. For single selection, the item that is
selected is returned. For multiple selection, a sequence of the selected
items is returned.

Note

If the gadget ID has been specified for a tab control, then this
is returned as the gadget value.

	Example:	Create a radio button:

radio := contain(make(<radio-button>,
 label: "Radio"));

The gadget value of *radio* can be returned as follows:

gadget-value(*radio*);

If the radio button is selected, gadget-value returns #t. If not
selected, gadget-value returns #f.

	See also:	
	<gadget>

	gadget-id

	gadget-value-key

	gadget-value-range

	gadget-value-setter

	gadget-value-type

	
gadget-value-changed-callback Generic function

	Returns the value-changed callback of the specified gadget.

	Signature:	gadget-value-changed-callback gadget => value-changed-callback

	Parameters:	
	gadget – An instance of type <value-gadget>.

	Values:	
	value-changed-callback – An instance of type false-or(<function>).

	Discussion:	Returns the value-changed callback of gadget. This is the callback
function that is called once the gadget value of gadget has been
changed.

The value-changed callback function is invoked with one argument, the
gadget.

If gadget-value-changed-callback returns #f, there is no value
changed callback for gadget.

	See also:	
	gadget-value-changed-callback-setter

	
gadget-value-changed-callback-setter Generic function

	Sets the value-changed-callback of the specified gadget.

	Signature:	gadget-value-changed-callback-setter callback gadget => callback

	Parameters:	
	callback – An instance of type false-or(<function>).

	gadget – An instance of type <gadget>.

	Values:	
	callback – An instance of type false-or(<function>).

	Discussion:	Sets the value-changed callback of gadget to function. This is the
callback function that is called once the gadget value of gadget has
been changed.

The value-changed callback function is invoked with one argument, the
gadget.

	See also:	
	gadget-value-changed-callback

	
gadget-value-changing-callback Generic function

	Returns the value changing callback of the specified gadget.

	Signature:	gadget-value-changing-callback gadget => value-changing-callback

	Parameters:	
	gadget – An instance of type <gadget>.

	Values:	
	value-changing-callback – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	Discussion:	Returns the function that will be called when the value of gadget is
in the process of changing, such as when a slider is being dragged. The
function will be invoked with a two arguments, gadget and the new
value.

	See also:	
	gadget-value-changing-callback-setter

	
gadget-value-changing-callback-setter Generic function

	Sets the value-changing callback of the specified gadget.

	Signature:	gadget-value-changing-callback-setter value-changing-callback gadget => value-changing-callback

	Parameters:	
	value-changing-callback – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	gadget – An instance of type <gadget>.

	Values:	
	value-changing-callback – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	Discussion:	Sets the function that will be called when the value of gadget is in
the process of changing, such as when a slider is being dragged. The
function will be invoked with a two arguments, gadget and the new
value.

	See also:	
	gadget-value-changing-callback

	
gadget-value-key Generic function

	Returns the function that is used to calculate the gadget value of the
specified gadget.

	Signature:	gadget-value-key gadget => value-key

	Parameters:	
	gadget – An instance of type <collection-gadget>.

	Values:	
	value-key – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function]. Default value: identity [http://opendylan.org/books/drm/Coercing_and_Copying_Objects#identity].

	Discussion:	Returns the function that is used to calculate the gadget value of
gadget, given the selected items. The function takes an item and
returns a value.

	Example:	The list box defined below has three items, each of which is a pair of
two symbols. A label-key and a value-key is defined such that the label
for each item is calculated from the first symbol in each pair, and the
gadget value is calculated from the second.

list := contain(make(<list-box>,
 items: #(#("One", #"one"),
 #("Two", #"two"),
 #("Three", #"three")),
 label-key: first,
 value-key: second));

This ensures that while the label of the first item is displayed
on-screen as One, the value returned from that item is #"one",
and similarly for the other items in the list.

The gadget value key function can be returned with:

gadget-value-key(*list*);

	See also:	
	gadget-label-key

	gadget-value

	
gadget-value-range Generic function

	Returns the range of values for the specified gadget.

	Signature:	gadget-value-range gadget => range

	Parameters:	
	gadget – An instance of type <value-range-gadget>.

	Values range:	An instance of type <range> [http://opendylan.org/books/drm/Collection_Classes#range].

	Discussion:	Returns the range of values for gadget. The value range is the
elements represented by the range specified for gadget.

Note

The value range is not simply the difference between the maximum
and minimum values in the range. Consider the following range:

range (from: 10, to: 0, by: -2)

In this case, the value range is the elements 10, 8, 6, 4, 2, 0.

The units in which the range is specified are also used for
gadget-slug-size.

	Example:	You can create a slider with a given range as follows:

slider := contain(make(<slider>,
 value-range: range(from: -20,
 to: 20,
 by: 5)));

You can return the range of this gadget by executing the following:

gadget-value-range(*slider*);

which in this case returns {range -20 through 20, by 5}.

	See also:	
	gadget-slug-size

	gadget-value

	gadget-value-range-setter

	
gadget-value-range-setter Generic function

	Sets the range of values for the specified gadget.

	Signature:	gadget-value-range-setter range gadget => range

	Parameters:	
	range – An instance of type <range> [http://opendylan.org/books/drm/Collection_Classes#range].

	gadget – An instance of type <value-range-gadget>.

	Values:	
	range – An instance of type <range> [http://opendylan.org/books/drm/Collection_Classes#range].

	Discussion:	Sets the range of values for gadget. The value range is the elements
represented by the range specified for gadget.

	Example:	Create a slider without specifying a range:

slider := contain(make(<slider>);

You can specify the range of this gadget by executing the following:

gadget-value-range(*slider*) :=
 (range (from: -20 to: 20, by: 5});

	See also:	
	gadget-value-range

	
gadget-value-setter Generic function

	Sets the gadget value of the specified gadget.

	Signature:	gadget-value-setter value gadget #key do-callback? => value

	Parameters:	
	value – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	gadget – An instance of type <value-gadget>.

	do-callback? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #f.

	Values:	
	value – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Discussion:	Sets the gadget value of gadget.

The value that you need to specify varies from gadget to gadget. For
example, for a scroll bar, value might be a number between 0 and 1,
while for a radio button, value is either true or false.

If do-callback? is true, the value-changed callback for gadget is
invoked.

	Example:	Create a radio button:

radio := contain(make(<radio-button>,
 label: "Radio"));

The gadget value of *radio* can be set with either of the following:

gadget-value(*radio*) := #t;
gadget-value(*radio*) := #f;

Setting the gadget value to #t selects the button, and setting it to
#f deselects it.

	See also:	
	gadget-value

	
gadget-value-type Generic function

	Returns the type of the gadget value for the specified gadget.

	Signature:	gadget-value-type gadget => type

	Parameters:	
	gadget – An instance of type <value-gadget>.

	Values:	
	type – An instance of type <type> [http://opendylan.org/books/drm/Type_Classes#type].

	Discussion:	Returns the type of the gadget value for gadget.

	Example:	The following code creates a text field, the contents of which are
constrained to be an integer.

numeric := contain(make(<text-field>,
 value-type: <integer>));

Evaluating the following code confirms the gadget value type to be the
class <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

gadget-value-type(*numeric*);

	See also:	
	gadget-value

	
gadget-x-alignment Generic function

	Returns the horizontal alignment of the specified gadget.

	Signature:	gadget-x-alignment gadget => alignment

	Parameters:	
	gadget – An instance of type <gadget>.

	Values:	
	alignment – An instance of type one-of(#"left", #"right",
#"center").

	Discussion:	Returns the horizontal alignment of gadget. You can only set the
horizontal alignment of a gadget when first initializing that gadget,
using the x-alignment: init-keyword.

	See also:	
	gadget-y-alignment

	
gadget-y-alignment Generic function

	Returns the vertical alignment of the specified gadget.

	Signature:	gadget-x-alignment gadget => alignment

	Parameters:	
	gadget – An instance of type <gadget>.

	Values:	
	alignment – An instance of type one-of(#"top", #"bottom",
#"center").

	Discussion:	Returns the vertical alignment of gadget. You can only set the
vertical alignment of a gadget when first initializing that gadget,
using the y-alignment: init-keyword.

	See also:	
	gadget-x-alignment

	
<group-box> Open Abstract Instantiable Class

	The class of gadgets that group their children using a labelled border.

	Superclasses:	<gadget>

	Init-Keywords:	
	label – An instance of type <label>.

	label-position – An instance of type one-of(#"top", #"bottom").
Default value: #"top".

	Discussion:	The class of gadgets that group their children using a labelled border.
You can use this gadget class to group together a number of related
items visually.

[image: _images/gadgets-22.png]
A group box

The label: init-keyword specifies a string or icon that is to be used
as a label for the gadget.

The label-position: init-keyword is used to specify whether the label
should be displayed along the top or the bottom edge of the border.

Internally, this class maps into the Windows group box control.

	Example:	contain(make(<group-box>,
 child: make(<radio-box>, items: #(1,2,3,4),
 orientation: #"vertical"),
 label: "Select integer:"));

	See also:	
	<border>

	<check-box>

	<push-box>

	<radio-box>

	
item-object Generic function

	Returns the Dylan object representing an item in a list or table
control.

	Signature:	item-object item => object

	Parameters:	
	item – An instance of type type-union(<list-item>, <table-item>).

	Values:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Discussion:	Returns the Dylan object representing an item in a list or table
control.

	
<label> Open Abstract Instantiable Class

	The class of label gadgets.

	Superclasses:	<gadget>

	Init-Keywords:	
	label – An instance of type type-union(<string>, <image>).

	Discussion:	The class of label gadgets.

The label: init-keyword specifies a string or image that is to be used
as a label for the gadget. If you use an image, you should be wary of
its size: only use images that are the size of a typical icon.

Internally, this class maps into the Windows static control.

	Operations:	
	gadget-label

	gadget-label-setter

	<frames.htm#74637>

	<frames.htm#10131>

	<frames.htm#68823>

	<frames.htm#14565>

	Example:	contain(make(<label>, label: "Hello"));

	See also:	

labelling

	
labelling Statement Macro

	
Creates the specified sheet and assigns a label to it.

	Macro Call:	labelling ([*options*]) {*pane* } end

	Parameters:	
	options – Dylan arguments bnf.

	pane – A Dylan expression bnf.

	Discussion:	Creates pane with a label assigned to it, taking into account any of
the specified options.

The options specified may be any of the legal init-keywords used to
specify an instance of <label>. If no options are specified,
then the default label is used.

The pane is an expression whose return value is the sheet to which the
label should be assigned.

	Example:	labelling ("Color Type:")
 make(<check-box>, items: #("Color", "Monochrome"))
end;

	See also:	
	<label>

	
<list-box> Open Abstract Instantiable Class

	The class of list boxes.

	Superclasses:	<collection-gadget> <action-gadget>

	Init-Keywords:	
	borders – An instance of type one-of(#f, #"none", #"flat",
#"sunken", #"raised", #"ridge", #"groove", #"input", #"output").
Default value: #f.

	scroll-bars – An instance of type one-of(#f, #"none",
#"horizontal", #"vertical", #"both", #"dynamic").
Default value: #"both".

	Discussion:	
[image: _images/gadgets-23.png]
The class of list boxes.

The borders: init-keyword lets you specify a border around the list
box. If specified, a border of the appropriate type is drawn around the
gadget.

The scroll-bars: init-keyword lets you specify the presence of scroll
bars around the gadget. By default, both horizontal and vertical scroll
bars are created. You can also force the creation of only horizontal or
vertical scroll bars, or you can create scroll bars dynamically: that
is, have them created only if necessary, dependent on the size of the
gadget. If scroll-bars: is #f, no scroll bars are added to the
gadget.

Internally, this class maps into the Windows list box control.

	Example:	The following creates a list of three items, without scroll bars.

list := contain(make(<list-box>,
 items: #(#("One", #"one"),
 #("Two", #"two"),
 #("Three", #"three")),
 label-key: first,
 value-key: second,
 scroll-bars: #f));

	See also:	
	<list-control>

	<list-item>

	
<list-control> Open Abstract Instantiable Class

	The class of list controls.

	Superclasses:	<collection-gadget> <action-gadget>

	Init-Keywords:	
	icon-function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	view – An instance of type <list-control-view>.
Default value: #"list".

	borders – An instance of type one-of(#f, #"none", #"flat",
#"sunken", #"raised", #"ridge", #"groove", #"input", #"output").
Default value: #f.

	scroll-bars – An instance of type one-of(#f, #"none",
#"horizontal", #"vertical", #"both", #"dynamic").
Default value: #"both".

	popup-menu-callback – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	key-press-callback – An instance of type false-or(<frames.htm#40934>, <function>).

	Discussion:	[image: image6] The class of list controls. These are controls that can list
items in a number of different ways, using a richer format than the
<list-box> class. Examples of list controls are
the main panels in the Windows Explorer, or the Macintosh Finder. List
controls can also be seen in the standard Windows 95 Open File dialog
box.

The icon-function: init-keyword lets you specify a function to supply
icons for display in the control. The function is called with the item
that needs an icon as its argument, and it should return an instance of
<image> as its result. Typically, you might want to define an icon
function that returns a different icon for each kind of item in the
control. For example, if the control is used to display the files and
directories on a hard disk, you would want to return the appropriate
icon for each registered file type.

The view: init-keyword can be used to specify the way in which the
items in the list box are displayed. There are three options,
corresponding to the view options that will be familiar to most users of
GUI-based operating systems.

The borders: init-keyword lets you specify a border around the list
control. If specified, a border of the appropriate type is drawn around
the gadget.

The scroll-bars: init-keyword lets you specify the presence of scroll
bars around the gadget. By default, both horizontal and vertical scroll
bars are created. You can also force the creation of only horizontal or
vertical scroll bars, or you can create scroll bars dynamically: that
is, have them created only if necessary, dependent on the size of the
gadget. If scroll-bars: is #f, no scroll bars are added to the
gadget.

You can use the popup-menu-callback: init-keyword to specify a
context-sensitive menu to display for one or more selected items in the
list control. In Windows 95, for instance, such a context-sensitive menu
can be displayed by right-clicking on any item or group of selected
items in the list control.

The key-press-callback: init-keyword lets you specify a key-press
callback. This type of callback is invoked whenever a key on the
keyboard is pressed while the gadget has focus. See
gadget-key-press-callback, for a fuller description of
key-press callbacks.

Internally, this class maps into the Windows list view control.

	Operations:	
	add-item

	find-item

	list-control-view

	list-control-view-setter

	make-item

	remove-item

	See also:	
	add-item

	list-control-view

	make-item

	remove-item

	
list-control-icon-function Generic function

	Returns the icon function for the specified list control.

	Signature:	list-control-icon-function list-control => icon-function

	Parameters:	
	list-control – An instance of <list-control>.

	Values:	
	icon-function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	Discussion:	Returns the icon-function for list-control. This function lets you
specify which icon to display for each item in the control. The function
is called with the item that needs an icon as its argument, and it
should return an instance of <image> as its result. Typically, you
might want to define an icon function that returns a different icon for
each kind of item in the control. For example, if the control is used to
display the files and directories on a hard disk, you would want to
return the appropriate icon for each registered file type.

Note that, unlike tree controls, the icon function for a list control
can be changed once the list control has been created.

	See also:	
	<list-control>

	list-control-icon-function-setter

	
list-control-icon-function-setter Generic function

	Sets the icon function for the specified list control.

	Signature:	list-control-icon-function-setter icon-function list-control => icon-function

	Parameters:	
	icon-function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	list-control – An instance of <list-control>.

	Values:	
	icon-function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	Discussion:	Sets the icon-function for list-control. This function lets you
specify which icon to display for each item in the control. The function
is called with the item that needs an icon as its argument, and it
should return an instance of <image> as its result. Typically, you
might want to define an icon function that returns a different icon for
each kind of item in the control. For example, if the control is used to
display the files and directories on a hard disk, you would want to
return the appropriate icon for each registered file type.

Note that, unlike tree controls, the icon function for a list control
can be changed once the list control has been created.

	See also:	
	<list-control>

	list-control-icon-function

	
<list-control-view> Type

	The type of possible views for a list control

	Equivalent:	one-of(#"small-icon", #"large-icon", #"list")

	Discussion:	This type represents the acceptable values for the view arguments to
operators of <list-control>. You should not
attempt to redefine this type in any way.There are three possible values, corresponding to the view options that
will be familiar to most users of GUI-based operating systems:

	#"small-icon"

	Displays each item in the list control using a small
icon to the left of the item. Items are arranged horizontally.

	#"large-icon"

	Displays each item in the list control using a large
icon to the left of the item. Items are arranged horizontally.

	#"list"

	Displays each item in the list control using a small icon
to the left of the item. Items are arranged vertically in one column.

	See also:	
	:class;`<list-control>`

	list-control-view

	<table-control-view>

	
list-control-view Generic function

	Returns the view for the specified list control.

	Signature:	list-control-view list-control => view

	Parameters:	
	list-control – An instance of <list-control>.

	Values:	
	view – An instance of type <list-control-view>.

	Discussion:	Returns the view for list-control. The view defines how items in the
list control are displayed. Three views are available; items are
accompanied either by a small icon or a large icon. In addition, items
can be listed vertically, and additional details can be displayed for
each item. For more details, see the description for
<list-control-view>.

	Example:	Given a list control created with the following code:

list := contain(make(<list-control>,
 items: #(#("One", #"one"),
 #("Two", #"two"),
 #("Three", #"three")),
 view: #"list"
 scroll-bars: #f));

The list control view may be returned with:

list-control-view(*list*);

	See also:	
	<list-control>

	<list-control-view>

	list-control-view-setter

	
list-control-view-setter Generic function

	Sets the view for the specified list control.

	Signature:	list-control-view-setter view list-control => view

	Parameters:	
	view – An instance of type <list-control-view>.

	list-control – An instance of <list-control>.

	Values:	
	view – An instance of type <list-control-view>.

	Discussion:	Sets the view for list-control. The view defines how items in the
list control are displayed. Three views are available; items are
accompanied either by a small icon or a large icon. In addition, items
can be listed vertically, and additional details can be displayed for
each item. For more details, see the description for
<list-control-view>.

	Example:	Given a list control created with the following code:

list := contain(make(<list-control>,
 items: #("One",
 "Two",
 "Three")));

The list control view may be specified with:

list-control-view(*list*) := #"view";

	See also:	
	<list-control>

	<list-control-view>

	list-control-view

	
<list-item> Open Abstract Instantiable Class

	
The class that represents an item in a list control.

	Superclasses:	<object> [http://opendylan.org/books/drm/Object_Classes#object]

	Init-Keywords:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object]. Default value: #f.

	Discussion:	The class that represents an item in a list control.

	Operations:	
	add-item

	item-object

	remove-item

	See also:	
	<list-control>

	<table-item>

	
make-item Generic function

	Creates an item which can be inserted in the specified list control or
table control.

	Signature:	make-item list-or-table object #key frame-manager => item

	Parameters:	
	list-or-table – An instance of type-union(<list-control>, <table-control>).

	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	frame-manager (#key) – An instance of type <frame-manager>.

	Values:	
	item – An instance of type <list-item>.

	Discussion:	Creates an item that represents object which can be inserted in the
specified list-or-table. To insert the item in the list control or
table control, add-item is used. You would not normally call
make-item explicitly: just use add-item and the item
is created automatically before it is added to the list or table control.

If the frame-manager argument is specified, then this is used instead
of the default frame manager.

	See also:	
	add-item

	find-item

	<list-control>

	<list-item>

	remove-item

	<table-control>

	<table-item>

	
make-menu-from-items Generic function

	Returns a menu object created from the specified items.

	Signature:	make-menu-from-items framem items #key owner title label-key value-key foreground background text-style => menu

	Parameters:	
	framem – An instance of type <frame-manager>.

	items – An instance of type <sequence> [http://opendylan.org/books/drm/Collection_Classes#sequence].

	owner (#key) – An instance of type <sheet>.

	title (#key) – An instance of type <string>` [http://opendylan.org/books/drm/<string>`].

	label-key (#key) – An instance of <function> [http://opendylan.org/books/drm/Function_Classes#function]. Default value: identity [http://opendylan.org/books/drm/Coercing_and_Copying_Objects#identity].

	value-key (#key) – An instance of <function> [http://opendylan.org/books/drm/Function_Classes#function]. Default value: identity [http://opendylan.org/books/drm/Coercing_and_Copying_Objects#identity].

	foreground (#key) – An instance of type false-or(<ink>). Default value: #f.

	background (#key) – An instance of type false-or(<ink>). Default value: #f.

	text-style (#key) – An instance of type <text-style>.

	Values:	
	menu – An instance of type <menu>.

	Discussion:	Returns a menu object created from the specified items.

The framem argument lets you specify a frame manager.

The owner argument is used to specify which sheet owns the menu. If
you fail to supply this, then the menu will be owned by the entire
screen.

You can specify a title, if desired.

The label-key and value-key can be functions used to compute the
label and value for each item in the menu, respectively. For more
information, see `gadget-label-key`_, or
`gadget-value-key`_. In general, the label
key can be trusted to “do the right thing” by default.

The text-style argument specified a text style for the menu. The
foreground and background arguments specify foreground and
background colors for the menu: foreground being used for the text in
the menu, and background for the menu itself.

	See also:	
	display-menu

	
make-node Generic function

	
Creates a node which can be inserted in the specified tree control.

	Signature:	make-node tree object #key #all-keys => node

	Parameters:	
	tree – An instance of <tree-control>.

	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	node – An instance of type <tree-node>.

	Discussion:	Creates a node that represents object which can be inserted in the
specified tree. To insert the item in the tree control, add-node
is used. You would not normally call make-node explicitly: just use
add-node and the node is created automatically before it is added
to the tree control.

	See also:	
	add-node

	find-node

	remove-node

	<tree-control>

	
<menu> Open Abstract Instantiable Class

	The class of menu gadgets.

	Superclasses:	<gadget> <multiple-child-composite-pane>

	Init-Keywords:	
	update-callback – An instance of type false-or(<function>).

	owner – An instance of type <sheet>.

	mnemonic – An instance of type false-or(<character>).
Default value: #f.

	command – An instance of false-or(<frames.htm#40934>).
Default value: #f.

	Discussion:	The class of menu gadgets.

Support for dynamically modifying the contents of a menu is provided in
the form of an update callback, If this is supplied using the
update-callback: init-keyword, then it is invoked just before the menu
is displayed. This callback is free to make changes to the contents of
the menu, which will then appear when the update callback is complete.
Note that you can also supply an update callback to any menu box which
forms a part of the menu, using the relevant init-keyword to :class:<menu-box>`.

The owner: argument is used to specify which sheet owns the menu. If
you fail to supply this, then the menu will be owned by the entire
screen.

The mnemonic: init-keyword is used to specify a keyboard mnemonic for
the button. This is a key press that involves pressing the ALT key
followed by a number of alphanumeric keys.

The command: init-keyword specifies a command that is invoked when the
menu is chosen. For most menus, you should not specify a command;
instead, you assign menu buttons as children to the menu, and the menu
buttons themselves have commands specified. However, in the rare case
where the menu has no children, and you want the menu itself to invoke a
command, you can use this init-keyword.

Internally, this class maps into the menu Windows control.

	Operations:	
	<frames.htm#89020>

	choose-from-dialog

	choose-from-menu

	display-menu

	menu-owner

	Example:	The following code creates a menu, Hello, that contains a single
button, World. Notice how using contain creates a menu bar for you
automatically. You should note that using display-menu would not
have this effect.

menu := contain(make(<menu>,
 label: "Hello",
 children:
 vector
 (make(<menu-button>,
 label: "World"))));

	See also:	
	display-menu

	make-menu-from-items

	
<menu-bar> Open Abstract Instantiable Class

	The class of menu bar gadgets.

	Superclasses:	<value-gadget> <multiple-child-composite-pane>

	Init-Keywords:	
	update-callback – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	Discussion:	The class of menu bar gadgets.

Internally, this class maps into the Windows menu control.

	Operations:	
	<frames.htm#63229>

	<frames.htm#56600>

	Example:	The following example is similar to the example for
<menu>, except that here, the menu bar object is
explicitly defined. In the example for <menu>, it is created
automatically by using contain:

menu := make(<menu-bar>,
 children:
 vector(make(<menu>,
 label: "Hello",
 children: vector
 (make(<menu-button>,
 label: "World")
))));

	See also:	
	<menu>

	
<menu-box> Open Abstract Instantiable Class

	A class that groups menu buttons.

	Superclasses:	<collection-gadget>

	Init-Keywords:	
	update-callback – An instance of type false-or(<function>).

	Discussion:	A class that groups menu buttons. Like the <button-box>
class, you can use this class to create groups of menu buttons
that are related in some way. A visual separator is displayed
in the menu in which a menu box is inserted,
separating the menu buttons defined in the menu box from other menu
buttons or menu boxes in the menu.

An example of the way in which a menu box may be used is to implement
the clipboard menu commands usually found in applications. A menu box
containing items that represent the Cut, Copy, and Paste
commands can be created and inserted into the Edit menu.

Internally, this class maps into the menu Windows control.

Support for dynamically modifying the contents of a menu box is provided
in the form of an update callback, If this is supplied using the
update-callback: init-keyword, then it is invoked just before the menu
box is displayed (this usually occurs at the same time that the menu of
which the menu box is a part is displayed). This callback is free to
make changes to the contents of the menu box, which will then appear
when the update callback is complete.

	Example:	*menu-box* := contain(make(<menu-box>,
 items: range
 (from: 0, to: 5)));

	See also:	
	<check-menu-box>

	<push-menu-box>

	<radio-menu-box>

	
<menu-button> Open Abstract Instantiable Class

	The class of all buttons that can appear in menus.

	Superclasses:	<button>

	Init-Keywords:	
	update-callback – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	Discussion:	The class of all buttons that can appear on menus.

You should take special care to define keyboard accelerators and
keyboard mnemonics for any menu buttons you create. For a full
discussion on this, see the entry for <button>

Internally, this class maps into the menu item Windows control.

	Example:	contain
 (make(<menu-button>, label: "Hello",
 activate-callback:
 method (gadget)
 notify-user
 (format-to-string
 ("Pressed button %=", gadget),
 owner: gadget) end));

	See also:	
	<check-menu-button>

	gadget-accelerator

	<menu-box>

	<push-menu-button>

	<radio-menu-button>

	
menu-owner Generic function

	Returns the sheet that owns the specified menu.

	Signature:	menu-owner menu => sheet

	Parameters:	
	menu – An instance of type <menu>.

	Values:	
	sheet – An instance of type <sheet>.

	Discussion:	Returns the sheet that owns menu, that is, the sheet in which menu
is displayed.

Every menu should specify which sheet it is owned by. If this is not
specified, then the menu will be owned by the entire screen.

	
node-children Generic function

	Returns the children of the specified node in a tree control.

	Signature:	node-children tree-node => children

	Parameters:	
	tree-node – An instance of type <tree-node>.

	Values:	
	children – An instance of type limited(<sequence>, of: <tree-node>).

	Discussion:	Returns the children of tree-node in a tree control.

	See also:	
	node-children-setter

	node-parents

	tree-control-children-generator

	<tree-node>

	
node-children-setter Generic function

	Sets the children of the specified node in a tree control.

	Signature:	node-children-setter children tree-node => children

	Parameters:	
	children – An instance of type limited(<sequence>, of: <tree-node>).

	tree-node – An instance of type <tree-node>.

	Values:	
	children – An instance of type limited(<sequence>, of: <tree-node>).

	Discussion:	Sets the children of tree-node in a tree control.

	See also:	
	node-children

	node-parents

	tree-control-children-generator

	<tree-node>

	
node-expanded? Generic function

	Returns true if the specified node is expanded in a tree control.

	Signature:	node-expanded? tree-node => expanded?

	Parameters:	
	tree-node – An instance of type <tree-node>.

	Values:	
	expanded? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if tree-node is expanded in a tree control, so that its
children are displayed in the tree control.

	See also:	
	<tree-node>

	
node-object Generic function

	Returns the object that the specified node in a tree control represents.

	Signature:	node-object tree-node => object

	Parameters:	
	tree-node – An instance of type <tree-node>.

	Values:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Discussion:	Returns the object that tree-node represents.

	See also:	
	<tree-node>

	
node-parents Generic function

	Returns the parents of the specified node in a tree control.

	Signature:	node-parents tree-node => parents

	Parameters:	
	tree-node – An instance of type <tree-node>.

	Values:	
	parents – An instance of type <sequence> [http://opendylan.org/books/drm/Collection_Classes#sequence].

	Discussion:	Returns the parents of tree-node in a tree control.

	See also:	
	node-children

	<tree-node>

	
node-state Generic function

	Returns the state of the specified node in a tree control.

	Signature:	node-parents tree-node => state

	Parameters:	
	tree-node – An instance of type <tree-node>.

	Values:	
	parents – An instance of type one-of(#"expanded", #"contracted", #f).

	Discussion:	Returns the state of tree-node in a tree control, that is, whether it
is currently expanded or contracted. This function returns #f if
tree-node does not exist.

	See also:	
	node-expanded?

	<tree-node>

	
<option-box> Open Abstract Instantiable Class

	The class of option boxes.

	Superclasses:	<collection-gadget>

	Init-Keywords:	
	borders – An instance of type one-of(#f, #"none", #"flat",
#"sunken", #"raised", #"ridge", #"groove", #"input", #"output").
Default value: #f.

	scroll-bars – An instance of type one-of(#f, #"none",
#"horizontal", #"vertical", #"both", #"dynamic"). Default value:
#"both".

	Discussion:	
[image: _images/gadgets-25.png]
The class of option boxes.

The borders: init-keyword lets you specify a border around the option
box. If specified, a border of the appropriate type is drawn around the
gadget.

The scroll-bars: init-keyword lets you specify the scroll bar behavior
for the gadget.

Internally, this class maps into the Windows drop-down list control.

	See also:	
	<combo-box>

	
<page> Open Abstract Instantiable Class

	The class that represents a page in a tab control.

	Superclasses:	<gadget>

	Init-Keywords:	
	label – An instance of type type-union(<string>, <image>).

	Discussion:	The class that represents a page in a multi-page frame, such as a tab
control or wizard frame or property frame.

The label: init-keyword specifies a string or icon that is to be used
as a label for the gadget. Pages typically appear inside a tab control,
where the label for the page becomes the label on the tab for the page.

	Operations:	
	<frames.htm#88015>

	<frames.htm#89408>

	See also:	
	<frames.htm#93333>

	<tab-control-page>

	<frames.htm#87607>

	
<password-field> Open Abstract Instantiable Class

	The class of text fields that do not echo typed text.

	Superclasses:	<text-field>

	Discussion:	[image: image7] The class of text fields that do not echo typed text. This
class of gadgets are very similar in appearance to the <text-field>
gadget, except that any text typed by the user is hidden in some way,
rather than being echoed to the screen in the normal way.

Internally, this class maps into the Windows single-line edit control
with ES-PASSWORD style.

	Example:	*pass* := contain(make(<password-field>));

	See also:	

<text-field>

	
<progress-bar> Open Abstract Instantiable Class

	The class of progress bar windows.

	Superclasses:	<value-range-gadget>

	Init-Keywords:	
	orientation – An instance of type one-of(#"horizontal",
#"vertical"). Default value: #"horizontal".

	Discussion:	
[image: _images/gadgets-27.png]
The class of progress bar windows.

The orientation: init-keyword lets you specify whether the progress
bar should be horizontal or vertical.

Internally, this class maps into the Windows progress indicator control.

	Example:	The following code creates an “empty” progress bar:

prog := contain
 (make(<progress-bar>,
 value-range:
 range(from: 0, to: 100)));

By setting the gadget value of the progress bar, the progress of a task
can be monitored as follows:

for (i from 0 to 100) gadget-value(*prog*) := i end;

	See also:	
	<slider>

	
<push-box> Class

	

	Open:	

	Abstract:	

	Instantiable:	

The class of grouped push buttons.

	Superclasses:	<button-box> <action-gadget>

	Discussion:	
[image: _images/gadgets-28.png]
The class of grouped push buttons.

The gadget-value of a push box is always the
gadget value of the last push button in the box to be pressed. You
should use the gadget value of a push box as the way of determining
which button has been pressed in a callback for the push box.

	Example:	*push-box* := contain
 (make(<push-box>,
 items: range(from: 0, to: 5)));

	See also:	
	<check-box>

	<group-box>

	<radio-box>

	
<push-button> Open Abstract Instantiable Class

	The class of push buttons.

	Superclasses:	<button> <action-gadget>

	Init-Keywords:	
	default? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #f.

	Discussion:	
[image: _images/gadgets-29.png]
The class of push buttons.The push button gadget provides
press-to-activate switch behavior.

When the button is activated (by releasing the pointer button over it),
its activate callback is invoked.

If you supply a gadget-value for a push button, this can be used
by any callback defined on the push button. This is especially useful
in the case of push boxes, where this value can be used to test which
button in the push box has been pressed.

The default?: init-keyword sets the default property for the push
button gadget. When true, the push button is drawn with a heavy border,
indicating that it is the “default operation” for that frame. Usually,
this means that pressing the Return key invokes the activate callback.

Internally, this class maps into the push button Windows control.

	Example:	The following code creates a push button which, when clicked, displays a
message showing the label of the button.

contain(make(<push-button>,
 label: "Hello",
 activate-callback:
 method (gadget)
 notify-user(format-to-string
 ("Pressed button %=",
 gadget-label(gadget)),
 owner: gadget) end));

	See also:	
	<check-button>

	<radio-button>

	
<push-menu-box> Open Abstract Instantiable Class

	The class of grouped push buttons in menus.

	Superclasses:	<menu-box> <action-gadget>

	Discussion:	
[image: _images/gadgets-30.png]
The class of grouped push buttons in menus.

Internally, this class maps into the menu Windows control.

	Example:	contain(make(<push-menu-box>,
 items: range(from: 0, to: 5)));

	See also:	
	<check-menu-box>

	<menu-box>

	<radio-menu-box>

	
<push-menu-button> Open Abstract Instantiable Class

	The class of push buttons that appear on menus.

	Superclasses:	<push-menu-button>

	Init-Keywords:	
	default? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #f.

	Discussion:	
[image: _images/gadgets-31.png]
The class of push buttons that appear on menus.

The default?: init-keyword sets the default value for the push menu
button gadget.

Internally, this class maps into the menu item Windows control.

	See also:	
	<check-menu-button>

	<menu-button>

	<radio-menu-button>

	
<radio-box> Open Abstract Instantiable Class

	The class of radio boxes, or groups of mutually exclusive radio buttons.

	Superclasses:	<button-box> <action-gadget>

	Discussion:	[image: image8] The instantiable class that implements an abstract radio box,
that is, a gadget that constrains a number of toggle buttons, only one
of which may be selected at any one time.

The value of the radio box is the value of the currently selected item
in the radio box.

	Example:	contain(make(<radio-box>, items: #("Yes", "No"),
 orientation: #"vertical");

The following example defines a label-key function which formats the
label of each item in the radio box, rather than just using the item
itself.

radio-box := contain
 (make(<radio-box>,
 items: #(1, 2, 3, 4, 5),
 orientation: #"vertical",
 label-key:
 method (item)
 format-to-string("===%d===",
 item) end));

	See also:	
	<check-box>

	<group-box>

	<push-box>

	
<radio-button> Open Abstract Instantiable Class

	The class of radio buttons.

	Superclasses:	<button> <action-gadget>

	Discussion:	[image: image9] The class of radio buttons. Isolated radio buttons are of
limited use: you will normally want to combine several instances of such
buttons using the :class:<radio-box>` gadget.

Internally, this class maps into the radio button Windows control.

	Example:	contain(make(<radio-button>, label: "Hello"));

	See also:	
	<button>

	<check-button>

	<menu-button>

	<radio-box>

	
<radio-menu-box> Open Abstract Instantiable Class

	The class of grouped radio buttons that can appear in menus.

	Superclasses:	<menu-box> <action-gadget>

	Discussion:	The class of grouped radio buttons that can appear in menus.

[image: _images/gadgets-34.png]
A radio menu box

Internally, this class maps into the menu Windows control.

	Example:	The following example creates a menu that shows an example of a radio
menu box, as well as several other menu gadgets.

contain(make(<menu>,
 label: "Hello...",
 children: vector
 (make(<menu-button>,
 label: "World"),
 make(<menu-button>,
 label: "Bonzo"),
 make(<radio-menu-box>,
 items:
 #("You", "All",
 "Everyone")),
 make(<menu>,
 label: "Others",
 children:
 vector
 (make(<check-menu-box>,
 items: #(1, 2, 3)))
))));

	See also:	
	<menu-box>

	<push-menu-box>

	<radio-menu-button>

	
<radio-menu-button> Open Abstract Instantiable Class

	The class of radio buttons that can appear in menus.

	Superclasses:	<menu-button>

	Discussion:	[image: image10] The class of radio buttons that can appear in menus. Isolated
radio menu buttons are of limited use: you will normally want to combine
several instances of such buttons using the :class:<radio-menu-box>` gadget.

Internally, this class maps into the menu radio item Windows control.

	Example:	contain(make(<radio-menu-button>, label: "Hello"));

	See also:	
	<menu-button>

	<push-menu-button>

	<radio-menu-box>

	
remove-column Generic function

	Removes a column from the specified table.

	Signature:	remove-column table index =>

	Parameters:	
	table – An instance of type <table-control>.

	index – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Removes a column from table.

	See also:	
	add-column

	
remove-item Generic function

	Removes an item from a list control or table control.

	Signature:	remove-item list-or-table item => ()

	Parameters:	
	list-or-table – An instance of type-union(<list-control>, <table-control>).

	item – An instance of type :class`<list-item>`.

	Discussion:	Removes item from list-or-table.

	See also:	
	add-item

	find-item

	<list-control>

	<list-item>

	make-item

	<table-control>

	<table-item>

	
remove-node Generic function

	Removes a node from a tree control.

	Signature:	remove-node tree node => ()

	Parameters:	
	tree – An instance of <tree-control>.

	node – An instance of type <tree-node>.

	Discussion:	Removes node from tree.

	See also:	
	add-node

	find-node

	make-node

	<tree-control>

	
<scroll-bar> Open Abstract Instantiable Class

	The class of scroll bars.

	Superclasses:	<value-range-gadget>

	Init-Keywords:	
	orientation – An instance of type one-of(#"horizontal",
#"vertical", #"none"). Default value: #"none".

	value-changing-callback – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	value-changed-callback – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	slug-size – An instance of type <real> [http://opendylan.org/books/drm/Number_Classes#real].

	Discussion:	[image: image11] The instantiable class that implements an abstract scroll bar.

The orientation: init-keyword defines whether the scroll bar is
horizontal or vertical.

The value-changing-callback: init-keyword is the callback that is
invoked when the gadget value is in the process of changing, such as
when the scroll bar slug is dragged.

The value-changed-callback: init-keyword is the callback that is
invoked when the gadget value has changed, such as when the scroll bar
slug has come to rest after being dragged. You could use this callback,
for example, to refresh the screen in your application to show a
different part of a sheet, after the scroll bar had been moved.

The slug-size: init-keyword defines the size of the slug in the scroll
bar, as a proportion of value-range:. For example, if value-range:
is from 0 to 100, and slug-size: is 25, then the slug occupies a
quarter of the total length of the scroll bar. The slug is the part of
the scroll bar that can be dragged up and down, and represents how much
of the sheet being scrolled is visible.

Note

The Microsoft Windows Interface Guidelines refer to the slug as
a scroll-box, and the area in which the slug can slide as the
scroll-shaft. You should be aware of this difference if you are using
those guidelines as a reference.

Internally, this class maps into the Windows scroll bar control.

	Operations:	
	gadget-slug-size

	gadget-slug-size-setter

	Example:	As an example of how the slug-size: init-keyword operates, compare the
two examples of scroll bars below. The second scroll bar has a slug that
is twice the size of the first.

	contain(make(<scroll-bar>,

	value-range: range(from: 0, to: 100)
slug-size: 10));

	contain(make(<scroll-bar>,

	value-range: range(from: 0, to: 100)
slug-size: 20));

	See also:	
	<slider>

	
scrolling Statement Macro

	Places scroll bars around the specified DUIM panes, if required.

	Macro Call:	scrolling ([*options*]) {*pane* } end

	Parameters:	
	options – Dylan arguments bnf.

	pane – A Dylan expression bnf.

	Discussion:	Places scroll bars around the DUIM panes created by pane, if
required. It is useful to use this macro if you are unsure that the
panes created can be displayed on the screen successfully without scroll
bars: this macro only adds scroll bars when it is necessary.

Creates pane with scroll bars attached to it, taking into account any
of the specified options.

The pane is an expression whose return value is the sheet to which the
scroll bars should be attached.

The options can be used to specify the properties of the scroll bars. As
well as all the properties of <gadget>, these
include a scroll-bars: init-keyword, which may take one of the
following values: #f, #"none", #"horizontal", #"vertical", #"both",
#"dynamic". If no options are specified, then both vertical and
horizontal scroll bars are used.

The pane is a body of code whose return value is the sheet to which the
label should be assigned.

	Example:	scrolling (scroll-bars: #"vertical")
 make(<radio-box>,
 orientation: #"vertical",
 items: range(from: 1, to: 50))
end

	See also:	
	<scroll-bar>

	scroll-position

	set-scroll-position

	
scroll-position Generic function

	Returns the position of the scroll bar slug in the specified sheet.

	Signature:	scroll-position sheet => x y

	Parameters:	
	sheet – An instance of type <sheet>.

	Values:	
	x – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	y – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns the position of the scroll bar slug in sheet. Note that this
generic function only returns the position of scroll bar slugs that have
been created using the scrolling macro. It
does not work on gadgets with scroll bars defined explicitly.

Note

The Microsoft Windows Interface Guidelines refer to the
slug as a scroll-box, and the area in which the slug can slide
as the scroll-shaft. You should be aware of this difference
if you are using those guidelines as a reference.

	See also:	
	scrolling

	set-scroll-position

	
<separator> Open Abstract Instantiable Class

	The class of gadgets used as a visual separator.

	Superclasses:	<gadget>

	Init-Keywords:	
	orientation – An instance of type one-of(#"horizontal", #"vertical").
Default value: #"horizontal".

	Discussion:	The class of gadgets used as a visual separator.

[image: _images/gadgets-37.png]
A separator

The orientation: init-keyword specifies whether the separator is
vertical or horizontal.

	Example:	The following example creates a column layout and places two buttons in
it, separated with a separator.

contain(vertically ()
 make(<button>, label: "Hello");
 make(<separator>);
 make(<button>, label: "World")
 end);

	See also:	
	<spacing>

	
set-scroll-position Generic function

	Scrolls the window on the specified sheet.

	Signature:	set-scroll-position sheet x y => ()

	Parameters:	
	sheet – An instance of type <sheet>.

	x – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	y – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Scrolls the window on sheet by setting the position of the scroll bar
slug. Note that this generic function only sets the position of scroll
bar slugs that have been created using the scrolling macro.
It does not work on gadgets with scroll bars defined explicitly.

Note

The Microsoft Windows Interface Guidelines refer to the
slug as a scroll-box, and the area in which the slug can slide
as the scroll-shaft. You should be aware of this difference
if you are using those guidelines as a reference.

	See also:	
	scroll-position

	scrolling

	
sheet-viewport Generic function

	Returns the viewport that is clipping the specified sheet.

	Signature:	sheet-viewport sheet => viewport

	Parameters:	
	sheet – An instance of type <sheet>.

	Values:	
	viewport – An instance of type false-or(`<viewport>).

	Discussion:	Returns the viewport that is clipping sheet.

	See also:	
	sheet-viewport-region

	<viewport>

	
sheet-viewport-region Generic function

	Returns the sheet region of the specified sheet’s viewport, if it has
one.

	Signature:	sheet-viewport-region sheet => region

	Parameters:	
	sheet – An instance of type <sheet>.

	Values:	
	region – An instance of type <region>.

	Discussion:	Returns the sheet region of sheet ‘s viewport, if it has one. If sheet
has no viewport, it returns sheet ‘s own region.

	See also:	
	sheet-viewport

	<viewport>

	
<slider> Open Abstract Instantiable Class

	The class of slider gadgets.

	Superclasses:	<value-range-gadget>

	Init-Keywords:	
	min-label – An instance of type type-union(<string>, <image>).

	max-label – An instance of type type-union(<string>, <image>).

	borders – An instance of type one-of(#f, #"none", #"flat",
#"sunken", #"raised", #"ridge", #"groove", #"input", #"output").
Default value: #f.

	tick-marks – An instance of type false-or(<integer>).
Default value: #f

	orientation – An instance of type one-of(#"horizontal", #"vertical").
Default value: #"horizontal".

	value-changing-callback – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	Discussion:	[image: image12] The class of slider gadgets. This is a gadget used for setting
or adjusting the value on a continuous range of values, such as a volume
or brightness control.

You can specify a number of attributes for the labels in a slider. The
min-label: and max-label: init-keywords let you specify a label to
be displayed at the minimum and maximum points of the slider bar,
respectively. In addition, the range-label-text-style: init-keyword
lets you specify a text style for these labels.

The borders: init-keyword lets you specify a border around the slider.
If specified, a border of the appropriate type is drawn around the
gadget.

The tick-marks: init-keyword specifies the number of tick-marks that
are shown on the slider. Displaying tick marks gives the user a better
notion of the position of the slug at any time.

The orientation: init-keyword specifies whether the slider is
horizontal or vertical.

The value-changing-callback: init-keyword is the callback that is
invoked when the slider slug is dragged.

Internally, this class maps into the Windows trackbar control.

When designing a user interface, you will find that spin boxes are a
suitable alternative to spin boxes in many situations.

	Example:	contain(make(<slider>,
 value-range:
 range(from: -20, to: 20, by: 5)));

	See also:	
	<scroll-bar>

	<spin-box>

	
<spacing> Open Abstract Instantiable Class

	The class of gadgets that can be used to provide spacing around a sheet.

	Superclasses:	<gadget>

	Init-Keywords:	
	child – An instance of type limited(<sequence> of: <sheet>).

	thickness – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer]. Default value: 1.

	Discussion:	The class of gadgets that can be used to provide spacing around a sheet.

The child: init-keyword is the sheet or sheets that you are adding
spacing around.

The thickness: init-keyword specifies the thickness of the spacing
required.

It is usually clearer to use the with-spacing macro, rather
than to create an instance of <spacing> explicitly.

	Example:	The following creates a vertical layout containing two buttons separated
by a text field that has spacing added to it.

contain(vertically ()
 make(<button>, label: "Hello");
 make(<spacing>,
 child: make(<text-field>),
 thickness: 10);
 make(<button>, label: "World")
end);

	See also:	
	<null-pane>

	<separator>

	with-spacing

	
<spin-box> Open Abstract Instantiable Class

	The class of spin box gadgets.

	Superclasses:	<collection-gadget>

	Init-Keywords:	
	borders – An instance of type one-of(#f, #"none", #"flat",
#"sunken", #"raised", #"ridge", #"groove", #"input", #"output")*.
Default value: ``#f.

	Discussion:	[image: image13] The class of spin box gadgets. A spin box gadget is a text box
that only accepts a limited range of values that form an ordered loop.
As well as typing a value directly into the text box, small buttons are
placed on its right hand side (usually with up and down arrow icons as
labels). You can use these buttons to increase or decrease the value
shown in the text box.

A spin box may be used when setting a percentage value, for example. In
this case, only the values between 0 and 100 are valid, and a spin box
is a suitable way of ensuring that only valid values are specified by
the user.

The borders: init-keyword lets you specify a border around the spin
box. If specified, a border of the appropriate type is drawn around the
gadget.

When designing a user interface, you will find that sliders are a
suitable alternative to spin boxes in many situations.

	Example:	contain(make(<spin-box>,
 items: range(from: 1, to: 10)));

	See also:	
	<slider>

	
<splitter> Abstract Instantiable Class

	The class of splitter gadgets. Splitters are subclasses of both
<gadget> and <layout>. Splitters (sometimes referred
to as split bars in Microsoft documentation) are gadgets that allow
you to split a pane into two resizable portions. For example, you could create a
splitter that would allow more than one view of a single document. In a
word processor, this may be used to let the user edit disparate pages on
screen at the same time.

A splitter consists of two components: a button that is used to create
the splitter component itself (referred to as a split box), and the
splitter component (referred to as the split bar). The split box is
typically placed adjacent to the scroll bar. When the user clicks on the
split box, a movable line is displayed in the associated pane which,
when clicked, creates the split bar.

The split-box-callback: init-keyword is an instance of type
false-or(<function>), and specifies the callback that is invoked when
the split box is clicked.

The split-bar-moved-callback: init-keyword is an instance of type
false-or<function>), and specifies a callback that is invoked when
the user moves the split bar.

The horizontal-split-box?: init-keyword is an instance of type
<boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean], and if true a horizontal split bar is created.

The vertical-split-box?: init-keyword is an instance of type
<boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean], and if true a vertical split bar is created.

	
splitter-split-bar-moved-callback Generic function

	Returns the function invoked when the split bar of splitter is moved.

	Signature:	splitter-split-bar-moved-callback splitter => function

	Parameters:	
	splitter – An instance of type <splitter>.

	Values:	
	function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	
splitter-split-bar-moved-callback-setter Generic function

	Sets the callback invoked when the split bar of splitter is moved.

	Signature:	splitter-split-bar-moved-callback-setter function splitter => function

	Parameters:	
	function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	splitter – An instance of type <splitter>.

	Values:	
	function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	
splitter-split-box-callback Generic function

	Returns the callback invoked when the split box of splitter is
clicked.

	Signature:	splitter-split-box-callback splitter => function

	Parameters:	
	splitter – An instance of type <splitter>.

	Values:	
	function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	
splitter-split-box-callback-setter Generic function

	Sets the callback invoked when the split box of splitter is clicked.

	Signature:	splitter-split-box-callback-setter function splitter => function

	Parameters:	
	function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	splitter – An instance of type <splitter>.

	Values:	
	function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	
<status-bar> Open Abstract Instantiable Class

	The class of status bars.

	Superclasses:	<value-range-gadget>

	Init-Keywords:	
	label – An instance of type type-union(<string>, <image>).

	label-pane – An instance of false-or(<gadget>).
Default value: #f.

	progress-bar? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].
Default value: #f.

	progress-bar – An instance of false-or(<progress-bar>).
Default value: #f.

	value – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	value-range – An instance of type <range> [http://opendylan.org/books/drm/Collection_Classes#range].

	Discussion:	The class of status bars. Status bars are often used at the bottom of an
application window, and can provide a range of feedback on the current
state of an application. Some examples of information that is often
placed in a status bar are:

	Documentation strings for the currently selected menu button.

	Progress indicators to show the state of operations such as loading
and saving files.

	The current position of the caret on the screen.

	Currently selected configurable values (such as the current font
family, size, and style in a word processor).

	The current time.

In particular, it is trivial to add an in-built progress bar to a status
bar. Any documentation strings specified for menu buttons in a frame are
automatically displayed in the label pane of a status bar when the mouse
pointer is placed over the menu button itself.

The label: init-keyword specifies a string or icon that is to be used
as a label for the gadget. Alternatively, the label-pane: init-keyword
specifies a pane that should be used as the label. You should only use
one of these init-keywords; see the discussion about creating status
bars below.

If progress-bar?: is true, then the status bar has a progress bar.
Alternatively, the progress-bar: init-keyword specifies a pane that
should be used as the label. You should only use one of these
init-keywords; see the discussion about creating status bars below.

The value: init-keyword specifies the gadget value of the progress
bar, if there is one.

The value-range: init-keyword is the range of values across which the
progress bar can vary, if there is one.

Internally, this class maps into the Windows status window control.

There are two ways that you can create a status bar:

	The simple way is to provide a simple status bar that only has a
label and, optionally, a progress bar.

	The more complicated way is to define all the elements of a status
bar from scratch, as children of the status bar.

If you want to create a simple status bar, then use the label:
init-keyword to specify the text to be displayed in the status bar. In
addition, you can set or check the label using gadget-label once the
status bar has been created.

You can create a basic progress bar by setting progress-bar?: to true.
If you create a progress bar in this way, then it will respond to the
gadget-value and gadget-value-range protocols: you can use
gadget-value to set the position of the progress bar explicitly, or to
check it, and you can use gadget-value-range to define the range of
values that the progress bar can take, just like any other value gadget.
By default, the range of possible values is 0 to 100.

The more complicated way to create a status bar is to define all its
children from scratch. You need to do this if you want to provide the
user with miscellaneous feedback about the application state, such as
online documentation for menu commands, or the current position of the
cursor. Generally speaking, if you need to provide pane in which to
display information, you should define instances of <label>
for each piece of information you want to
use. However, if you wish you can add any type of gadget to your status
bar in order to create a more interactive status bar. For instance, many
word processors include gadgets in the status bar that let you select
the zoom level at which to view the current document from a drop-down
list of options.

If you define the children of a status bar from scratch in this way, you
should make appropriate use of the label-pane: and progress-bar:
init-keywords. The label-pane: init-keyword lets you specify the pane
that is to act as the label for the status bar; that is, the pane that
responds to the gadget-label protocol. The progress-bar:
init-keyword lets you define a progress bar to add to the status bar. If
you create a status bar from scratch, you should not use either the
label: or progress-bar?: init-keywords.

	Operations:	
	<frames.htm#32720>

	<frames.htm#56600>

	:gf:status-bar-label-pane`

	:gf:status-bar-progress-bar`

	Example:	The following creates a basic status bar with the given label, and a
progress bar with the given range of values.

contain(make(<status-bar>,
 progress-bar?: #t,
 value-range: range(from: 0, to: 50)
 label: "Status"));

	See also:	
	<frames.htm#12376>

	<frames.htm#36830>

	gadget-documentation

	status-bar-label-pane

	status-bar-progress-bar

	
status-bar-label-pane Generic function

	Returns the gadget that displays the label of the specified status bar.

	Signature:	status-bar-label-pane status-bar => label

	Parameters:	
	status-bar – An instance of type <status-bar>.

	Values:	
	label – An instance of type false-or(<label>`).

	Discussion:	Returns the gadget that displays the label of status-bar.

	Example:	Create a status bar with a label as follows:

status := contain(make(<status-bar>,
 value-range:
 range(from: 0, to: 100),
 label: "Status"));

The pane that the label of the status bar is displayed in can be
returned with the following call:

status-bar-label-pane(*status*);

	See also:	
	<status-bar>

	status-bar-progress-bar

	
status-bar-progress-bar Generic function

	Returns the progress bar for the specified status bar.

	Signature:	status-bar-progress-bar status-bar => progress-bar

	Parameters:	
	status-bar – An instance of type <status-bar>.

	Values:	
	progress-bar – An instance of type false-or(<progress-bar>).

	Discussion:	Returns the progress bar for status-bar, if there is one.

	See also:	
	<progress-bar>

	
<tab-control> Open Abstract Instantiable Class

	The class of tab controls.

	Superclasses:	<value-gadget>

	Init-Keywords:	
	pages – An instance of type limited(<sequence>, of: <page>).

	current-page – An instance of type false-or(<sheet>).

	key-press-callback – An instance of type false-or(<frames.htm#40934>, <function>).

	Discussion:	[image: image14] The class of tab controls. These controls let you implement a
multi-page environment in a window or dialog. Each page in a tab control
has its own associated layout of sheets and gadgets, and an accompanying
tab (usually displayed at the top of the page, rather like the tab
dividers commonly used in a filing cabinet. Each page in a tab control
can be displayed by clicking on the appropriate tab.

The pages: init-keyword is used to define the pages that the tab
control contains. Each page in the tab control is an instance of the
class <page>.

The current-page: init-keyword specifies which tab is visible when the
tab control is first displayed.

The key-press-callback: init-keyword lets you specify a key-press
callback. This type of callback is invoked whenever a key on the
keyboard is pressed while the gadget has focus. In a tab control, a
key-press callback might be used as a quick way to display each page in
the tab control. See gadget-key-press-callback, for a fuller
description of key-press callbacks.

The gadget-id of a tab control is particularly useful, because
it is returned by gadget-value.

Internally, this class maps into the Windows tab control.

	Operations:	
	tab-control-current-page

	tab-control-current-page-setter

	tab-control-labels

	tab-control-pages

	tab-control-pages-setter

	Example:	The following example creates a tab control that has two pages. The
first page contains a button, and the second page contains a list.

contain(make(<tab-control>,
 pages:
 vector(make(<tab-control-page>,
 label: "First",
 child: make(<push-button>,
 label: "One")),
 make(<tab-control-page>,
 label: "Second",
 child: make(<list-box>,
 items:
 #(1, 2, 3)
)))));

	See also:	
	<page>

	
tab-control-current-page Generic function

	
Returns the current visible page of the specified tab control.

	Signature:	tab-control-current-page tab-control => visible-page

	Parameters:	
	tab-control – An instance of type <tab-control>.

	Values:	
	visible-page – An instance of type <page>.

	Discussion:	Returns the current visible page of tab-control.

	Example:	The following example creates a tab control that has two pages.

tab := contain
 (make
 (<tab-control>,
 pages:
 vector(make(<tab-control-page>,
 label: "First",
 child: make(<push-button>,
 label: "One")),
 make(<tab-control-page>,
 label: "Second",
 child: make(<list-box>,
 items:
 #(1, 2, 3)
)))));

The current page of the tab control can be returned with the following
code:

tab-control-current-page(*tab*);

	See also:	
	<page>

	<tab-control>

	tab-control-current-page-setter

	tab-control-pages

	
tab-control-current-page-setter Generic function

	Sets the current visible page of the specified tab control.

	Signature:	tab-control-current-page-setter visible-page tab-control => visible-page

	Parameters:	
	visible-page – An instance of type <page>.

	tab-control – An instance of type <tab-control>.

	Values:	
	visible-page – An instance of type <page>.

	Discussion:	Sets the current visible page of tab-control.

	Example:	The following example creates a tab control that has two pages.

tab := contain
 (make
 (<tab-control>,
 pages:
 vector(make(<tab-control-page>,
 label: "First",
 child: make(<push-button>,
 label: "One")),
 make(<tab-control-page>,
 label: "Second",
 child: make(<list-box>,
 items:
 #(1, 2, 3)
)))));

Assign a variable to the current page of the tab control as follows:

page := tab-control-current-page(*tab*);

Next, change the current page of the tab control by clicking on the tab
for the hidden page. The, set the current page to be the original
current page as follows:

tab-control-current-page(*tab*) := *page*;

	See also:	
	<page>

	<tab-control>

	tab-control-current-page

	
tab-control-labels Generic function

	Returns the tab labels of the specified pane.

	Signature:	tab-control-labels tab-control => labels

	Parameters:	
	tab-control – An instance of type <tab-control>.

	Values:	
	labels – An instance of type limited(<sequence>, of: <label>).

	Discussion:	Returns the tab labels of tab-control, as a sequence. Each element in
labels is an instance of <label>.

	Example:	Given the tab control created by the code below:

tab := contain
 (make
 (<tab-control>,
 pages:
 vector(make(<tab-control-page>,
 label: "First"),
 make(<tab-control-page>,
 label: "Second"),
 make(<tab-control-page>,
 label: "Third"),
 make(<tab-control-page>,
 label: "Fourth"),
 make(<tab-control-page>,
 label: "Fifth"))));

You can return a list of the labels as follows:

tab-control-labels(*tab*);

	See also:	
	<tab-control>

	tab-control-pages

	
<tab-control-page> Open Abstract Instantiable Class

	The class that represents a page in a tab control.

	Superclasses:	<page>

	Discussion:	The class that represents a page in a tab control.
[image: _images/gadgets-42.png]
A tab control page

	See also:	
	<page>

	<tab-control>

	<frames.htm#93333>

	<frames.htm#87607>

	
tab-control-pages Generic function

	Returns the tab pages of the specified pane.

	Signature:	tab-control-pages tab-control => pages

	Parameters:	
	tab-control – An instance of type <tab-control>.

	Values:	
	pages – An instance of type limited(<sequence>, of: <page>).
Default value: #[].

	Discussion:	Returns the tab pages of pane.

	Example:	
Given the tab control created by the code below:

tab := contain
 (make
 (<tab-control>,
 pages:
 vector(make(<tab-control-page>,
 label: "First"),
 make(<tab-control-page>,
 label: "Second"),
 make(<tab-control-page>,
 label: "Third"),
 make(<tab-control-page>,
 label: "Fourth"),
 make(<tab-control-page>,
 label: "Fifth"))));

You can return a list of the pages as follows:

tab-control-pages(*tab*);

	See also:	
	<page>

	<tab-control>

	tab-control-current-page

	tab-control-labels

	tab-control-pages-setter

	
tab-control-pages-setter Generic function

	Sets the tab pages of the specified tab control.

	Signature:	tab-control-pages-setter pages tab-control #key page => pages

	Parameters:	
	pages – An instance of type limited(<sequence>, of: <page>).

	tab-control – An instance of <tab-control>.

	page – An instance of <page>.

	Values:	
	pages – An instance of type limited(<sequence>, of: <page>).

	Discussion:	Sets the tab pages available to tab-control, optionally setting
page to the default page to be displayed. The pages argument is an
instance of limited(<sequence>, of: <page>). The page argument is
an instance of <page> and, moreover, must be one of the pages
contained in pages.

	Example:	The tab-control-pages-setter function is used as follows:

tab-control-pages(my-tab-control, page: my-page)
 := my-pages

	See also:	
	<page>

	<tab-control>

	tab-control-pages

	
<table-column> Sealed Class

	The class of columns in table controls.

	Superclasses:	<object> [http://opendylan.org/books/drm/Object_Classes#object]

	Init-Keywords:	
	heading – An instance of type <string> [http://opendylan.org/books/drm/Collection_Classes#string].

	width – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer]. Default value: 100.

	alignment – An instance of type one-of(#"left", #"right",
#"center"). Default value: #"left".

	generator – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	callback – An instance of type false-or(<function>).
Default value: #f.

	Discussion:	The class of columns in table controls.

The width: init-keyword lets you specify the width of the column. The
alignment: init-keyword is used to specify how the column should be
aligned in the table.

To populate the table column, the function specified by generator: is
invoked. This function is called for each item in the table control, and
the value returned is placed at the appropriate place in the column.

In addition, you can also specify a callback that can be used for
sorting the items in the table column, using the callback:
init-keyword.

	See also:	
	<table-control>

	
<table-control> Open Abstract Instantiable Class

	The class of table controls.

	Superclasses:	<collection-gadget> <action-gadget>

	Init-Keywords:	
	headings – An instance of type limited(<sequence>, of: <string>).

	generators – An instance of type limited(<sequence>, of: <function>).

	view – An instance of type <table-control-view>. Default value: #"table".

	borders – An instance of type one-of(#f, #"none", #"flat",
#"sunken", #"raised", #"ridge", #"groove", #"input", #"output").
Default value: #f.

	scroll-bars – An instance of type one-of(#f, #"none",
#"horizontal", #"vertical", #"both", #"dynamic").
Default value: #"both".

	popup-menu-callback – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	key-press-callback – An instance of type false-or(<frames.htm#40934>, <function>).

	widths – An instance of type limited(<sequence>, of: <integer>).

	Discussion:	The class of table controls.

[image: _images/gadgets-43.png]

The view: init-keyword can be used to specify how the items in the
table control are displayed. See <table-control-view>, for more details.

The borders: init-keyword lets you specify a border around the table
control. If specified, a border of the appropriate type is drawn around
the gadget.

The scroll-bars: init-keyword defined the scroll bar behavior for the
gadget.

You can use the popup-menu-callback: init-keyword to specify a
context-sensitive menu to display for one or more selected items in the
table control. In Windows 95, for instance, such a context-sensitive
menu can be displayed by right-clicking on any item or group of selected
items in the list control.

The key-press-callback: init-keyword lets you specify a key-press
callback. This type of callback is invoked whenever a key on the
keyboard is pressed while the gadget has focus. In a table control, a
key-press callback might be used as a quick way to select an item in the
control. See gadget-key-press-callback, for a
fuller description of key-press callbacks.

The headings: and generators: init-keywords can be used to specify
the titles of each column in the control, and a sequence of functions
that are used to generate the contents of each column. The headings
should be a sequence of strings, and the generators should be a sequence
of functions.

The first item in the sequence of headings is used as the title for the
first column, the second is used as the title of the second column, and
so on. Similarly, the first function in the sequence of generators is
invoked on each item in the control, thereby generating the contents of
the first column, the second is used to generate the contents of the
second column by invoking it on each item in the control, and so on.
This is illustrated in `Defining column headings and contents in
table controls`_.

[image: _images/gadgets-44.png]
Defining column headings and contents in table controls

If you do not specify both of these init-keywords, you must supply
columns for the table control, using the <table-column> class.

The widths: init-keyword lets you specify the width of each column in
the table control. It takes a sequence of integers, each of which
represents the width, in pixels, of the respective column in the
control. Note that there must be as many widths as there are columns.

Internally, this class maps into the Windows list view control with
LVS-REPORT style.

	Operations:	
	add-column

	remove-column

	table-control-view

	table-control-view-setter

	See also:	
	<table-column>

	<table-control-view>

	
<table-control-view> Type

	The type of possible views for a table control

	Equivalent:	one-of(#"table", #"small-icon", #"large-icon", #"list")

	Discussion:	This type represents the acceptable values for the view arguments to
operators of <table-control>.There are four possible values, corresponding to the view options that
will be familiar to most users of GUI-based operating systems:

	#"small-icon"

	Displays each item in the table with a small icon to
the left of the item. Items are arranged horizontally.

	#"large-icon"

	Displays each item in the table with a large icon to
the left of the item. Items are arranged horizontally.

	#"list"

	Displays each item in the table with a small icon to the
left of the item. Items are arranged vertically in one column.

	#"table"

	Displays each item in the list with a small icon to the
left of the item. Items are arranged vertically in one column.
Additional details not available in other views are also displayed.
The details that are displayed depend on the nature of the items in
the table control. For example, if filenames are displayed in the
table control, additional details may include the size, modification
date, and creation date of each file. If e-mail messages are
displayed in the table control, additional details may include the
author of the e-mail, its subject, and the date and time it was sent.

	See also:	
	<list-control-view>

	<table-control>

	table-control-view

	
table-control-view Generic function

	Returns the current view of the specified table control.

	Signature:	table-control-view table-control => view

	Parameters:	
	table-control – An instance of type <table-control>.

	Values:	
	view – An instance of type <table-control-view>.

	Discussion:	Returns the current view of table-control. The available views are
described in the entry for <table-control-view>.

	See also:	
	<table-control-view>

	table-control-view-setter

	
table-control-view-setter Generic function

	Sets the current view of the specified table control.

	Signature:	table-control-view-setter view table-control => view

	Parameters:	
	view – An instance of type <table-control-view>.

	table-control – An instance of type <table-control>.

	Values:	
	view – An instance of type <table-control-view>.

	Discussion:	Sets the current view of table-control.

The view argument is used to specify the way in which the items in the
table control are displayed.

	See also:	
	<table-control-view>

	table-control-view

	
<table-item> Open Abstract Instantiable Class

	The class that represents an item in a table control.

	Superclasses:	<object> [http://opendylan.org/books/drm/Object_Classes#object]

	Init-Keywords:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Discussion:	The class that represents an item in a table control.

The object: init-keyword describes the object that an instance of
table item represents.

	See also:	
	add-item

	find-item

	make-item

	remove-item

	<table-control>

	
<text-editor> Open Abstract Instantiable Class

	The class of multiple line text editors.

	Superclasses:	<text-field>

	Init-Keywords:	
	columns – An instance of type false-or(<integer>). Default value: #f.

	lines – An instance of type false-or(<integer>). Default value: #f.

	scroll-bars – An instance of type one-of(#f, #"none",
#"horizontal", #"vertical", #"both", #"dynamic").
Default value: #”both”.

	Discussion:	The class of multiple line text editors.

[image: _images/gadgets-45.png]

The columns: and lines: init-keywords specify the number of columns
and lines of characters visible in the text editor, respectively.

The scroll-bars: init-keyword specifies whether the text editor has
scroll bars or not.

Internally, this class maps into the multi-line edit control Windows
control.

	Example:	To constrain the number of lines and columns when an editor is first
displayed:

editor := contain(make(<text-editor>,
 lines: 20, columns: 80));

To make a text editor that is fixed at 10 lines high:

make(<text-editor>, lines: 10, fixed-height?: #t);

	See also:	
	<text-field>

	
<text-field> Open Abstract Instantiable Class

	The class of single line text fields.

	Superclasses:	<text-gadget>

	Init-Keywords:	
	x-alignment – An instance of type one-of(#”left”, #”right”,
#”center”)``. Default value: #"left".

	case – An instance of type one-of(#f, #"lower", #"upper").
Default value: #f.

	auto-scroll? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #f.

	Discussion:	The class of single line text fields.

[image: _images/gadgets-46.png]

The x-alignment: init-keyword is used to align the text in the text
field.

The case: init-keyword lets you specify which case is used to display
the text in the text field. You can specify either upper or lower case.
The default is to display letters of either case.

If auto-scroll?: is true, then text scrolls off to the left of the
text field if more text is typed than can be displayed in the text field
itself.

Internally, this class maps into the single-line edit control Windows
control.

	Example:	To make a text field with a fixed width:

make(<text-field>, width: 200, fixed-width?: #t);

The following example creates a text field which, after pressing Return,
invokes a callback that displays the gadget value in a dialog box.

text := contain
 (make(<text-field>,
 value-changed-callback:
 method (gadget)
 notify-user
 (format-to-string
 ("Changed to %=",
 gadget-value(gadget)),
 owner: gadget) end));

	See also:	
	<password-field>

	
<text-gadget> Open Abstract Class

	The class of all text gadgets.

	Superclasses:	<value-gadget> <action-gadget>

	Init-Keywords:	
	text – An instance of type <string> [http://opendylan.org/books/drm/Collection_Classes#string]. Default value: "".

	value-type – An instance of type <type> [http://opendylan.org/books/drm/Type_Classes#type]. Default value: <string> [http://opendylan.org/books/drm/Collection_Classes#string].

	value-changing-callback – An instance of type false-or(<function>).

	Discussion:	The class of all text gadgets. You should not create a direct instance
of this class.

The text: init-keyword specifies a text value for the combo box.

The value-type: init-keyword specifies the type of the gadget value of
the text gadget, which by default is <string> [http://opendylan.org/books/drm/Collection_Classes#string]. Other supported types
are <integer> [http://opendylan.org/books/drm/Number_Classes#integer] and <symbol> [http://opendylan.org/books/drm/Simple_Object_Classes#symbol]. The string entered in the text gadget
is parsed, and converted to the appropriate type automatically.

Text gadgets have a method on gadget-value
that converts the gadget-text based on the
gadget-value-type, for example converting the
string to an integer for value-type: <integer>.

The gadget-text generic function always
returns the exact text typed into a text gadget. However,
gadget-value always returns a “parsed” value of
the appropriate type, depending on the value of
gadget-value-type. If the string contains any
characters that are not appropriate to the
gadget-value-type (for example, if the string
contains any non-integers, and the
gadget-value-type is <integer> [http://opendylan.org/books/drm/Number_Classes#integer]), then
gadget-value returns #f.

Setting the gadget value “prints” the value and inserts the appropriate
text into the text field.

The value-changing-callback: init-keyword allows you to specify a
callback that is invoked as the value of the text gadget is changing
during the course of “casual” typing. Generally, this means when the
user is typing text, but before the text is committed (usually by
pressing the RETURN key).

Conversely, the value-changed callback of a text gadget is invoked when
the change to the gadget value is committed (again, usually by pressing
the RETURN key).

The action required to “commit” a text change is defined by the back-end
for the platform that you are writing for, and is not configurable.

	Operations:	
	gadget-text

	Example:	contain(make(<text-field>, value-type: <integer>
 text: "1234"));

	See also:	
	<combo-box>

	gadget-value-type

	<password-field>

	<text-editor>

	<text-field>

	
<tool-bar> Open Abstract Instantiable Class

	The class of tool bars.

	Superclasses:	<gadget> <multiple-child-composite-pane>

	Init-Keywords:	
	update-callback – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	Discussion:	The class of tool bars. A tool bar is a gadget that contains, as
children, a number of buttons that give the user quick access to the
more common commands in an application. Typically, the label for each
button is an icon that pictorially represents the operation that
clicking the button performs.

[image: _images/gadgets-47.png]
A tool bar

A tool bar is often placed underneath the menu bar of an application,
although its position is very often configurable, and a tool bar may
often be “docked” against any edge of the application’s frame. In
addition, a tool bar can sometimes be displayed as a free-floating
window inside the application.

Internally, this class maps into the Windows toolbar control.

	Operations:	
	<frames.htm#88622>

	<frames.htm#56600>

	See also:	
	<button-box>

	<status-bar>

	
<tree-control> Open Abstract Instantiable Class

	The class of tree controls.

	Superclasses:	<collection-gadget>

	Init-Keywords:	
	children-generator – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	children-predicate – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	icon-function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	show-edges? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #t.

	show-root-edges? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #t.

	show-buttons? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #t.

	initial-depth – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer]. Default value: 0.

	scroll-bars – An instance of type one-of(#f, #"none",
#"horizontal", #"vertical", #"both", #"dynamic").
Default value: #"both".

	popup-menu-callback – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	key-press-callback – An instance of type false-or(<frames.htm#40934>, <function>).

	roots – An instance of type <sequence> [http://opendylan.org/books/drm/Collection_Classes#sequence]. Default value: #[].

	Discussion:	The class of tree controls.

[image: _images/gadgets-48.png]

The children-generator: is the function that is used to generate the
children below the root of the tree control. It is called with one
argument, an object.

The icon-function: init-keyword lets you specify a function to supply
icons for display in the control. The function is called with the item
that needs an icon as its argument, and it should return an instance of
<image> as its result. Typically, you might want to define an icon
function that returns a different icon for each kind of item in the
control. For example, if the control is used to display the files and
directories on a hard disk, you would want to return the appropriate
icon for each registered file type.

The show-edges?:, show-root-edges?:, and show-buttons?:
init-keywords define whether lines are displayed for the edges of items
in the tree control, the roots in the tree control, and whether the
icons of items in the tree control are displayed, respectively. By
default, all three are visible.

The number of levels of outline that are shown when the tree control is
first displayed is controlled by the initial-depth: init-keyword. The
default value of this is 0, meaning that only the top level of the
outline is shown, with no nodes expanded.

The scroll-bars: init-keyword specifies whether the tree control has
scroll bars or not.

You can use the popup-menu-callback: init-keyword to specify a
context-sensitive menu to display for one or more selected items in the
tree control. In Windows 95, for instance, such a context-sensitive menu
can be displayed by right-clicking on any item or group of selected
items in the list control.

The key-press-callback: init-keyword lets you specify a key-press
callback. This type of callback is invoked whenever a key on the
keyboard is pressed while the gadget has focus. For tree controls, a
typical key-press callback might select an item in the control. See
gadget-key-press-callback, for a fuller
description of key-press callbacks.

The roots: init-keyword is used to specify any roots for the tree
control. It is a sequence.

Internally, this class maps into the Windows tree view control.

	Operations:	
	contract-node

	expand-node

	tree-control-children-predicate

	tree-control-children-predicate-setter

	tree-control-children-generator

	tree-control-children-generator-setter

	tree-control-roots

	tree-control-roots-setter

	Example:	make(<tree-control>,
 roots: #[1],
 children-generator:
 method (x) vector(x * 2, 1 + (x * 2)) end,
 icon-function: method (item :: <integer>)
 case
 odd?(item) => $odd-icon;
 even?(item) => $even-icon;
 end);

	See also:	
	add-node

	find-node

	make-node

	remove-node

	
tree-control-children-predicate Generic function

	Returns the children predicate function of the specified tree control.

	Signature:	tree-control-children-predicate tree-control => children-predicate

	Parameters:	
	tree-control – An instance of type <tree-control>.

	Values:	
	children-predicate – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	Discussion:	Returns the children predicate function of tree-control.

	See also:	
	<tree-control>

	tree-control-children-predicate-setter

	tree-control-children-generator

	
tree-control-children-predicate-setter Generic function

	Sets the children predicate function of the specified tree control.

	Signature:	tree-control-children-predicate-setter children-predicate tree-control => children-predicate

	Parameters:	
	children-predicate – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	tree-control – An instance of type <tree-control>.

	Values:	
	children-predicate – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	Discussion:	Sets the children predicate function of tree-control.

	See also:	
	<tree-control>

	tree-control-children-predicate

	tree-control-children-generator-setter

	
tree-control-children-generator Generic function

	Returns the function that generates the children of the specified tree control.

	Signature:	tree-control-children-generator tree-control => children-generator

	Parameters:	
	tree-control – An instance of type <tree-control>.

	Values:	
	children-generator – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	Discussion:	Returns the function that generates the children of tree-control.
This is the function that is used to generate the children below the
root of tree-control.

	See also:	
	<tree-control>

	tree-control-children-predicate

	tree-control-children-generator-setter

	
tree-control-children-generator-setter Generic function

	Sets the function that generates the children of the specified tree
control.

	Signature:	tree-control-children-generator-setter children-generator tree-control * => *children-generator

	Parameters:	
	children-generator – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	tree-control – An instance of type <tree-control>.

	Values:	
	children-generator – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	Discussion:	Sets the function that generates the children of tree-control. This
is the function that is used to generate the children below the root of
tree-control.

	See also:	
	<tree-control>

	tree-control-children-predicate-setter

	tree-control-children-generator

	
tree-control-icon-function Generic function

	Returns the icon function for the specified list control.

	Signature:	tree-control-icon-function tree-control => icon-function

	Parameters:	
	tree-control – An instance of <tree-control>.

	Values:	
	icon-function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	Discussion:	Returns the icon function for tree-control. This function lets you
specify which icon to display for each item in the control. The function
is called with the item that needs an icon as its argument, and it
should return an instance of <image> as its result. Typically, you
might want to define an icon function that returns a different icon for
each kind of item in the control. For example, if the control is used to
display the files and directories on a hard disk, you would want to
return the appropriate icon for each registered file type.

Note that, unlike list controls, the icon function for a tree control
cannot be changed once the list control has been created.

	See also:	
	list-control-icon-function

	<tree-control>

	
tree-control-initial-depth Generic function

	Returns the initial depth of the specified tree control.

	Signature:	tree-control-initial-depth tree-control => initial-depth

	Parameters:	
	tree-control – An instance of type <tree-control>.

	Values:	
	initial-depth – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns the initial depth of tree-control. This is the number of
levels of outline that are visible in the tree control when it is first
displayed. A return value of 0 indicates that only the top level of the
outline is displayed initially. A return value of 1 indicates that
outline is expanded to a depth of one (that is, any direct subnodes of
the top level are displayed, but no others).

	See also:	
	<tree-control>

	tree-control-initial-depth-setter

	
tree-control-initial-depth-setter Generic function

	Sets the initial depth of the specified tree control.

	Signature:	tree-control-inital-depth initial-depth tree-control => initial-depth

	Parameters:	
	initial-depth – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	tree-control – An instance of type <tree-control>.

	Values:	
	initial-depth – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Sets the initial depth of tree-control. This is the number of levels
of outline that are visible in the tree control when it is first
displayed. A return value of 0 indicates that only the top level of the
outline is displayed initially. A return value of 1 indicates that
outline is expanded to a depth of one (that is, any direct subnodes of
the top level are displayed, but no others).

	See also:	
	<tree-control>

	tree-control-initial-depth

	
tree-control-roots Generic function

	
Returns the roots of the specified tree control.

	Signature:	tree-control-roots tree => roots

	Parameters:	
	tree – An instance of type <tree-control>.

	Values:	
	roots – An instance of type <sequence> [http://opendylan.org/books/drm/Collection_Classes#sequence].

	Discussion:	Returns the roots of tree.

	Example:	Create a tree control as follows:

tree := contain(make(<tree-control>,
 roots: #(1, 2, 3),
 children-generator:
 method (x)
 vector(x, x + 1)
 end));

You can return the roots of this tree control as follows:

tree-control-roots(*tree*);

	See also:	
	<tree-control>

	tree-control-roots-setter

	
tree-control-roots-setter Generic function

	Sets the roots of the specified tree control.

	Signature:	tree-control-roots-setter roots tree #key frame-manager => roots

	param roots:	An instance of type <sequence> [http://opendylan.org/books/drm/Collection_Classes#sequence].

	param tree:	An instance of type <tree-control>.

	param frame-manager:

		An instance of type <frame-manager>.

	value roots:	An instance of type <sequence> [http://opendylan.org/books/drm/Collection_Classes#sequence].

	Discussion:	Sets the roots of tree.

	Example:	Create a tree control without specifying any roots as follows:

tree := contain(make(<tree-control>,
 children-generator:
 method (x)
 vector(x, x + 1)
 end));

You can set the roots of this tree control as follows:

tree-control-roots(*tree*) := #(1, 2, 3);

The tree control is updated on the screen to reflect this change.

	See also:	
	<tree-control>

	tree-control-roots

	
<tree-node> Open Abstract Instantiable Class

	The class of nodes in tree controls.

	Superclasses:	<object> [http://opendylan.org/books/drm/Object_Classes#object]

	Init-Keywords:	
	parent-nodes – An instance of type <sequence> [http://opendylan.org/books/drm/Collection_Classes#sequence].

	child-nodes – An instance of type <sequence> [http://opendylan.org/books/drm/Collection_Classes#sequence].

	generation – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer]. Default value: 0.

	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Discussion:	The class of nodes in tree controls. A tree node represents an object,
and is displayed as a text label accompanied by an icon. Tree nodes are
analogous to list items in a list control or table items in a table
control.

To the left of a tree node is a small plus or minus sign. If a plus sign
is displayed, this indicates that the node contains subnodes that are
currently not visible. If a minus sign is displayed, this indicates
either that the node does not contain any subnodes, or that the subnodes
are already visible.

The parent-nodes: and child-nodes: init-keywords let you specify any
parents and children that the node has.

The object: init-keyword specifies the object that is represented by
the tree node. For example, in the case of a file manager application,
this might be a directory on disk.

	Operations:	
	:gf:contract-node`

	:gf:expand-node`

	:gf:node-children`

	:gf:node-expanded?`

	:gf:node-parents`

	See also:	
	<tree-control>

	
update-gadget Generic function

	Forces the specified gadget to be redrawn.

	Signature:	update-gadget gadget => ()

	Parameters:	
	gadget – An instance of type <gadget>.

	Discussion:	Forces gadget to be redrawn. This can be useful if a number of changes
have been made which have not been reflected in the gadget automatically
(for example, by using pixmaps to perform image operations

	
<value-gadget> Open Abstract Class

	The class of gadgets that can have values.

	Superclasses:	<gadget>

	Init-Keywords:	
	value – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	value-changed-callback – An instance of type
false-or(<frames.htm#40934>, <function>).

	Discussion:	The class of gadgets that can take values.

The value: init-keyword specifies the current gadget value. For tab
controls, if the gadget ID is specified, then that is passed as the
gadget value whether or not value: is specified.

The value-changed-callback: init-keyword is the callback that is
invoked when the gadget value has changed, such as when a scroll bar
slug has come to rest after being dragged, or when the changes to text
in a text field have been committed by pressing the RETURN key.

	Operations:	
	gadget-value

	gadget-value-changed-callback

	gadget-value-changed-callback-setter

	gadget-value-setter

	gadget-value-type

	See also:	
	gadget-value

	gadget-value-changed-callback

	
<value-range-gadget> Open Abstract Class

	The class of all value gadgets with ranges.

	Superclasses:	<value-gadget>

	Init-Keywords:	
	value-range – An instance of type <range> [http://opendylan.org/books/drm/Collection_Classes#range].
Default value: range(from: 0, to: 100).

	Discussion:	The class of all value gadgets with ranges. You should not create a
direct instance of this class.

The value-range: init-keyword is the range of values that the gadget
value of a value range gadget can take. This may be different in any
given situation: when downloading a file or compiling source code, you
might want to use a value range of 0-100, to indicate percentage done
(this is the default). When downloading e-mail messages from a mail
server, however, you may want to use a range equal to the number of
messages being downloaded.

	Operations:	
	gadget-value-range

	gadget-value-range-setter

	Example:	contain(make(<slider>,
 value-range:
 range(from: -20, to: 20, by: 5)));

	See also:	
	<progress-bar>

	<scroll-bar>

	<slider>

	<value-gadget>

	
<viewport> Open Abstract Instantiable Class

	The class of viewports.

	Superclasses:	<gadget> <single-child-composite-pane>

	Init-Keywords:	
	horizontal-scroll-bar – An instance of type
false-or(<scroll-bar>). Default value: #f.

	vertical-scroll-bar – An instance of type
false-or(<scroll-bar>). Default value: #f.

	Discussion:	The class of viewports. A viewport is a sheet “through” which other
sheets are visible; they are used to implement a clipping region for
scrolling.

The horizontal-scroll-bar: and vertical-scroll-bar: init-keywords
specify whether the viewport has horizontal and vertical scroll bars,
respectively.

In most applications, you should not need to use a viewport yourself.
However, there are some circumstances in which defining your own
viewports is invaluable. In particular, if you need to use a single
scroll bar to scroll more than one window at the same time, you should
define each window as a viewport, and use the same scroll bar to scroll
each window. There are two situations where this behavior is quite
common:

	In applications which have vertical or horizontal rulers around a
document window, such as a drawing application. In this case, the
rulers must scroll with the drawing itself.

	In applications such as spreadsheets, where row and column headings
need to scroll with the document. Note that you may also choose to
implement this kind of functionality using a table control.

	Operations:	
	viewport-region

	See also:	
	sheet-viewport

	sheet-viewport-region

	viewport?

	viewport-region

	
viewport? Generic function

	Returns true if the specified object is a viewport.

	Signature:	viewport? object => viewport?

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	viewport? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if object is a viewport.

	Example:	To test whether the gadget *gadget* is a viewport:

viewport?(*gadget*);

	See also:	
	<viewport>

	<button-box>

	<border>

	
viewport-region Generic function

	Returns the region for the specified viewport.

	Signature:	viewport-region viewport => region

	Parameters:	
	viewport – An instance of type <viewport>.

	Values:	
	region – An instance of type <region>.

	Discussion:	Returns the region for viewport.

	Example:	To return the region for a viewport *viewer*:

viewport-region(*viewer*);

	See also:	
	<viewport>

	
with-border Statement Macro

	Creates the specified sheet and places a border around it.

	Macro Call:	with-border ([*options*]) {*pane* } end

	Parameters:	
	options – Dylan arguments bnf.

	pane – A Dylan expression bnf.

	Discussion:	Creates pane with a border around it, taking into account any of the
specified options.

The options specified may be any of the legal init-keywords used to
specify an instance of <border>. If no options are specified,
then the default border is used.

The pane is an expression whose return value is the sheet around which a
border should be placed.

	Example:	To create a button in a border:

contain(with-border (type: #"raised")
 make(<button>,
 label: "Hello") end);

	See also:	
	<border>

	labelling

	with-spacing

	
with-spacing Statement Macro

	Creates the specified sheet and places spacing around it.

	Macro Call:	with-spacing ([*options*]) {*pane* } end

	Parameters:	
	options – Dylan arguments bnf.

	pane – A Dylan expression bnf.

	Discussion:	Creates pane with spacing around it, taking into account any of the
specified options.

The options specified may be any of the legal init-keywords used to
specify an instance of <spacing>. If no options are specified,
then the default spacing is used.

The pane is an expression whose return value is the sheet around which
spacing should be placed.

	Example:	contain(with-spacing (thickness: 10)
 (vertically () make(<button>,
 label: "Hello");
 make(<button>,
 label: "World")
 end)
 end);

	See also:	
	<null-pane>

	<spacing>

	with-border

 Copyright 2011, Dylan Hackers.
 Created using Sphinx 1.3.6.

 DUIM-Frames Library

 Navigation

 	
 index

 	
 api |

 	
 previous |

 	DUIM Reference 1.0 documentation

DUIM-Frames Library

Overview

The DUIM-Frames library contains interfaces that define a wide variety
of frames for use in your GUI applications, as well as the necessary
functions, generic functions, and macros for creating and manipulating
them. The library contains a single module, duim-frames, from which
all the interfaces described in this chapter are exposed.
DUIM-Frames Module contains complete reference
entries for each exposed interface.

Frames are the basic components used to display DUIM objects on-screen.
An instance of type <frame> is an object representing some state in a
user application, plus the sheets in its interface. Frames control the
overall appearance of the entire window, allowing you to distinguish,
for example, between a normal window and a dialog box, or allowing you
to specify modal or modeless dialog boxes, and might include such things
as a menu bar, a tool bar, and a status bar.

Frames exist on windows and contain sheets, which can be instances of
<layout> or <gadget>, or any of their subclasses, and an event
loop. The event loop associated with a frame is represented by an
instance of a subclass of <event>. An overview of these subclasses is
provided in Subclasses of <frame-event>.

The class hierarchy for DUIM-Frames

This section presents an overview of the available classes of frame,
frame event, and command-related classes, and describes the class
hierarchy present.

The <frame> class and its subclasses

The base class for all DUIM frames is the <frame> class, which is
itself a subclass of <object> [http://opendylan.org/books/drm/Object_Classes#object]. In addition, there are a number of
classes related to commands that are subclasses of <object> [http://opendylan.org/books/drm/Object_Classes#object], together
with a number of classes related to events that occur in frames.

	<object> [http://opendylan.org/books/drm/Object_Classes#object]
	<gadget>

	<page>
	See Subclasses of <page>

	<frame>
	See Subclasses of <frame>

	<event>
	<frame-event>
	See Subclasses of <frame-event>

	<simple-command>

	<simple-undoable-command>

	<command-table>

	<command-table-menu-item>

The <frame> class represents the base class for all types of frame. An
introduction to the subclasses available is given in Subclasses of <frame>.

The <event> class represents the base class for all events that can
occur. Although this class and the <frame-event> subclass are exposed
by the DUIM-Sheets library, the subclasses of <frame-event> itself are
exposed by the DUIM-Frames library. See Subclasses of <frame-event> for an
introduction to these subclasses. See the DUIM-Sheets Library, for a
complete description of the DUIM-Sheets library.

The remaining four classes exposed by the DUIM-Frames library relate to
commands and their use in application menus.

	<simple-command>

	This class is used to create the most basic type of command. A
command is an operation that can be invoked as a callback from a menu
item, a button, or other suitable interface control.

	<simple-undoable-command>

	This class is used to define commands whose effects can be reversed.
Typically, the user chooses the command Edit > Undo to reverse the
effects of a command of this class.

	<command-table>

	The <command-table> class is used to define the complete menu
structure of an application frame, from the menu bar and menus to the
menu items on each menu.

	<command-table-menu-item>

	This class represents a menu item on a menu defined in a command
table.

Subclasses of <frame>

A number of subclasses of <frame> are provided to allow you to create
a variety of common types of frame.

	<frame>
	<simple-frame>

	<dialog-frame>

	<property-frame>

	<wizard-frame>

	<simple-frame>

	This class is the most common sort of frame and is used to create
a standard window in an application.

	<dialog-frame>

	This class is used to create dialog boxes for use in an application.

	<property-frame>

	This class is used to create property sheets for use in an
application. Property sheets are a special type of dialog box which
make use of tab controls to display several pages of information
within the same dialog.

	<wizard-frame>

	This class is used to create wizards for use in an application.
Wizards are a special type of multi-page dialog in which the user is
guided through a series of sequential steps, filling out any
information requested and using Next and Back buttons to navigate
to the next or previous steps in the process.

Subclasses of <frame-event>

The <frame-event> class provides a number of subclasses that describe
various events that can occur in frames.

	<frame-event>
	<frame-created-event>

	<frame-destroyed-event>

	<frame-mapped-event>

	<frame-unmapped-event>

	<frame-exit-event>

	<frame-exited-event>

	<application-exited-event>

The name of each of these subclasses accurately reflects the type of
event that they are used to represent. The classes
<frame-created-event> and <frame-destroyed-event>
represent a frame being created or destroyed. The classes
<frame-mapped-event> and <frame-unmapped-event>
represent the events that occur when a frame is displayed on the
computer screen or removed from it. The class <frame-exit-event>
represents the act of exiting a frame, and the class
<frame-exited-event> represents the event where a frame has been
successfully exited.

In addition, the class <frame-exited-event> has a subclass
<application-exited-event>. This is reserved for the special case
where the frame that has been exited is actually the parent frame for
the whole application, in which case the whole application is exited,
together with any other frames that may have been spawned as a result of
using the application.

Note

The classes <frame-mapped-event> and
<frame-unmapped-event> are distinct from the
classes <frame-created-event> and
<frame-destroyed-event>. A frame is not necessarily
mapped as soon as it is created, and any frame can be unmapped
from the screen without actually destroying it (for example,
a frame may be iconized).

Subclasses of <page>

Although the <page> class is itself a subclass of <gadget>, and is
exposed by the DUIM-Gadgets library, two of its subclasses are exposed
by the DUIM-Frames library: <wizard-page> and <property-page>. See
Subclasses of <page> for an introduction to
these classes.

DUIM-Commands Library

All commands-related interfaces are now defined directly in the Commands
library. However, these same interfaces are imported to and re-exported
from DUIM-Frames, so they can be used in almost the same way as for
Harlequin Dylan 1.0. You should continue to look for commands-related
documentation in this chapter.

A consequence of the introduction of the Commands library is that a
slight change in syntax is required in the definition of commands in
command tables. In Harlequin Dylan 1.0, two approaches could be taken
when specifying a command in a table. For example, a menu item could be
specified by either of the following:

menu-item "My Command" = make(<command>, function: my-command),
menu-item "My Command" = my-command,

Beginning with Harlequin Dylan 1.1, only the last of these may be used.
This may require you to change some of your code.

DUIM-Frames Module

This section contains a complete reference of all the interfaces that
are exported from the duim-frames module.

	
=(<command>) Method

	Returns true if the specified commands are the same.

	Signature:	= command1 command2 => equal?

	Parameters:	
	command1 – An instance of type <command>.

	command2 – An instance of type <command>.

	Values:	
	equal? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if command1 and command2 are the same.

	
add-command Generic function

	Adds a command to the specified command table.

	Signature:	add-command command-table command #key name menu image accelerator mnemonic error? => ()

	Parameters:	
	command-table – An instance of type <command-table>.

	command – An instance of type type-union(<command>, <function>).

	name (#key) – An instance of type false-or(<string>).

	menu (#key) – An instance of type false-or(<menu>).

	image (#key) – An instance of type false-or(<image>).

	accelerator (#key) – An instance of type false-or(<gesture>).

	mnemonic (#key) – An instance of type false-or(<gesture>).

	error? (#key) – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #t.

	Discussion:	You can supply a keyboard accelerator or a mnemonic using the
accelerator and mnemonic arguments respectively.

Adds command to command-table.

The argument name is the command-line name for the command.

	When name is #f, the command is not available via command-line
interactions.

	When name is a string, that string is the command-line name for the
command.

For the purposes of command-line name lookup, the character case of
name is ignored.

The argument menu is a menu for command.

	When menu is #f, command is not available via menus.

	When menu is a string, the string is used as the menu name.

	When menu is #t and name is a string, then name is used as
the menu name.

	When menu is #t and name is not a string, a menu name is
automatically generated.

	When menu is a list of the form (string, menu-options),
string is the menu name and menu-options consists of a list of
keyword-value pairs. Each keyword-value pair is itself a list. The
valid keywords are after:, documentation:, and text-style:,
which are interpreted as for add-command-table-menu-item.

You can supply an image that will appear on the menu next to the command
name using the image argument. When supplying an image, bear in mind
the size of the menu: you should only supply a small icon-sized image
for a menu command. There may also be other interface guidelines that
you wish to follow when using images in menu items.

The value for accelerator is either keyboard gesture or #f. When it
is a gesture, this gesture represents the keystroke accelerator for the
command; otherwise the command is not available via keystroke
accelerators. Similarly, if mnemonic is supplied, this gesture is used
as a mnemonic for the command.

If command is already present in the command table and error? is
#t, an error is signalled. When command is already present in the
command table and error? is #f, then the old command-line name,
menu, and keystroke accelerator are removed from the command table
before creating the new one.

	See also:	
	remove-command

	
add-command-table-menu-item Generic function

	Adds a menu item to the specified command table.

	Signature:	add-command-table-menu-item command-table string type value #key
documentation after accelerator mnemonic text-style error?
items label-key value-key test callback => menu-item

	Parameters:	
	command-table – An instance of type <command-table>.

	string – An instance of type false-or(<string>).

	type – An instance of type one-of(#"command", #"function", #"menu", #"divider").

	value – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	documentation (#key) – An instance of type <string> [http://opendylan.org/books/drm/Collection_Classes#string].

	after (#key) – An instance of type one-of(#"start", #"end", #"sort"), or
an instance of <string> [http://opendylan.org/books/drm/Collection_Classes#string]. Default value: #"end".

	accelerator (#key) – An instance of type false-or(<gesture>).

	mnemonic (#key) – An instance of type false-or(<gesture>).

	text-style (#key) – An instance of type <text-style>.

	error? (#key) – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #t.

	items (#key) – An instance of type limited(<sequence>, of:).

	label-key (#key) – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	value-key (#key) – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	test (#key) – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	callback (#key) – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	Values:	
	menu-item – An instance of type <command-table-menu-item>.

	Discussion:	Adds a command menu item to the menu in command-table. The string
argument is the name of the command menu item; its character case is
ignored. The type of the item is either #"command", #"function",
#"menu", or #"divider".

When type is #"command", value must be one of the following:

	A command (a list consisting of a command name followed by a list of
the arguments for the command).

	A command name. In this case, value behaves as though a command
with no arguments was supplied.

When all the required arguments for the command are supplied, clicking
on an item in the menu invokes the command immediately. Otherwise, the
user is prompted for the remaining required arguments.

When type is #"function", value must be a function having
indefinite extent that, when called, returns a command. The function is
called with two arguments:

	The gesture used to select the item (either a keyboard or button
press event).

	A “numeric argument”.

When type is #"menu", this indicates that a sub-menu is required,
and value must be another command table or the name of another command
table.

When type is #"divider", some sort of a dividing line is displayed
in the menu at that point. If string is supplied, it will be drawn as
the divider instead of a line. If the look and feel provided by the
underlying window system has no corresponding concept, #"divider"
items may be ignored. When type is #"divider", value is ignored.

The argument documentation specifies a documentation string, This can
be used to provide the user with some online documentation for the menu
item. Documentation strings are often displayed in a status bar at the
bottom of an application; highlighting the menu item using the mouse
pointer displays the documentation string in the status bar.

The text-style argument, if supplied, represents text style. This
specifies the font family, style, and weight with which to display the
menu item in the menu. For most menu items, you should just use the
default text style (that is, the one that the user chooses for all
applications). However, in certain cases, some variation is allowed.

The text-style argument is of most use in context sensitive pop-up
menus, which often have a default menu item. This is usually the command
that is invoked by pressing the RETURN key on the current selection: for
example, in a list of files, the default command usually opens the
selected file in the application associated with it. In Windows 95, the
default command is displayed using a bold font, to differentiate it from
other commands in the menu, and you should use the text-style argument
to specify this.

When altering the text style of a menu item, you should always try to
stick to any relevant interface guidelines.

The items argument is used to specify the gadgets that are to be
supplied to the command table as menu items. You can supply either push
boxes, check boxes, or radio boxes.

The after argument denotes where in the menu the new item is to be
added. It must be one of the following:

	#"start" Adds the new item to the beginning of the menu.

	#"end" Adds the new item to the end of the menu.

A string naming an existing entry

	Adds the new item after that entry.

	#"sort" Insert the item in such as way as to maintain the menu in
alphabetical order.

If mnemonic is supplied, the item is added to the keyboard mnemonic
table for the command table. The value of mnemonic must be a keyboard
gesture name.

When mnemonic is supplied and type is #"command" or #"function",
typing a key on the keyboard that matches the mnemonic invokes the
command specified by value.

When type is #"menu", the command is read from the submenu
indicated by value in a window system specific manner. This usually
means that the submenu itself is displayed, allowing the user to see the
available options at that point.

When accelerator is supplied, typing a key sequence on the keyboard
that matches the accelerator invokes the command specified by value,
no matter what type is.

If the item named by string is already present in the command table
and error? is #t, then an error is signalled. When the item is
already present in the command table and error? is #f, the old item
is removed from the menu before adding the new item. Note that the
character case of string is ignored when searching the command table.

	See also:	
	<command-table-menu-item>

	remove-command-table-menu-item

	
<application-exited-event> Instantiable Sealed Class

	The class of events signalled when an application exits.

	Superclasses:	<frame-exited-event>

	Discussion:	The class of events signalled when an application exits. An instance of
this class is distributed when your application is exited, for instance
by choosing File > Exit from its main menu bar.

	See also:	
	exit-frame

	<frame-exited-event>

	
apply-in-frame Generic function

	Applies the specified function to the given arguments in the main thread
of the frame.

	Signature:	apply-in-frame frame function arg #rest args => ()

	Parameters:	
	frame – An instance of type <frame>.

	function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	arg – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	args (#rest) – Instances of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Discussion:	Applies function to the given arguments in the main thread of frame.
You must supply at least one argument (arg), though you can
optionally supply as many additional arguments as you like.

	See also:	
	call-in-frame

	
call-in-frame Generic function

	Calls the specified function with the given arguments in the main thread
of the frame.

	Signature:	call-in-frame frame function #rest args => ()

	Parameters:	
	frame – An instance of type <frame>.

	function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	args (#rest) – Instances of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Discussion:	Calls function with the given arguments in the main thread of frame.

	See also:	
	apply-in-frame

	
cancel-dialog Generic function

	Cancels the specified dialog.

	Signature:	cancel-dialog dialog #key destroy? => ()

	Parameters:	
	dialog – An instance of type <dialog-frame>.

	destroy? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #t.

	Discussion:	Cancels dialog and removes it from the screen. Any changes that the
user has made to information displayed in the dialog is discarded.

If destroy? is #t then the dialog is unmapped from the screen.

This is the default callback used for the cancel button in a dialog.

	Example:	The following example defines a button, *no-button*, that calls
cancel-dialog as its activate-callback. This button is then used in a
dialog that simply replaces the standard cancel button for the newly
defined dialog. Note that the example assumes the existence of a similar
yes-button to replace the exit button.

define variable *no-button*
 = make(<push-button>, label: "No",
 activate-callback: cancel-dialog,
 max-width: $fill);
define variable *dialog*
 = make(<dialog-frame>,
 exit-button?: #f,
 cancel-button?: #f,
 layout: vertically ()
 make(<label>,
 label: "Simple dialog");
 horizontally ()
 yes-button;
 no-button;
 end
 end);

start-frame(*dialog*);

	See also:	
	dialog-cancel-callback

	<dialog-frame>

	start-dialog

	exit-dialog

	
clear-progress-note Generic function

	Clears the specified progress note.

	Signature:	clear-progress-note framem progress-note => ()

	Parameters:	
	framem – An instance of type <frame-manager>.

	progress-note – An instance of type <progress-note>.

	Discussion:	Clears the specified progress note.

	
<command> Open Abstract Instantiable Class

	The class of commands.

	Superclasses:	<object> [http://opendylan.org/books/drm/Object_Classes#object]

	Init-Keywords:	
	function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	arguments – An instance of type <sequence> [http://opendylan.org/books/drm/Collection_Classes#sequence]. Default value: #[].

	Discussion:	The class of commands. These are commands that can be grouped together
in a command table to form the set of commands available to an
application (available, for example, from the menu bar of the
application). The resulting command object can then be executed by
calling execute-command.

The function: init-keyword is the command function that is called by
the command object. A command function is rather like a callback to a
<command> object: a command can be executed via execute-command,
which then invokes the command function. Command functions take at least
one argument: a <frame> object.

The arguments: init-keyword are the arguments passed to the command
function.

	Operations:	
	=

	add-command

	command-arguments

	command-enabled?

	command-enabled?-setter

	command-function

	command-undoable?

	dialog-cancel-callback-setter

	dialog-exit-callback-setter

	execute-command

	gadget-command

	gadget-command-setter

	gadget-key-press-callback-setter

	redo-command

	remove-command

	undo-command

	See also:	
	command?

	command-arguments

	command-function

	execute-command

	<simple-command>

	
command? Generic function

	Returns true if the specified object is a command.

	Signature:	command? object => command?

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	command? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if object is an instance of <command>.

	See also:	
	<command>

	
command-arguments Generic function

	Returns the arguments to the specified command.

	Signature:	command-arguments command => arguments

	Parameters:	
	command – An instance of type <command>.

	Values:	
	arguments – An instance of type <sequence> [http://opendylan.org/books/drm/Collection_Classes#sequence].

	Discussion:	Returns the arguments to command.

	See also:	
	<command>

	
command-enabled? Generic function

	Returns true if the specified command is enabled.

	Signature:	command-enabled? command frame #key => enabled?

	Parameters:	
	command – An instance of type type-union(<command>, <command-table>).

	frame – An instance of type <frame>.

	Values:	
	enabled? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if command in frame is enabled.

	See also:	
	<command>

	command-enabled?-setter

	
command-enabled?-setter Generic function

	Enables or disables the specified command.

	Signature:	command-enabled?-setter enabled? command frame => enabled?

	Parameters:	
	enabled? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	command – An instance of type type-union(<command>, <command-table>).

	frame – An instance of type <frame>.

	Values:	
	enabled? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Enables or disables command in frame. If enabled? is true, then
command is enabled, otherwise it is disabled. Enabling and disabling a
command enables and disables all the gadgets that are associated with
the command, such as menu items and tool bar buttons.

This function is useful when manipulating the disabled commands in
frame. For example, it is common to disable the Save menu command
immediately after saving a file, enabling it again only when the file
has been modified.

	See also:	
	command-enabled?

	
command-function Generic function

	Returns the function associated with the specified command.

	Signature:	command-function command => function

	Parameters:	
	command – An instance of type <command>.

	Values:	
	function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	Discussion:	Returns the function associated with command. A command function is
the function that is called by a <command> object. Command functions
are similar to callbacks, in that they are user functions that are
invoked in order to perform some action. Command functions take at least
one argument: a <frame> object.

	See also:	
	<command>

	execute-command

	
<command-table> Open Abstract Instantiable Class

	The class of command tables.

	Superclasses:	<object> [http://opendylan.org/books/drm/Object_Classes#object]

	Init-Keywords:	
	name – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object]. Required.

	inherit-from – An instance of type limited(<sequence>, of: <command-table>). Required.

	resource-id – An instance of type false-or(<object>). Default
value: #f.

	Discussion:	The class of command tables. The command table for an application gives
a complete specification of the commands available to that application,
through its menus, tool bars, mnemonics, and accelerators.

The name: init-keyword is a symbol that names the current command
table.

The inherit-from: init-keyword is a sequence of command tables whose
behavior the current command table should inherit. All command tables
inherit the behavior of the command table specified by
global-command-table, and can also inherit the
behavior specified by *user-command-table*.

You do not normally need to specify a unique resource-id: yourself. As
with most other DUIM classes, the name: init-keyword serves as a
sufficient unique identifier.

	Operations:	
	add-command

	add-command-table-menu-item

	command-table-accelerators

	command-table-commands

	command-table-menu

	command-table-name

	frame-command-table-setter

	make(<frame>)

	make-menu-from-command-table

	make-menus-from-command-table

	remove-command

	remove-command-table

	remove-command-table-menu-item

	Example:	define command-table *clipboard-command-table*
 =(*global-command-table*)
 menu-item "Cut" = cut-selection,
 documentation: $cut-doc;
 menu-item "Copy" = copy-selection,
 documentation: $copy-doc;
 menu-item "Paste" = paste-from-clipboard,
 documentation: $paste-doc;
 menu-item "Delete" = delete-selection,
 documentation: $delete-doc;
end command-table *clipboard-command-table*;

	See also:	
	global-command-table

	user-command-table

	
command-table? Generic function

	Returns true if the specified object is a command table.

	Signature:	command-table? object => command-table?

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	command-table? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if object is a command table.

	See also:	
	<command-table>

	
command-table-accelerators Generic function

	Returns the keyboard accelerators for the specified command table.

	Signature:	command-table-accelerators command-table => accelerators

	Parameters:	
	command-table – An instance of type <command-table>.

	Values:	
	accelerators – An instance of type limited(<sequence>, of: <gesture>).

	Discussion:	Returns the keyboard accelerators for command-table.

	See also:	
	command-table-commands

	
command-table-commands Generic function

	Returns the commands for the specified command table.

	Signature:	command-table-commands command-table => commands

	Parameters:	
	command-table – An instance of type <command-table>.

	Values:	
	commands – An instance of type limited(<sequence>, of: <command>).

	Discussion:	Returns the commands defined for command-table.

	See also:	
	command-table-accelerators

	command-table-menu

	
command-table-menu Generic function

	Returns the menu items in the specified command table.

	Signature:	command-table-menu command-table => menu-items

	Parameters:	
	command-table – An instance of type <command-table>.

	Values:	
	menu-items – An instance of type <stretchy-vector> [http://opendylan.org/books/drm/Collection_Classes#stretchy-vector].

	Discussion:	Returns the menu items in command-table.

	See also:	
	command-table-commands

	command-table-name

	
<command-table-menu-item> Instantiable Sealed Class

	The class of menu items in command tables.

	Superclasses:	<object> [http://opendylan.org/books/drm/Object_Classes#object]

	Init-Keywords:	
	name – An instance of type false-or(<string>). Default value:
#f.

	image – An instance of type false-or(type-union(<string>, <image>)).
Default value: #f

	type – An instance of type one-of(#"command", #"function", #"menu", #"divider").

	value – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object]. Default value: #f.

	options – An instance of type <sequence> [http://opendylan.org/books/drm/Collection_Classes#sequence]. Default value: #().

	accelerator – An instance of type false-or(<gesture>). Default value: #f.

	mnemonic – An instance of type false-or(<gesture>). Default value: #f.

	Discussion:	The class of menu items in command tables. This class models menu items,
tool bar items, accelerators, and mnemonics for a command table entry.

The type: init-keyword denotes what type of menu item has been
created. This is either #"command", #"function", #"menu", or
#"divider".

When type: is #"command", value: must be one of the following:

	A command (a list consisting of a command name followed by a list of
the arguments for the command).

	A command name. In this case, value: behaves as though a command
with no arguments was supplied.

When all the required arguments for the command are supplied, clicking
on an item in the menu invokes the command immediately. Otherwise, the
user is prompted for the remaining required arguments.

When type: is #"function", value: must be a function having
indefinite extent that, when called, returns a command. The function is
called with two arguments:

	The gesture used to select the item (either a keyboard or button
press event).

	A “numeric argument”.

When type: is #"menu", this indicates that a sub-menu is required,
and value: must be another command table or the name of another command
table.

When type: is #"divider", some sort of a dividing line is displayed
in the menu at that point. If a string is supplied using the options:
init-keyword, it will be drawn as the divider instead of a line. If the
look and feel provided by the underlying window system has no
corresponding concept, #"divider" items may be ignored. When type:
is #"divider", value: is ignored.

The accelerator: and mnemonic: init-keywords let you specify a
keyboard accelerator and mnemonic for the menu item.

	Operations:	
	add-command-table-menu-item

	menu-item-accelerator

	menu-item-mnemonic

	menu-item-name

	menu-item-options

	menu-item-type

	menu-item-value

	See also:	
	add-command-table-menu-item

	
command-table-name Generic function

	Returns the name of the specified command table.

	Signature:	command-table-name command-table => name

	Parameters:	
	command-table – An instance of type <command-table>.

	Values:	
	name – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Discussion:	Returns the name of command-table, as defined by the name:
init-keyword for <command-table>.

	See also:	
	<command-table>

	command-table-menu

	
command-undoable? Generic function

	Returns true if the specified command is undoable.

	Signature:	command-undoable? command => undoable?

	Parameters:	
	command – An instance of type <command>.

	undoable? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if command is undoable, that is, there is a specified
command that the user can choose (for instance, by choosing Edit >
Undo) that will reverse the effects of command.

	See also:	
	undo-command

	
complete-from-generator Generic function

	Completes a string based on a generated list of completions.

	Signature:	complete-from-generator string generator delimiters
#key action predicate
=> string success object nmatches completions

	Parameters:	
	string – An instance of type <string> [http://opendylan.org/books/drm/Collection_Classes#string].

	generator – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	delimiters – An instance of type limited(<sequence>, of: <character>).

	action – An instance of type one-of(#"complete",
#"complete-limited", #"complete-maximal", #"completions",
#"apropos-completions"). Default value #"complete".

	predicate – An instance of type false-or(<function>). Default
value #f.

	Values:	
	string – An instance of type false-or(<string>).

	success – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	nmatches – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	completions – An instance of type <sequence> [http://opendylan.org/books/drm/Collection_Classes#sequence].

	Discussion:	Completes string chunk-wise against a list of possibilities derived
from generator, using the specified delimiters to break both
string and the generated possibilities into chunks. This function is
identical to complete-from-sequence, except
that the list of possibilities is derived from the generator function,
rather than passed explicitly. The generator is a function of two
arguments: the string to be completed and a continuation co-routine to
call that performs the completion. It should call the continuation with
two arguments: the completion string and an object.

The argument predicate (if supplied) is applied to filter out unwanted
objects.

The function returns five values: the completed string (if there is
one), whether or not the completion successfully matched, the object
associated with the completion, the number of things that matched, and
(if action is #"completions") a sequence of possible completions.

The action argument can take any of the following values:

	#"complete" Completes the input as much as possible, except that if
the user’s input exactly matches one of the possibilities, the
shorter possibility is returned as the result, even if it is a left
substring of another possibility.

	#"complete-limited" Completes the input up to the next partial
delimiter.

	#"complete-maximal" Completes the input as much as possible.

	#"completions" or #"apropos-completions" Returns a sequence
of the possible completions.

	Example:	complete-from-generator
 ("th", method (string, completer)
 for (b in #["one", "two", "three", "four"])
 completer(b, b)
 end
 end method, #[' ', '-'])

	See also:	
	complete-from-sequence

	
complete-from-sequence Generic function

	Completes a string based on a list of possible completions.

	Signature:	complete-from-sequence string possibilities delimiters
#key action predicate label-key value-key
=> string success object nmatches completions

	Parameters:	
	string – An instance of type <string> [http://opendylan.org/books/drm/Collection_Classes#string].

	possibilities – An instance of type limited(<sequence>, of: <string>).

	delimiters – An instance of type limited(<sequence>, of: <character>).

	action (#key) – An instance of type one-of(#"complete",
#"complete-limited", #"complete-maximal", #"completions",
#"apropos-completions"). Default value #"complete".

	predicate (#key) – An instance of type false-or(<function>). Default
value #f.

	label-key (#key) – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function]. Default value first [http://opendylan.org/books/drm/Collection_Operations#first].

	value-key (#key) – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function]. Default value second [http://opendylan.org/books/drm/Collection_Operations#second].

	Values:	
	string – An instance of type false-or(<string>).

	success – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	nmatches – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Valuecompletions:

		An instance of type <sequence> [http://opendylan.org/books/drm/Collection_Classes#sequence].

	Discussion:	Completes string chunk-wise against the list of possibilities,
using the specified delimiters to break both string and the strings
in possibilities into chunks.

The label-key and value-key arguments are used to extract the
completion string and object from the entries in possibilities, and
predicate (if supplied) is applied to filter out unwanted objects.

The function returns five values: the completed string (if there is
one), whether or not the completion successfully matched, the object
associated with the completion, the number of things that matched, and
(if action is #"completions") a sequence of possible completions.

The action argument can take any of the following values:

	#"complete" Completes the input as much as possible, except that if
the user’s input exactly matches one of the possibilities, the
shorter possibility is returned as the result, even if it is a left
substring of another possibility.

	#"complete-limited" Completes the input up to the next partial
delimiter.

	#"complete-maximal" Completes the input as much as possible.

	#"completions" or #"apropos-completions" Returns a sequence of
the possible completions.

	Example:	complete-from-sequence("s w ma",
 #["one fish two fish",
 "red fish blue fish",
 "single white male",
 "on beyond zebra"],
 #[' ', '-'],
 label-key: identity,
 value-key: identity)

	See also:	
	complete-from-generator

	
compute-next-page Generic function

	Returns the next page in the specified wizard frame.

	Signature:	compute-next-page dialog => next-page

	Parameters:	
	dialog – An instance of type <wizard-frame>.

	Next-page:	An instance of type false-or(<sheet>).

	Discussion:	Returns the next page in dialog, which must be a wizard.

	See also:	
	compute-previous-page

	<wizard-frame>

	
compute-previous-page Generic function

	Returns the previous page in the specified wizard frame.

	Signature:	compute-previous-page dialog => prev-page

	Parameters:	
	dialog – An instance of type <wizard-frame>.

	Values:	
	prev-page – An instance of type false-or(<sheet>).

	Discussion:	Returns the previous page in dialog, which must be a wizard.

	See also:	
	compute-next-page

	<wizard-frame>

	
contain Generic function

	Creates and returns a frame containing the specified object.

	Signature:	contain object #rest initargs #key own-thread? #all-keys => sheet frame

	Parameters:	
	object – An instance of type type-union(<sheet>, <class>, <frame>).

	initargs – Instances of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	own-thread? (#key) – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Values:	
	sheet – An instance of type <sheet>.

	frame – An instance of type <frame>.

	Discussion:	Creates and returns a frame containing object. This function is
intended to be used as a convenience function when testing sections of
code in development; you are not recommended to use it in your final
source code. The function wraps a set of DUIM objects in a frame and
displays them on screen, without you needing to worry about the
creation, management, or display of frames on the computer screen. The
contain function is most useful when testing code interactively using
the Dylan Interactor.

If own-thread? is #t, then the window that is created by contain
runs in its own thread. If not supplied, own-thread? is #f.

Consider the following expression that calls contain:

contain(make(<button>));

This is equivalent to the fuller expression:

begin
 let frame = make(<simple-frame>,
 title: "container",
 layout: make(<button>));
 start-frame(frame);
end;

As can be seen, when testing short pieces of code interactively in the
environment, the former section of code is easier to use than the
latter.

	Example:	Assigning the result of a contain expression allows you to manipulate
the DUIM objects being contained interactively, as shown in the example
below.

You should assume the following code is typed into the Dylan Interactor,
and that each expression is evaluated by pressing the RETURN key at the
points indicated.

g := contain
 (make
 (<list-box>,
 items: #(#"One", #"Two", #"Three"),
 label-key:
 method (symbol) as-lowercase
 (as(<string>, symbol))
 end)); // RETURN
gadget-items(*g*); // RETURN

As you would expect, evaluating the call to
gadget-items returns the following result:

#(#"one", #"two", #"three")

In a similar way, you can destructively modify the slot values of any
contained DUIM objects

	
current-frame Function

	Returns the current frame

	Signature:	current-frame => frame

	Values:	
	frame – An instance of type <frame>

	Discussion:	Returns the current frame.

	
define command-table Defining Macro

	Defines a new class of command table with the specified name and
properties.

	Macro Call:	define command-table *name* ({*supers* }, *) {*options* } end

	Parameters:	
	name – A Dylan name bnf.

	supers – A Dylan name bnf.

	options – A Dylan body bnf.

	Discussion:	Defines a new class of command table with the specified name and
properties. This macro is equivalent to define class [http://opendylan.org/books/drm/Definition_Macros#define_class],
but with additional options.

The supers argument specifies a comma-separated list of command tables
from which the command table you are creating should inherit. If you are
not explicitly inheriting the behavior of other command tables, then
supers should have the value *global-command-table*.

Each one of the options supplied describes a command for the command
table. This can be either a menu item, a separator, or another command
table to be included in the command table. You can supply any number of
options. Each option take one of the following forms:

menu-item *menu-item-descriptor* ;

include *command-table-name* ;

separator;

To add a menu item or menu to a command table, include an option of the
following form:

menu-item *label* = *command-function* #key *accelerator documentation*

	label

	An instance of <string> [http://opendylan.org/books/drm/Collection_Classes#string]. This is the label that appears in
the menu.

	command-function

	An instance of type-union(<command>, <command-table>, <function>).
The command function is the callback that is invoked to perform the
intended operation for the menu item. Note that this can itself be
a command table.

	accelerator

	An instance of false-or(<gesture>). Default value: #f. This
defines a keyboard accelerator that can be used to invoke command-function
in preference to the menu item itself.

	documentation

	An instance of false-or(<string>). Default value:
#f. This specifies a documentation string for the menu item that
can be used to provide online help to the user. For menu items,
documentation strings are usually displayed in the status bar of your
application, when the mouse pointer is placed over the menu item
itself.

To add a separator to a menu, just include the following option at the
point you want the separator to appear:

separator;

To include another command table in the current table, include the
following option at the point you want the command table to appear:

include *command-table-name* ;

The commands defined in command-table-name are added to the current
command table at the appropriate point.

	Example:	The following example shows how you might create a command table for the
standard Windows File menu, and how this could be integrated into the
menu bar for an application. The example assumes that the appropriate
command functions have already been defined for each command in the
command table.

define command-table
 file-menu-command-table (*global-command-table*)
 menu-item "New..." = frame-new-file,
 accelerator:
 make-keyboard-gesture(#"n", #"control"),
 documentation: "Creates a new document."
 menu-item "Open..." = frame-open-file,
 accelerator:
 make-keyboard-gesture(#"o", #"control"),
 documentation: "Opens an existing document.";
 menu-item "Close" = frame-close-file,
 documentation: "Closes an open document.";
 separator;
 include *save-files-command-table*;
 separator;
 menu-item "Exit"
 = make(<command>,
 function: exit-frame);
end command-table *file-menu-command-table*;

define command-table
 application-command-table (*global-command-table*)
 menu-item "File" = *file-menu-command-table*;
 menu-item "Edit" = *edit-menu-command-table*;
 menu-item "View" = *view-menu-command-table*;
 menu-item "Windows" = *windows-menu-command-table*;
 menu-item "Help" = *help-menu-command-table*;
end command-table *application-command-table*;

	See also:	
	global-command-table

	
define frame Defining Macro

	Defines a new class of frame with the specified properties.

	Macro Call:	define frame *name* ({*supers* }, *) {*slots-panes-options* } end

	Parameters:	
	name – A Dylan name bnf.

	supers – A Dylan name bnf.

	slots-panes-options – A Dylan body bnf.

	Discussion:	Defines a new class of frame called name with the specified
properties. This macro is equivalent to define class [http://opendylan.org/books/drm/Definition_Macros#define_class],
but with additional options.

The supers argument lets you specify any classes from which the frame
you are creating should inherit. You must include at least one concrete
frame class, such as <simple-frame> or <dialog-frame>.

The slots-panes-options supplied describe the state variables of the
frame class; that is, the total composition of the frame. This includes,
but is not necessarily limited to, any panes, layouts, tool bar, menus,
and status bar contained in the frame. You can specify arbitrary slots
in the definition of the frame. You may specify any of the following:

	A number of slots for defining per-instance values of the frame
state.

	A number of named panes. Each pane defines a sheet of some sort.

	A single layout.

	A tool bar.

	A status bar.

	A menu bar.

	A command table.

	A number of sequential pages for inclusion in a multi-page frame such
as a wizard or property dialog.

Note

If the frame has a menu bar, either define the menu bar and its
panes, or a command table, but not both. See the discussion below for
more details.

The syntax for each of these options is described below.

The slot option allows you to define any slot values that the new
frame class should allow. This option has the same syntax as slot
specifiers in define class [http://opendylan.org/books/drm/Definition_Macros#define_class], allowing you to
define init-keywords, required init-keywords, init-functions and
so on for the frame class.

For each of the remaining options, the syntax is as follows:

option *name* (*owner*) *body* ;

The argument option is the name of the option used, taken from the
list described below, name is the name you assign to the option for
use within your code, owner is the owner of the option, usually the
frame itself, and body contains the definition of value returned by
the option.

pane specifies a single pane in the frame. The default is #f,
meaning that there is no single pane. This is the simplest way to define
a pane hierarchy.

layout specifies the layout of the frame. The default is to lay out
all of the named panes in horizontal strips. The value of this option
must evaluate to an instance of a layout.

command-table defines a command table for the frame. The default is to
create a command table with the same name as the frame. The value of
this option must evaluate to an instance of <command-table>.

menu-bar is used to specify the commands that will in the menu bar of
the frame. The default is #t. If used, it typically specifies the
top-level commands of the frame. The value of this option can evaluate
to any of the following:

	#f The frame has no menu bar.

	#t, The menu bar for the frame is defined by the value of the
command-table option.

	A command table - The menu bar for the frame is defined by this command table.

	A body of code This is interpreted the same way as the menu-item
options to define command-table.

disabled-commands is used to specify a list of command names that are
initially disabled in the application frame. The default is #[]. The
set of enabled and disabled commands can be modified via
command-enabled?-setter.

tool-bar is used to specify a tool bar for the frame. The default is
#f. The value of this option must evaluate to an instance of
<tool-bar>.

top-level specifies a function that executes the top level loop of the
frame. It has as its argument a list whose first element is the name of
a function to be called to execute the top-level loop. The function must
take at least one argument, which is the frame itself. The rest of the
list consists of additional arguments to be passed to the function.

icon specifies an <image> to be used in the window
decoration for the frame. This icon may be used in the
title bar of the frame, or when the frame is iconized, for example.

geometry specifies the geometry for the frame.

pages is used to define the pages of a wizard or property frame. This
evaluates to a list of pages, each of which can be defined as panes
within the frame definition itself. For example:

define frame <wizard-type> (<wizard-frame>)
 ...
 pages (frame)
 vector(frame.page-1, frame.page-2, frame.page-3);
end frame <wizard-type>

The name, supers, and slot arguments are not evaluated. The values
of each of the options are evaluated.

	Example:	define frame <multiple-values-dialog> (<dialog-frame>)
 pane label-pane (frame)
 make(<option-box>, items: #("&Red", "&Green",
 "&Blue"));
 pane check-one (frame)
 make(<check-button>, label: "Check box test text");
 pane check-two (frame)
 make(<check-button>, label: "Check box test text");
 pane radio-box (frame)
 make(<radio-box>,
 items: #("Option &1", "Option &2",
 "Option &3", "Option &4"),
 orientation: #"vertical");
 pane first-group-box (frame)
 grouping ("Group box", max-width: $fill)
 vertically (spacing: 4)
 make(<label>, label: "Label:");
 horizontally (spacing: 4,
 y-alignment: #"center")
 frame.label-pane;
 make(<button>, label: "Button");
 end;
 frame.check-one;
 frame.check-two;
 end
 end;
 pane second-group-box (frame)
 grouping ("Group box", max-width: $fill)
 frame.radio-box
 end;
layout (frame)
 vertically (spacing: 4)
 frame.first-group-box;
 frame.second-group-box;
 end;
end frame <multiple-values-dialog>;

	See also:	
	<simple-frame>

	<wizard-frame>

	
deiconify-frame Generic function

	Displays a frame that has previously been iconified on screen.

	Signature:	deiconify-frame frame => ()

	Parameters:	
	frame – An instance of type <frame>.

	Discussion:	Displays a frame that has previously been iconified on screen.

	Example:	The following example creates and displays a simple frame, then
iconifies it and deiconifies it.

define variable *frame* =
 make(<simple-frame>, title: "A frame",
 layout: make(<button>));
start-frame(*frame*);
iconify-frame(*frame*);
deiconify-frame(*frame*);

	See also:	
	destroy-frame

	exit-frame

	frame-icon

	iconify-frame

	
destroy-frame Generic function

	Unmaps the specified frame and destroys it.

	Signature:	destroy-frame frame => ()

	Parameters:	
	frame – An instance of type <frame>.

	Discussion:	Unmaps frame from the screen and destroys it. Generally, you should
not need to call this function explicitly, since
exit-frame performs all necessary operations in the
correct order, including calling destroy-frame if the destroy?
argument to exit-frame is true.

	See also:	
	deiconify-frame

	exit-frame

	<frame-destroyed-event>

	iconify-frame

	lower-frame

	raise-frame

	
dialog-apply-button Generic function

	Returns the Apply button in the specified dialog.

	Signature:	dialog-apply-button dialog => apply-button

	Parameters:	
	dialog – An instance of type <dialog-frame>.

	Values:	
	apply-button – An instance of type false-or(<button>).

	Discussion:	Returns the Apply button in dialog. As well as having OK and Cancel
buttons, many dialogs also have an Apply button that lets the user apply
the changes that have been made in the dialog, without removing the
dialog from the screen itself.

	See also:	
	dialog-cancel-button

	dialog-apply-button-setter

	dialog-apply-callback

	dialog-help-button

	
dialog-apply-button-setter Generic function

	Specifies the Apply button in the specified dialog.

	Signature:	dialog-apply-button-setter apply-button dialog => apply-button

	Parameters:	
	apply-button – An instance of type false-or(<button>).

	dialog – An instance of type <dialog-frame>.

	Values:	
	apply-button – An instance of type false-or(<button>).

	Discussion:	Specifies the Apply button in dialog. As well as having OK and Cancel
buttons, many dialogs also have an Apply button that lets the user apply
the changes that have been made in the dialog, without removing the
dialog from the screen itself.

	See also:	
	dialog-cancel-button

	dialog-apply-button

	dialog-apply-callback

	dialog-help-button

	
dialog-apply-callback Generic function

	Returns the callback invoked when the Apply button is clicked in the
specified dialog.

	Signature:	dialog-apply-callback dialog => callback

	Parameters:	
	dialog – An instance of type <dialog-frame>.

	Values:	
	callback – An instance of type false-or(<command>, <function>).

	Discussion:	Returns the callback invoked when the Apply button is clicked in
dialog. As well as having OK and Cancel buttons, many dialogs also
have an Apply button that lets the user apply the changes that have been
made in the dialog, without removing the dialog from the screen itself.

Note

If you supply #f as the callback, then the button does not
appear.

	See also:	
	dialog-cancel-button

	dialog-apply-button

	dialog-apply-button-setter

	dialog-help-button

	
dialog-back-button Generic function

	Returns the Back button in the specified multi-page dialog.

	Signature:	dialog-back-button dialog => back-button

	Parameters:	
	dialog – An instance of type <dialog-frame>.

	Values:	
	back-button – An instance of type false-or(<button>).

	Discussion:	Returns the Back button in dialog. This is most useful in multi-page
dialogs such as property frames and wizard frames, which typically have
Back and Next buttons that let the user navigate forward and backward
through the sequence of pages that comprise the dialog.

	See also:	
	dialog-back-button-setter

	dialog-back-callback

	dialog-exit-button

	dialog-help-button

	
dialog-back-button-setter Generic function

	Specifies the Back button in the specified multi-page dialog.

	Signature:	dialog-back-button-setter back-button dialog => back-button

	Parameters:	
	back-button – An instance of type <button>.

	dialog – An instance of type <dialog-frame>.

	Values:	
	back-button – An instance of type <button>.

	Discussion:	Specifies the Back button in dialog. This is most useful in wizard
frames, which typically have Back and Next buttons that let the user
navigate forward and backward through the sequence of pages that
comprise the dialog.

	See also:	
	dialog-back-button

	dialog-back-callback

	dialog-exit-button-setter

	dialog-help-button

	
dialog-back-callback Generic function

	Returns the callback invoked when the Back button is clicked in the
specified multi-page dialog.

	Signature:	dialog-apply-callback dialog => callback

	Parameters:	
	dialog – An instance of type <dialog-frame>.

	Values:	
	callback – An instance of type false-or(<command>, <function>).

	Discussion:	Returns the callback invoked when the Back button is clicked in dialog.
This is most useful in wizard frames, which typically have Back and
Next buttons that let the user navigate forward and backward through the
sequence of pages that comprise the dialog.

Note

If you do not explicitly supply this callback, the previous page
in the sequence for the multi-page dialog is displayed when the Back
button is clicked. Specifying your own callback gives you flexibility in
describing how the user can navigate through the sequence of pages in
the dialog.

	See also:	
	dialog-back-button

	dialog-back-button-setter

	dialog-exit-callback

	dialog-help-button

	
dialog-cancel-button Generic function

	Returns the Cancel button in the specified dialog.

	Signature:	dialog-cancel-button dialog => cancel-button

	Parameters:	
	dialog – An instance of type <dialog-frame>.

	Values:	
	cancel-button – An instance of type false-or(<button>).

	Discussion:	Returns the Cancel button in dialog.

	See also:	
	dialog-cancel-button-setter

	dialog-cancel-callback

	dialog-exit-button

	dialog-help-button

	
dialog-cancel-button-setter Generic function

	Specifies the Cancel button in the specified dialog.

	Signature:	dialog-cancel-button-setter cancel-button dialog => cancel-button

	Parameters:	
	cancel-button – An instance of type <button>.

	dialog – An instance of type <dialog-frame>.

	Values:	
	cancel-button – An instance of type <button>.

	Discussion:	Specifies the Cancel button in dialog.

	Example:	In the following example, a simple dialog frame is created, and then its
cancel button is redefined before the dialog is displayed on screen.

define variable *dialog*
 = make(<dialog-frame>,
 exit-button?: #t,
 cancel-button?: #t,
 help-callback:
 method (gadget)
 notify-user (format-to-string
 ("Here is some help",
 gadget))
 end);
dialog-cancel-button-setter
 (make(<push-button>, label: "No",
 activate-callback: cancel-dialog,
 max-width: $fill), *dialog*);
start-frame(*dialog*);

	See also:	
	dialog-cancel-button

	dialog-cancel-callback

	dialog-exit-button-setter

	dialog-help-button-setter

	
dialog-cancel-callback Generic function

	Returns the function invoked when the cancel button is clicked in the
specified dialog.

	Signature:	dialog-cancel-callback dialog => callback

	Parameters:	
	dialog – An instance of type <dialog-frame>.

	Values:	
	callback – An instance of type false-or(type-union(<command>, <function>)).

	Discussion:	Returns the function invoked when the cancel button is clicked in
dialog. This defaults to cancel-dialog.

	See also:	
	cancel-dialog

	dialog-cancel-button

	dialog-cancel-button-setter

	dialog-exit-callback

	dialog-help-callback

	
dialog-cancel-callback-setter Generic function

	Sets the function invoked when the cancel button is clicked in the
specified dialog.

	Signature:	dialog-cancel-callback-setter callback dialog => callback

	param callback:	An instance of type false-or(<command>, <function>).
Default value: cancel-dialog.

	param dialog:	An instance of type <dialog-frame>.

	value callback:	An instance of type false-or(<command>, <function>).

	Discussion:	Sets the function invoked when the cancel button is clicked in dialog.

	See also:	
	dialog-cancel-button

	dialog-cancel-button-setter

	dialog-exit-callback

	dialog-help-callback

	
dialog-current-page Generic function

	Returns the current page in the specified multi-page dialog.

	Signature:	dialog-current-page dialog => page

	Parameters:	
	dialog – An instance of type <dialog-frame>.

	Values:	
	page – An instance of type false-or(<page>).

	Discussion:	Returns the current page in dialog.

	See also:	
	dialog-current-page-setter

	
dialog-current-page-setter Generic function

	Sets the current page in the specified multi-page dialog.

	Signature:	dialog-current-page-setter page dialog => page

	Parameters:	
	page – An instance of type <page>.

	dialog – An instance of type <dialog-frame>.

	Values:	
	page – An instance of type <page>.

	Discussion:	Sets the current page in dialog.

	See also:	
	dialog-current-page

	
dialog-exit-button Generic function

	Returns the Exit button in the specified dialog.

	Signature:	dialog-exit-button dialog => exit-button

	Parameters:	
	dialog – An instance of type <dialog-frame>.

	Values:	
	exit-button – An instance of type false-or(<button>).

	Discussion:	Returns the Exit button in dialog. The Exit button is commonly found
in multi-page dialogs, where the user is given the option to exit the
sequence at any point (as well as navigate through the sequence using
Next and Back buttons).

	See also:	
	dialog-cancel-button

	dialog-exit-button-setter

	dialog-exit-enabled?

	dialog-exit-callback

	dialog-help-button

	
dialog-exit-button-setter Generic function

	Specifies the Exit button in the specified dialog.

	Signature:	dialog-exit-button-setter exit-button dialog => exit-button

	Parameters:	
	exit-button – An instance of type <button>.

	dialog – An instance of type <dialog-frame>.

	Values:	
	exit-button – An instance of type <button>.

	Discussion:	Sets the Exit button in dialog. The Exit button is commonly found in
multi-page dialogs, where the user is given the option to exit the
sequence at any point (as well as navigate through the sequence using
Next and Back buttons).

	Example:	In the following example, a simple dialog frame is created, and then its
exit button is redefined before the dialog is displayed on screen.

define variable *dialog*
 = make(<dialog-frame>,
 exit-button?: #t,
 cancel-button?: #t,
 help-callback:
 method (gadget)
 notify-user (format-to-string
 ("Here is some help",
 gadget))
 end);
dialog-exit-button-setter
 (make(<push-button>, label: "Yes",
 activate-callback: exit-dialog,
 max-width: $fill), *dialog*);
start-frame(*dialog*);

	See also:	
	dialog-cancel-button-setter

	dialog-exit-button

	dialog-exit-enabled?

	dialog-exit-callback

	dialog-help-button-setter

	
dialog-exit-callback Generic function

	Returns the callback invoked when the Exit button is clicked in the
specified dialog.

	Signature:	dialog-exit-callback dialog => callback

	Parameters:	
	dialog – An instance of type <dialog-frame>.

	Values:	
	callback – An instance of type false-or(type-union(<command>, <function>)).
Default value: exit-dialog.

	Discussion:	Returns the callback invoked when the Exit button is clicked in dialog.
The Exit button is commonly found in multi-page dialogs, where the
user is given the option to exit the sequence at any point (as well as
navigate through the sequence using Next and Back buttons).

	See also:	
	dialog-cancel-callback

	dialog-exit-button

	dialog-exit-button-setter

	dialog-exit-callback-setter

	dialog-help-callback

	
dialog-exit-callback-setter Generic function

	Sets the callback invoked when the Exit button is clicked in the
specified dialog.

	Signature:	dialog-exit-callback callback dialog => callback

	Parameters:	
	callback – An instance of type false-or(type-union(<command>, <function>)).

	dialog – An instance of type <dialog-frame>.

	Values:	
	callback – An instance of type false-or(type-union(<command>, <function>)).

	Discussion:	Sets the callback invoked when the Exit button is clicked in dialog.
The Exit button is commonly found in multi-page dialogs, where the user
is given the option to exit the sequence at any point (as well as
navigate through the sequence using Next and Back buttons).

If you do not supply this callback, then the default behavior is to quit
the dialog when the Exit button is clicked. This is normally the action
that you will want. Specifying your own callback gives you flexibility
in describing other actions to be performed when the dialog is exited.
In addition, supplying #f means that no Exit button is displayed at
all.

	See also:	
	dialog-cancel-callback-setter

	dialog-exit-button

	dialog-exit-button-setter

	dialog-exit-callback

	dialog-help-callback

	
dialog-exit-enabled? Generic function

	Returns true if the Exit button has been enabled for the specified
dialog.

	Signature:	dialog-exit-enabled? dialog => enabled?

	Parameters:	
	dialog – An instance of type <dialog-frame>.

	Values:	
	enabled? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if the Exit button has been enabled for dialog. The Exit
button is commonly found in multi-page dialogs, where the user is given
the option to exit the sequence at any point (as well as navigate
through the sequence using Next and Back buttons).

	See also:	
	dialog-exit-button

	dialog-exit-button-setter

	dialog-exit-enabled?-setter

	dialog-exit-callback

	
dialog-exit-enabled?-setter Generic function

	Enables or disables the Exit button for the specified dialog.

	Signature:	dialog-exit-enabled?-setter enabled? dialog => enabled?

	Parameters:	
	enabled? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	dialog – An instance of type <dialog-frame>.

	Values:	
	enabled? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Enables or disables the Exit button for dialog. The Exit button is
commonly found in multi-page dialogs, where the user is given the option
to exit the sequence at any point (as well as navigate through the
sequence using Next and Back buttons).

	Example:	In this example, a dialog is created, and then its exit button is
disabled. When displayed on the screen, the exit button is grayed out
and you cannot click on it.

define variable *dialog* =
 make(<dialog-frame>,
 exit-button?: #t,
 cancel-button?: #t,
 help-callback:
 method (gadget)
 notify-user
 (format-to-string
 ("Here is some help",
 gadget))
 end);
dialog-exit-enabled?-setter(#f, *dialog*);
start-frame(*dialog*);

	See also:	
	dialog-exit-button

	dialog-exit-button-setter

	dialog-exit-enabled?

	dialog-exit-callback

	
<dialog-frame> Open Abstract Instantiable Class

	The class of dialog frames.

	Superclasses:	<simple-frame>

	Init-Keywords:	
	mode – An instance of type one-of("modal", #"modeless", #"system-modal").
Default value: #"modal".

	exit-callback – An instance of type false-or(type-union(<command>, <function>)).
Default value: exit-dialog.

	exit-button – An instance of type false-or(<button>).
Default value: #f.

	exit-enabled? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].
Default value: #t.

	cancel-callback – An instance of type false-or(type-union(<command>, <function>)).
Default value: cancel-dialog.

	cancel-button – An instance of type false-or(<button>).
Default value: #f.

	help-callback – An instance of type false-or(type-union(<command>, <function>)).
Default value: #f.

	help-button – An instance of type false-or(<button>).
Default value: #f.

	exit-buttons-position – An instance of type one-of(#"top", #"bottom", #"left", #"right").
Default value: #"bottom".

	pages – An instance of type false-or(<sequence>).
Default value: #f.

	page-changed-callback – An instance of type false-or(<function>).
Default value: #f.

	Discussion:	The class of dialog frames. These frames let you create dialog boxes for
use in your applications. All buttons in a dialog frame are
automatically made the same size, and are placed at the bottom of the
dialog by default. When at the bottom of the dialog, buttons are
right-aligned.

[image: _images/frames-4.png]
A typical dialog

By default, all dialogs are modal, that is, when displayed, they take
over the entire application thread, preventing the user from using any
other part of the application until the dialog has been removed from the
screen. To create a modeless dialog (that is, one that can remain
displayed on the screen while the user interacts with the application in
other ways) you should set the mode: keyword to #"modeless". Note,
however, that you should not normally need to do this: if you need to
create a modeless dialog, then you should consider using a normal DUIM
frame, rather than a dialog frame.

The init-keywords exit-button:, and cancel-button: specify the exit
and cancel buttons in the dialog. The user clicks on the exit button to
dismiss the dialog and save any changes that have been made as a result
of editing the information in the dialog. The user clicks on the cancel
button in order to dismiss the dialog and discard any changes that have
been made.

In addition, the exit-callback: and cancel-callback: init-keywords
specify the callback that is invoked when the Exit or Cancel buttons in
the dialog are clicked on. These both default to the appropriate
function for each button, but you have the flexibility to specify an
alternative if you wish. If you do not require a Cancel button in your
dialog, specify cancel-callback: #f. Similarly, specify
exit-callback: #f if you do not require an Exit button.

All dialogs should have an exit button, and most dialogs should have a
cancel button too. You should only omit the cancel button in cases when
the information being displayed in the dialog cannot be changed by the
user. For example, a dialog containing an error message can have only an
exit button, but any dialog that contains information the user can edit
should have both exit and cancel buttons.

Two init-keywords are available for each button so that a given button
may be specified for a particular dialog, but need only be displayed in
certain circumstances. This lets you define subtly different behavior in
different situations.

The exit-enabled?: init-keyword is used to specify whether the exit
button on the dialog is enabled or not. If #f, then the exit button
is displayed on the dialog, but it is grayed out.

The help-button: init-keyword specifies the help button in the dialog.
Note that, in contrast to the exit and cancel buttons, specifying the
button gadget to use in a dialog determines its presence in the dialog:
it is not possible to define a help button and then only display it in
certain circumstances. You are strongly encouraged to provide a help
button in all but the most trivial dialogs.

The help-callback: init-keyword defines a callback function that is
invoked when the help button is clicked. This should normally display a
context-sensitive help topic from the help file supplied with the
application, although you might also choose to display an alert box with
the relevant information.

The exit-buttons-position: init-keyword defines the position in the
dialog that the exit and cancel buttons occupy (and any other standard
buttons, if they have been specified). By default, buttons are placed
where the interface guidelines for the platform recommend, and this
position is encouraged in most interface design guidelines. Usually,
this means that buttons are placed at the bottom of the dialog. Less
commonly, buttons may also be placed on the right side of the dialog.
Buttons are not normally placed at the top or on the left of the dialog,
though this is possible if desired.

The pages: init-keyword is used for multi-page dialogs such as
property frames and wizard frames. If used, it should be a sequence of
elements, each of which evaluates to an instance of a page.

The page-changed-callback: is a callback function that is invoked when
a different page in a multi-page dialog is displayed.

	Operations:	
	cancel-dialog

	dialog-cancel-button

	dialog-cancel-button-setter

	dialog-cancel-callback

	dialog-cancel-callback-setter

	dialog-exit-button

	dialog-exit-button-setter

	dialog-exit-callback

	dialog-exit-callback-setter

	dialog-exit-enabled?

	dialog-exit-enabled?-setter

	dialog-help-button

	dialog-help-button-setter

	dialog-help-callback

	exit-dialog

	start-dialog

	Example:	The following example creates and displays a simple dialog that contains
only an exit button, cancel button, and help button, and assigns a
callback to the help button.

define variable *dialog*
 = make(<dialog-frame>,
 exit-button?: #t,
 cancel-button?: #t,
 help-callback:
 method (gadget)
 notify-user (format-to-string
 ("Here is some help",
 gadget))
 end);

start-frame(*dialog*);

	See also:	
	cancel-dialog

	exit-dialog

	<property-frame>

	<simple-frame>

	<wizard-frame>

	
dialog-help-button Generic function

	Returns the Help button in the specified dialog.

	Signature:	dialog-help-button dialog => help-button

	Parameters:	
	dialog – An instance of type <dialog-frame>.

	Values:	
	help-button – An instance of type false-or(<button>).

	Discussion:	Returns the Help button in dialog. Many dialogs contain a Help button
that, when clicked, displays a relevant topic from the online help
system for the application.

	See also:	
	dialog-cancel-button

	dialog-exit-button

	dialog-help-button-setter

	dialog-help-callback

	
dialog-help-button-setter Generic function

	Specifies the Help button in the specified dialog.

	Signature:	dialog-help-button-setter help-button dialog => help-button

	Parameters:	
	help-button – An instance of type false-or(<button>).

	dialog – An instance of type <dialog-frame>.

	Values:	
	help-button – An instance of type false-or(<button>)

	Discussion:	Specifies the Help button in dialog. Many dialogs contain a Help
button that, when clicked, displays a relevant topic from the online
help system for the application.

	Example:	In the following example, a simple dialog frame is created, and then its
help button is redefined before the dialog is displayed on screen.

define variable *dialog*
 = make(<dialog-frame>,
 exit-button?: #t,
 cancel-button?: #t,
 help-callback:
 method (gadget)
 notify-user (format-to-string
 ("Here is some help",
 gadget))
 end);

dialog-help-button-setter
 (make(<push-button>, label: "Help Me!",
 activate-callback:
 method (gadget)
 notify-user
 (format-to-string
 ("Here is some help",
 gadget))
 end);
 max-width: $fill), *dialog*);

start-frame(*dialog*);

	See also:	
	dialog-cancel-button-setter

	dialog-exit-button-setter

	dialog-help-button

	dialog-help-callback

	
dialog-help-callback Generic function

	Returns the callback invoked when the Help button is clicked in the
specified dialog.

	Signature:	dialog-help-callback dialog => help-callback

	Parameters:	
	dialog – An instance of type <dialog-frame>.

	Values:	
	help-callback – An instance of type false-or(type-union(<command>, <function>)).

	Discussion:	Returns the callback invoked when the Help button is clicked in dialog.
Many dialogs contain a Help button that, when clicked, displays a
relevant topic from the online help system for the application.

Note

You must specify this callback in order to create a Help button
in any dialog. If the callback is #f, then there will be no Help
button present in the dialog.

	See also:	
	dialog-cancel-callback

	dialog-exit-callback

	dialog-help-button

	dialog-help-button-setter

	
dialog-next-button Generic function

	Returns the Next button in the specified multi-page dialog.

	Signature:	dialog-next-button dialog => next-button

	Parameters:	
	dialog – An instance of type <dialog-frame>.

	Values:	
	next-button – An instance of type false-or(<button>).

	Discussion:	Returns the Next button in dialog. This is most useful in multi-page
dialogs such as property frames and wizard frames, which typically have
Back and Next buttons that let the user navigate forward and backward
through the sequence of pages that comprise the dialog.

	See also:	
	dialog-back-button

	dialog-exit-button

	dialog-next-button-setter

	dialog-next-callback

	
dialog-next-button-setter Generic function

	Specifies the Next button in the specified multi-page dialog.

	Signature:	dialog-next-button-setter next-button dialog => next-button

	Parameters:	
	next-button – An instance of type false-or(<button>).

	dialog – An instance of type <dialog-frame>.

	Values:	
	next-button – An instance of type false-or(<button>).

	Discussion:	Specifies the Next button in dialog. This is most useful in
multi-page dialogs such as property frames and wizard frames, which
typically have Back and Next buttons that let the user navigate forward
and backward through the sequence of pages that comprise the dialog.

	See also:	
	dialog-back-button-setter

	dialog-exit-button

	dialog-next-button

	dialog-next-callback

	
dialog-next-callback Generic function

	Returns the callback invoked when the Next button is clicked in the
specified multi-page dialog.

	Signature:	dialog-next-callback dialog => callback

	Parameters:	
	dialog – An instance of type <dialog-frame>.

	Values:	
	callback – An instance of type false-or(type-union(<command>, <function>)).

	Discussion:	Returns the callback invoked when the Next button is clicked in dialog.
This is most useful in multi-page dialogs such as property frames and
wizard frames, which typically have Back and Next buttons that let the
user navigate forward and backward through the sequence of pages that
comprise the dialog.

Note

If you do not explicitly supply this callback, the next page in
the sequence for the multi-page dialog is displayed when the Next button
is clicked. Specifying your own callback gives you flexibility in
describing how the user can navigate through the sequence of pages in
the dialog.

The default value for this callback is move-to-next-page.

	See also:	
	dialog-back-button

	dialog-exit-callback

	dialog-next-button

	dialog-next-button-setter

	move-to-next-page

	
dialog-next-enabled? Generic function

	Returns true if the Next button has been enabled for the specified
multi-page dialog.

	Signature:	dialog-next-enabled? dialog => enabled?

	Parameters:	
	dialog – An instance of type <dialog-frame>.

	Values:	
	enabled? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if the Next button has been enabled for dialog. This
button is most useful in multi-page dialogs such as property frames and
wizard frames, which typically have Back and Next buttons that let the
user navigate forward and backward through the sequence of pages that
comprise the dialog.

	See also:	
	<dialog-frame>

	dialog-next-button

	dialog-next-button-setter

	dialog-next-enabled?-setter

	dialog-next-callback

	
dialog-next-enabled?-setter Generic function

	Enables or disables the Next button for the specified multi-page dialog.

	Signature:	dialog-next-enabled?-setter enabled? dialog => enabled?

	Parameters:	
	enabled? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	dialog – An instance of type <dialog-frame>.

	Values:	
	enabled? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Enables or disables the Next button for dialog. This button is most
useful in multi-page dialogs such as property frames and wizard frames,
which typically have Back and Next buttons that let the user navigate
forward and backward through the sequence of pages that comprise the
dialog.

It is useful to be able to enable and disable the Next button at any
point in order to ensure that the user supplies all necessary
information before proceeding to the next page of the dialog. You can do
this by testing to see if the information on the page has been specified
with dialog-page-complete?, and then enabling
or disabling the Next button as appropriate.

	See also:	
	dialog-next-button

	dialog-next-button-setter

	dialog-next-callback

	dialog-next-enabled?

	
dialog-next-page Generic function

	Returns the next page in sequence for the specified multi-page dialog.

	Signature:	dialog-next-page dialog => next-page

	Parameters:	
	dialog – An instance of type <dialog-frame>.

	Values:	
	next-page – An instance of type false-or(<page>).

	Discussion:	Returns the next page in sequence for dialog. This is for use in
multi-page dialogs such as property frames and wizard frames, which
typically have Back and Next buttons that let the user navigate forward
and backward through the sequence of pages that comprise the dialog.

The default method for the Next button in dialog uses the value of
this function. When the Next button is clicked, the current page is set
to the next logical page in the sequence, but you are free to
dynamically change it as the state of the dialog changes.

	See also:	
	dialog-next-button

	dialog-next-button-setter

	dialog-next-callback

	dialog-next-page-setter

	dialog-previous-page

	
dialog-next-page-setter Generic function

	Specifies the next page in sequence for the specified multi-page dialog.

	Signature:	dialog-next-page-setter next-page dialog => next-page

	Parameters:	
	next-page – An instance of type false-or(<page>).

	dialog – An instance of type <dialog-frame>.

	Values:	
	next-page – An instance of type false-or(<page>).

	Discussion:	Specifies the next page in sequence for dialog. This is for use in
multi-page dialogs such as property frames and wizard frames, which
typically have Back and Next buttons that let the user navigate forward
and backward through the sequence of pages that comprise the dialog.

The default method for the Next button in dialog uses the value of
this function. When the Next button is clicked, the current page is set
to the next logical page in the sequence, but you are free to
dynamically change it as the state of the dialog changes.

	See also:	
	dialog-next-button

	dialog-next-button-setter

	dialog-next-callback

	dialog-next-page

	dialog-previous-page-setter

	
dialog-page-changed-callback Generic function

	Returns the page-changed callback of the specified multi-page dialog.

	Signature:	dialog-page-changed-callback dialog => callback

	Parameters:	
	dialog – An instance of type <dialog-frame>.

	Values:	
	callback – An instance of type false-or(type-union(<command>, <function>)).

	Discussion:	Returns the page-changed-callback of dialog. This is the callback
function used to test whether the information in the current page of
dialog has changed. This callback is useful when using multi-page
dialogs, as a test that can be performed before the next page of the
dialog is displayed.

	See also:	
	<dialog-frame>

	dialog-page-changed-callback-setter

	<property-frame>

	<wizard-frame>

	
dialog-page-changed-callback-setter Generic function

	Sets the page-changed callback of the specified multi-page dialog.

	Signature:	dialog-page-changed-callback-setter callback dialog => callback

	Parameters:	
	callback – An instance of type false-or(type-union(<command>, <function>)).

	dialog – An instance of type <dialog-frame>.

	Values:	
	callback – An instance of type false-or(type-union(<command>, <function>)).

	Discussion:	Sets the page-changed-callback of dialog. This is the callback
function used to test whether the information in the current page of
dialog has changed. This callback is useful when using multi-page
dialogs, as a test that can be performed before the next page of the
dialog is displayed.

	See also:	
	<dialog-frame>

	dialog-page-changed-callback

	<property-frame>

	<wizard-frame>

	
dialog-page-complete? Generic function

	Returns true if all the information required on the current page of the
specified multi-page dialog has been specified.

	Signature:	dialog-page-complete? dialog => complete?

	Parameters:	
	dialog – An instance of type <dialog-frame>.

	Values:	
	complete? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if all the information required on the current page in
dialog has been specified by the user. This generic function has two
uses:

	It can be used within wizards to test whether all the necessary
information has been supplied, before moving on to the next page of
the wizard.

	It can be used within property pages to test whether all the
necessary information has been supplied, before allowing the user to
apply any changes.

	See also:	
	dialog-page-complete?-setter

	
dialog-page-complete?-setter Generic function

	Sets the slot that indicates all the information required on the current
page of the specified multi-page dialog has been specified.

	Signature:	dialog-page-complete? complete? dialog => complete?

	Parameters:	
	complete? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	dialog – An instance of type <dialog-frame>.

	Values:	
	complete? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Sets the slot that indicates all the information required on the current
page in dialog has been specified by the user. This generic function
has two uses:

	It can be used within wizards to indicate that the necessary
information has been supplied, so that the next page of the wizard
can be displayed safely.

	It can be used within property pages to indicate that the necessary
information has been supplied, so that the user can apply any
changes.

	See also:	
	dialog-page-complete?

	
dialog-pages Generic function

	Returns the pages of the specified multi-page dialog.

	Signature:	dialog-pages dialog => pages

	Parameters:	
	dialog – An instance of type <dialog-frame>.

	Values:	
	pages – An instance of type limited(<sequence>, of: <page>).

	Discussion:	Returns the pages of dialog. Each of the items in sequence is an
instance of <page>.

	See also:	
	<dialog-frame>

	dialog-pages-setter

	<property-frame>

	<wizard-frame>

	
dialog-pages-setter Generic function

	Sets the pages of the specified multi-page dialog.

	Signature:	dialog-pages-setter pages dialog => pages

	Parameters:	
	pages – An instance of type limited(<sequence>, of: <page>).

	dialog – An instance of type <dialog-frame>.

	Values:	
	pages – An instance of type limited(<sequence>, of: <page>).

	Discussion:	Sets the pages of dialog. Each of the items in sequence must be an
instance of <page>.

	See also:	
	<dialog-frame>

	dialog-pages

	<property-frame>

	<wizard-frame>

	
dialog-previous-page Generic function

	Returns the previous page in sequence for the specified multi-page
dialog.

	Signature:	dialog-previous-page dialog => previous-page

	Parameters:	
	dialog – An instance of type <dialog-frame>.

	Values:	
	previous-page – An instance of type false-or(<page>).

	Discussion:	Returns the previous page in sequence for dialog. This is for use in
multi-page dialogs such as property frames and wizard frames, which
typically have Back and Next buttons that let the user navigate forward
and backward through the sequence of pages that comprise the dialog.

The default method for the Back button in dialog uses the value of
this function. When the Back button is clicked, the current page is set
to the previous logical page in the sequence, but you are free to
dynamically change it as the state of the dialog changes.

	See also:	
	dialog-back-button

	dialog-back-button-setter

	dialog-back-callback

	dialog-next-page

	dialog-previous-page-setter

	
dialog-previous-page-setter Generic function

	Specifies the previous page in sequence for the specified multi-page
dialog.

	Signature:	dialog-previous-page-setter previous-page dialog => previous-page

	Parameters:	
	previous-page – An instance of type false-or(<page>).

	dialog – An instance of type <dialog-frame>.

	Values:	
	previous-page – An instance of type false-or(<page>).

	Discussion:	Specifies the previous page in sequence for dialog. This is for use
in multi-page dialogs such as property frames and wizard frames, which
typically have Back and Next buttons that let the user navigate forward
and backward through the sequence of pages that comprise the dialog.

The default method for the Back button in dialog uses the value of
this function. When the Back button is clicked, the current page is set
to the previous logical page in the sequence, but you are free to
dynamically change it as the state of the dialog changes.

	See also:	
	dialog-back-button

	dialog-back-button-setter

	dialog-back-callback

	dialog-next-page-setter

	dialog-previous-page

	
display-progress-note Generic function

	Displays the specified progress note.

	Signature:	display-progress-note framem progress-note => ()

	Parameters:	
	framem – An instance of type <frame-manager>.

	progress-note – An instance of type <progress-note>.

	Discussion:	Displays the specified progress-note in the frame managed by framem.

	
event-destroy-frame? Generic function

	Returns information about the frame was destroyed in the specified
event.

	Signature:	event-destroy-frame? event => destroyed?

	Parameters:	
	event – An instance of type <frame-exit-event>.

	Values:	
	destroyed? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns information about the frame was destroyed in event.

	See also:	
	<frame-exit-event>

	
event-status-code Generic function

	Returns the status code of the specified event.

	Signature:	event-status-code event => code

	Parameters:	
	event – An instance of type <frame-exited-event>.

	Values:	
	code – An instance of type false-or(<integer>).

	Discussion:	Returns the status code of event.

	See also:	
	<frame-exited-event>

	
execute-command Generic function

	Executes a command for the specified frame.

	Signature:	execute-command command frame => #rest values

	Parameters:	
	command – An instance of type <command>.

	frame – An instance of type <frame>.

	Values:	
	#rest values – Instances of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Discussion:	Executes command for frame. The values returned are those values
returned as a result of evaluating the command function of command.

	
exit-dialog Generic function

	Exits the specified dialog.

	Signature:	exit-dialog dialog #key destroy? => ()

	Parameters:	
	dialog – An instance of type <dialog-frame>.

	Destroy?:	An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #t.

	Discussion:	Exits dialog, recording any changes to the information displayed in
the dialog that have been made by the user.

This is the default callback used for the exit button in a dialog. This
is the button that is typically labeled OK.

If destroy? is #t, then dialog is destroyed.

	Example:	The following example defines a button, *yes-button*, that calls
exit-dialog as its activate-callback. This button is then used in a
dialog that simply replaces the standard exit button for the newly
defined dialog. Note that the example assumes the existence of a similar
no-button to replace the cancel button.

define variable *yes-button*
 = make(<push-button>, label: "Yes",
 activate-callback: exit-dialog,
 max-width: $fill);

define variable *dialog*
 = make(<dialog-frame>,
 exit-button?: #f,
 cancel-button?: #f,
 layout: vertically
 (x-alignment: #"center",
 y-spacing: 5)
 make(<label>,
 label: "Here is a label");
 horizontally (x-spacing: 2)
 yes-button;
 no-button;
 end
 end);

start-frame(*dialog*);

	See also:	
	cancel-dialog

	<dialog-frame>

	start-dialog

	
exit-frame Generic function

	Unmaps the specified frame destroying it required.

	Signature:	exit-frame frame #key destroy? => ()

	Parameters:	
	frame – An instance of type <frame>.

	destroy? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #t.

	Discussion:	Unmaps frame, removing the associated sheet and its children from the
screen. If destroy? is true, then the frame is destroyed completely,
via a call to destroy-frame.

If destroy? is #t, then dialog is destroyed.

	Example:	The following example creates a simple frame, then displays it and exits
it. You should run this code in the interactor, pressing the RETURN key
at the points indicated.

define variable *frame* =
 make(<simple-frame>, title: "A frame",
 layout: make(<button>)); // RETURN
start-frame(*frame*); // RETURN
exit-frame(*frame*); // RETURN

	See also:	
	destroy-frame

	frame-can-exit?

	<frame-exited-event>

	<frame-exit-event>

	frame-mapped?-setter

	start-frame

	
find-frame Function

	Returns a frame of the specified type, creating one if necessary.

	Signature:	find-frame frame-class #rest initargs #key create? activate? own-thread? port frame-manager test #all-keys => frame

	Parameters:	
	frame-class – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	initargs (#rest) – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	create? (#key) – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #t.

	activate? (#key) – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #t.

	own-thread? (#key) – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #t.

	port (#key) – An instance of type <port>.

	frame-manager (#key) – An instance of type <frame-manager>.

	test (#key) – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function]. Default value: identity [http://opendylan.org/books/drm/Coercing_and_Copying_Objects#identity].

	Values:	
	frame – An instance of type <frame>.

	Discussion:	This function creates a frame of the specified type if one does not
already exist, and then runs it, possibly in its own thread. If one
already exists, then it is selected.

The frame-class argument specifies the class of frame that is being
searched for. By default, if a match is not found, then an instance of
this class will be created.

The init-args supplied are the slot values that should be passed to
the instance of frame-class. Either an existing frame must be found that
has the specified slot values, or a new one will be created.

If create? is #f, then a new frame will not be created if it does
not already exist.

If own-thread? is true, the frame will run in its own thread if one is
created.

The port and frame-manager arguments specify a port and frame
manager which control the frame being searched for, or under the control
of which a new frame should be created.

If desired, you can supply a test which must evaluate to true for a
frame to match successfully.

	See also:	
	<frame>

	
<frame> Open Abstract Class

	The base class of all frames.

	Superclasses:	<object> [http://opendylan.org/books/drm/Object_Classes#object]

	Init-Keywords:	
	owner – An instance of type false-or(<frame>). Default value: #f.

	mode – An instance of type one-of(#"modeless", #"modal", #"system-modal").
Default value: #"modeless".

	default-button – An instance of type false-or(<button>).
Default value: #f.

	x – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	y – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	width – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	height – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	disabled-commands – An instance of type <sequence> [http://opendylan.org/books/drm/Collection_Classes#sequence].

	top-level-sheet – An instance of type false-or(<sheet>).
Default value: #f.

	layout – An instance of type <layout>.

	icon – An instance of type false-or(<image>).

	title – An instance of type false-or(<string>).
Default value: #f.

	calling-frame – An instance of type <frame>.

	state – An instance of type one-of(#"detached", #"unmapped",
#"mapped", #"iconified").
Default value: #"detached".

	thread – An instance of type false-or(<thread>).
Default value: #f.

	event-queue – An instance of type false-or(<event-queue>).
Default value: #f.

	input-focus – An instance of type false-or(<sheet>).
Default value: #f.

	foreground – An instance of type false-or(<ink>).

	background – An instance of type false-or(<int>).

	text-style – An instance of type false-or(<text-style>).

	palette – An instance of type false-or(<palette>).
Default value: #f.

	document – An instance of type false-or(<object>).
Default value: #f.

	resource-id – An instance of type false-or(<integer>).

	resizable? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #t.

	fixed-width? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #f.

	fixed-height? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #f.

	Discussion:	The class of all frames.

The owner: init-keyword is the parent of the frame.

The mode: init-keyword lets you specify the mode for the frame. By
default, frames are modeless, that is, they do not take over control of
the whole application when they are mapped, and the user can interact
with other frames in the application normally. Modal frames, on the
other hand, behave like a <dialog-frame>,
restricting the user’s interaction with other frames in the application
until the modal frame has been dismissed.

The default-button: init-keyword is used to specify which button is
the default action for the frame. The default button is usually the one
whose callback is invoked by pressing the RETURN key.

The x:, y:, width: and height: init-keywords lets you specify
the initial size and position of the frame. The position is specified
using x: and y:, which represent the number of pixels from the top
left corner of the screen, and the width: and height: init-keywords
specify the initial size of the frame.

The title: init-keyword is used to specify a title for the frame.

The state: init-keyword is used to specify the initial state of the
frame. This describes whether the frame is mapped, whether it is
iconified, and so on. By default, new frames are detached.

By default, new frames run in their own thread. If desired, a frame can
be run in an existing thread by setting the thread: init-keyword to
the thread object concerned. For more information about threads, see the
manual Library Reference: Core Features.

As with threads, new frame run in their own event-queue by default. To
run the frame in an existing event-queue, use the event-queue:
init-keyword.

You can specify which sheet in the frame initially has the input-focus
using the input-focus: init-keyword. The input-focus dictates where
information can be typed by default.

The foreground: background:, and text-style: init-keywords
describes the colors and fonts used in the frame.

Specify a palette for the frame using the palette: init-keyword.

Specify a resource-id for the frame using the resource-id:
init-keyword. This is a platform-specific ID or determining which
resource to use to fill in a frame.

The resizable?:, fixed-width?:, and fixed-height?: init-keywords
let you specify whether or not the user can resize the frame. If
resizable?: is #t, then the frame can be resized in either
direction; if it is #f, then it cannot be resized at all. In addition,
if resizable?: is #t, and one of fixed-width?: or
fixed-height?: is also #t, then the frame is resizable, but is
fixed in the appropriate direction. For example, if resizable?: is #t
and fixed-height?: is also #t, then only the width of the frame can
be resized.

	Operations:	The following operations are exported from the DUIM-Frames module.

	apply-in-frame

	call-in-frame

	command-enabled?

	command-enabled?-setter

	deiconify-frame

	destroy-frame

	execute-command

	exit-frame

	frame?

	frame-accelerators

	frame-accelerators-setter

	frame-can-exit?

	frame-default-button

	frame-default-button-setter

	frame-event-queue

	frame-icon

	frame-icon-setter

	frame-input-focus

	frame-input-focus-setter

	frame-mapped?

	frame-mapped?-setter

	frame-mode

	frame-owner

	frame-palette

	frame-palette-setter

	frame-position

	frame-size

	frame-state

	frame-thread

	frame-title

	frame-title-setter

	iconify-frame

	lower-frame

	layout-frame

	raise-frame

	redo-command

	set-frame-position

	set-frame-size

	undo-command

The following operations are exported from the DUIM-Sheets module.

	beep

	display

	force-display

	frame-manager

	handle-event

The following operations are exported from the DUIM-DCs module.

	default-background

	default-foreground

	default-text-style

	find-color

	port

	queue-event

	synchronize-display

	top-level-sheet

	
frame? Generic function

	Returns true if the specified object is a frame.

	Signature:	frame? object => frame?

	Parameters:	
	object – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Values:	
	frame? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if object is a frame. Use this generic function to test
that an object is a frame before carrying out frame-related operations
on it.

	See also:	
	current-frame

	<frame>

	
frame-accelerators Generic function

	Returns the keyboard accelerators defined for the specified frame.

	Signature:	frame-accelerators frame => accelerators

	Parameters:	
	frame – An instance of type <frame>.

	Values:	
	accelerators – An instance of type false-or(limited(<sequence>, of: <gesture>)).

	Discussion:	Returns the keyboard accelerators defined for frame.

	See also:	
	frame-accelerators-setter

	
frame-accelerators-setter Generic function

	Defines the keyboard accelerators for the specified frame.

	Signature:	frame-accelerators accelerators frame => accelerators

	Parameters:	
	accelerators – An instance of type false-or(limited(<sequence>, of: <gesture>)).

	frame – An instance of type <frame>.

	Values:	
	accelerators – An instance of type false-or(limited(<sequence>, of: <gesture>)).

	Discussion:	Defines the keyboard accelerators for frame.

	See also:	frame-accelerators

	
frame-can-exit? Open Generic function

	Returns true if the specified frame can be exited dynamically.

	Signature:	frame-can-exit? frame => can-exit?

	Parameters:	
	frame – An instance of type <frame>.

	Values:	
	can-exit? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if frame can be exited dynamically. You can add methods
to this generic function in order to allow the user to make a dynamic
decision about whether a frame should exit.

	Example:	define method frame-can-exit?
 (frame :: <abstract-test-frame>)
 => (can-exit? :: <boolean>)
 notify-user("Really exit?",
 frame: frame,
 style: #"question")
end method frame-can-exit?;

	See also:	
	exit-frame

	
frame-command-table Generic function

	Returns the command table associated with the specified frame.

	Signature:	frame-command-table frame => command-table

	Parameters:	
	frame – An instance of type <frame>.

	Values:	
	command-table – An instance of type <command-table>.

	Discussion:	Returns the command table associated with frame.

	See also:	
	frame-command-table-setter

	
frame-command-table-setter Generic function

	Specifies the command table associated with the specified frame.

	Signature:	frame-command-table-setter command-table frame => command-table

	Parameters:	
	command-table – An instance of type <command-table>.

	frame – An instance of type <frame>.

	Values:	
	command-table – An instance of type <command-table>.

	Discussion:	Specifies the command table associated with frame.

	See also:	
	frame-command-table

	
<frame-created-event> Instantiable Sealed Class

	The class of events that indicate a frame has been created.

	Superclasses:	<frame-event>

	Discussion:	The class of events that indicate a frame has been created. An instance
of this class is distributed to the frame when it is created. Only one
of these events is passed during the lifetime of any frame.

	See also:	
	<frame-destroyed-event>

	<frame-exited-event>

	
<frame-destroyed-event> Instantiable Sealed Class

	The class of events that indicate a frame has been destroyed.

	Superclasses:	<frame-event>

	Discussion:	The class of events that indicate a frame has been destroyed. An
instance of this class is distributed to the frame when it is destroyed.
Only one of these events is passed during the lifetime of any frame.

	See also:	
	destroy-frame

	<frame-created-event>

	<frame-exited-event>

	
frame-default-button Generic function

	Returns the default button associated with the specified frame.

	Signature:	frame-default-button frame => default-button

	Parameters:	
	frame – An instance of type <frame>.

	Values:	
	default-button – An instance of type false-or(<button>).

	Discussion:	Returns the default button associated with frame.

	See also:	
	frame-default-button-setter

	
frame-default-button-setter Generic function

	Sets the default button associated with the specified frame.

	Signature:	frame-default-button-setter default-button frame => default-button

	Parameters:	
	default-button – An instance of type false-or(<button>).

	frame – An instance of type <frame>.

	Values:	
	default-button – An instance of type false-or(<button>).

	Discussion:	Sets the default button associated with frame.

	See also:	
	frame-default-button

	
frame-event-queue Generic function

	Returns the event queue that the specified frame is running in.

	Signature:	frame-event-queue frame => event-queue

	Parameters:	
	frame – An instance of type <frame>.

	Values:	
	event-queue – An instance of type <event-queue>.

	Discussion:	Returns the event queue that frame is running in.

	See also:	
	<frame>

	
<frame-exited-event> Instantiable Sealed Class

	The class of events that indicate a frame has been exited.

	Superclasses:	<frame-event>

	Init-Keywords:	
	status-code – An instance of type false-or(<integer>).

This class also inherits the frame: init-keyword from its superclass.

	Discussion:	

	Example:	The class of events that indicate a frame has been exited. An instance
of this class is distributed to the frame when it is exited. Only one of
these events is passed during the lifetime of any frame.

The status-code: init-keyword is used to pass a status code, if
desired. This code can be used to pass the reason that the frame was
exited.

	See also:	
	<application-exited-event>

	exit-frame

	<frame-created-event>

	<frame-destroyed-event>

	
<frame-exit-event> Instantiable Sealed Class

	The class of events distributed when a frame is about to exit.

	Superclasses:	<frame-event>

	Init-Keywords:	
	destroy-frame? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].
Default value: #f.

	Discussion:	The class of events distributed when a frame is about to exit. Contrast
this with <frame-exited-event>, which is
passed after the frame is exited.

The default method uses frame-can-exit? to
decide whether or not to exit.

If destroy-frame?: is #t, then the frame is destroyed.

	See also:	
	event-destroy-frame?

	frame-can-exit?

	<frame-exited-event>

	
<frame-focus-event> Instantiable Sealed Class

	The class of events distributed when a frame receives focus.

	Superclasses:	<frame-event>

	Discussion:	The class of events distributed when a frame receives the mouse focus.

	See also:	
	event-destroy-frame?

	frame-can-exit?

	<frame-exited-event>

	
frame-fixed-height? Generic function

	Returns true if the height of the specified frame is not resizable.

	Signature:	frame-fixed-width? frame => fixed-height?

	Parameters:	
	frame – An instance of type <frame>.

	Values:	
	fixed-height? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if the height of frame is not resizable.

	See also:	
	frame-fixed-width?

	frame-resizable?

	
frame-fixed-width? Generic function

	Returns true if the width of the specified frame is not resizable.

	Signature:	frame-fixed-width? frame => fixed-width?

	Parameters:	
	frame – An instance of type <frame>.

	Values:	
	fixed-width? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if the width of frame is not resizable.

	See also:	
	frame-fixed-height?

	frame-resizable?

	
frame-icon Generic function

	Returns the icon associated with the specified frame.

	Signature:	frame-icon frame => icon

	Parameters:	
	frame – An instance of type <frame>.

	Values:	
	icon – An instance of type false-or(<image>).

	Discussion:	Returns the icon associated with frame. This is the icon used to
represent the frame when it has been iconized. In Windows 95 and Windows
NT 4.0, this icon is also visible in the left hand corner of the title
bar of the frame when it is not iconized.

	See also:	
	deiconify-frame

	frame-icon-setter

	iconify-frame

	
frame-icon-setter Generic function

	Specifies the icon associated with the specified frame.

	Signature:	frame-icon-setter icon frame => icon

	Parameters:	
	icon – An instance of type false-or(<image>).

	frame – An instance of type <frame>.

	Values:	
	icon – An instance of type false-or(<image>).

	Discussion:	Specifies the icon associated with frame. This icon is used when the
frame is iconified, and in Windows 95 and Windows NT 4.0 is also visible
on the left hand side of the title bar of the frame.

	See also:	
	frame-icon

	
frame-input-focus Generic function

	Returns the sheet in the specified frame that has the input focus.

	Signature:	frame-input-focus frame => focus

	Parameters:	
	frame – An instance of type <frame>.

	Values:	
	focus – An instance of type false-or(<sheet>).

	Discussion:	Returns the sheet in frame that has the input focus.

	See also:	
	frame-input-focus-setter

	
frame-input-focus-setter Generic function

	Sets which sheet in the specified frame has the input focus.

	Signature:	frame-input-focus-setter focus frame => focus

	Parameters:	
	focus – An instance of type false-or(<sheet>).

	frame – An instance of type <frame>.

	Values:	
	focus – An instance of type false-or(<sheet>).

	Discussion:	Sets which sheet in frame has the input focus.

	See also:	
	frame-input-focus

	
frame-layout Generic function

	Returns the layout used in the specified frame.

	Signature:	frame-layout frame => layout

	Parameters:	
	frame – An instance of type <frame>.

	Values:	
	layout – An instance of type false-or(<sheet>).

	Discussion:	Returns the layout used in frame.

	See also:	
	frame-layout-setter

	
frame-layout-setter Generic function

	Specifies the layout used in the specified frame.

	Signature:	frame-layout-setter layout frame => layout

	Parameters:	
	layout – An instance of type false-or(<sheet>).

	frame – An instance of type <frame>.

	Values:	
	layout – An instance of type false-or(<sheet>).

	Discussion:	Specifies the layout used in frame.

	See also:	
	frame-layout

	
frame-mapped? Generic function

	Returns true if the specified frame is mapped.

	Signature:	frame-mapped? frame => mapped?

	Parameters:	
	frame – An instance of type <frame>.

	Values:	
	mapped? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if frame is mapped, that is, is currently displayed
on-screen. Note that a frame is considered to be mapped if it is
anywhere on the screen, even if it is not completely visible because
other windows are covering it either partially or completely, or if it
is iconized.

	Example:	The following example creates a simple frame, then displays it and exits
it. In between starting and exiting the frame, frame-mapped? is
called. You should run this code in the interactor, pressing the RETURN
key at the points indicated.

define variable *frame* =
 make(<simple-frame>, title: "A frame",
 layout: make(<button>)); // RETURN
start-frame(*frame*); // RETURN
frame-mapped?(*frame*); // RETURN
=> #t

exit-frame(*frame*); // RETURN
frame-mapped?(*frame*); // RETURN
=> #f

	See also:	
	frame-mapped?-setter

	
<frame-mapped-event> Instantiable Sealed Class

	The class of events that indicate a frame has been mapped.

	Superclasses:	<frame-event>

	Discussion:	The class of events that indicate a frame has been mapped, that is,
displayed on screen. An instance of this class is distributed whenever a
frame is mapped.

	Example:	The following example defines a method that can inform you when an
instance of a class of frame you have defined is mapped.

define method handle-event
 (frame :: <my-frame>,
 event :: <frame-mapped-event>)
 => ()
 notify-user
 (format-to-string("Frame %= mapped", frame))
end method handle-event;

	See also:	
	<frame-unmapped-event>

	
frame-mapped?-setter Generic function

	Maps or unmaps the specified frame.

	Signature:	frame-mapped?-setter mapped? frame => mapped?

	Parameters:	
	mapped? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	frame – An instance of type <frame>.

	Values:	
	mapped? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Maps or unmaps frame, that is, displays frame on the screen or
removes it from the screen, depending on whether mapped? is true or
false. Note that a frame is considered to be mapped if it is anywhere on
the screen, even if it is not completely visible because other windows
are covering it either partially or completely, or if it is iconized.

	Example:	The following example creates a simple frame, then displays it and
unmaps it using frame-mapped?-setter rather than
start-frame and exit-frame. You should run this code in the
interactor, pressing the RETURN key at the points indicated.

define variable *frame* =
 make(<simple-frame>, title: "A frame",
 layout: make(<button>)); // RETURN
frame-mapped?-setter(#t, *frame*); // RETURN
frame-mapped?-setter(#f, *frame*); // RETURN

	See also:	
	exit-frame

	frame-mapped?

	start-frame

	
frame-menu-bar Generic function

	Returns the menu bar used in the specified frame.

	Signature:	frame-menu-bar frame => menu-bar

	Parameters:	
	frame – An instance of type <frame>.

	Values:	
	menu-bar – An instance of type false-or(<menu-bar>).

	Discussion:	Returns the menu bar used in frame.

	See also:	
	frame-menu-bar-setter

	
frame-menu-bar-setter Generic function

	Sets the menu bar used in the specified frame.

	Signature:	frame-menu-bar-setter menu-bar frame => menu-bar

	Values:	
	menu-bar – An instance of type false-or(<menu-bar>).

	menu-bar – An instance of type false-or(<menu-bar>).

	Parameters:	
	frame – An instance of type <frame>.

	Discussion:	Sets the menu bar used in frame.

	See also:	
	frame-menu-bar

	
frame-mode Generic function

	Returns the mode of the specified frame.

	Signature:	frame-mode frame => mode

	Parameters:	
	frame – An instance of type <frame>.

	Values:	
	mode – An instance of type one-of(#"modeless", #"modal", #"system-modal").

	Discussion:	Returns the mode of frame. This is the same value as was specified
for the mode: init-keyword when the frame was created.

If frame is modal, such as a dialog, then it must be dismissed before
the user can interact with the user interface of an application (for
instance, before a menu can be displayed).

If frame is modeless, then the user can interact with its parent frame
while the frame is still visible. Typically, the user will move the
frame to a convenient position on the screen and continue work, keeping
the frame on screen for as long as is desired. For example it is often
useful to make the Find dialog box in an application modeless, so that
the user can keep it on screen while performing other tasks.

If frame is system-modal, then it prevents the user from interacting
with any other running applications, such as the Shutdown dialog in
Windows 95. System modal frames are rarely used, and should be used with
caution.

Note

You can only set the mode of a frame when it is first created.
The mode cannot subsequently be changed.

	See also:	
	<frame>

	
frame-owner Generic function

	Returns the controlling frame for the specified frame.

	Signature:	frame-owner frame => owner

	Parameters:	
	frame – An instance of type <frame>.

	Values:	
	owner – An instance of type false-or(<frame>).

	Discussion:	Returns the controlling frame for frame. The controlling frame for
any hierarchy of existing frames is the one that owns the thread in
which the frames are running. Thus, the controlling frame for frame is
not necessarily its direct owner: it may be the owner of frame ‘s
owner, and so on, depending on the depth of the hierarchy.

	
frame-palette Generic function

	Returns the palette used in the specified frame.

	Signature:	frame-palette frame => palette

	Parameters:	
	frame – An instance of type <frame>.

	Values:	
	palette – An instance of type <palette>.

	Discussion:	Returns the palette used in frame.

	See also:	
	frame-palette-setter

	
frame-palette-setter Generic function

	Sets the palette used in the specified frame.

	Signature:	frame-palette-setter palette frame => palette

	Parameters:	
	palette – An instance of type <palette>.

	frame – An instance of type <frame>.

	Values:	
	palette – An instance of type <palette>.

	Discussion:	Sets the palette used in frame.

	See also:	
	frame-palette

	
frame-position Generic function

	Returns the position on the screen of the specified frame.

	Signature:	frame-position frame => x y

	Parameters:	
	frame – An instance of type <frame>.

	Values:	
	x – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	y – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns the position on the screen of frame. Coordinates are
expressed relative to the top left corner of the screen, measured in
pixels.

	Example:	The following example creates a simple frame, then displays it and tests
its position. You should run this code in the interactor, pressing the
RETURN key at the points indicated.

define variable *frame* =
 make(<simple-frame>, title: "A frame",
 layout: make(<button>)); // RETURN
start-frame(*frame*); // RETURN
frame-position(*frame*); // RETURN

	See also:	
	frame-size

	frame-state

	set-frame-position

	
frame-resizable? Generic function

	Returns true if the specified frame is resizable.

	Signature:	frame-resizable? frame => resizable?

	Parameters:	
	frame – An instance of type <frame>.

	Values:	
	resizable? – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean].

	Discussion:	Returns true if frame is resizable, that is can have one or both of
its width and height modified by the user.

	See also:	
	frame-fixed-height?

	frame-fixed-width?

	
frame-size Generic function

	Returns the size of the specified frame.

	Signature:	frame-size frame => width height

	Parameters:	
	frame – An instance of type <frame>.

	Values:	
	width – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	height – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Returns the size of frame, measured in pixels.

	Example:	The following example creates a simple frame, then displays it and tests
its size. You should run this code in the interactor, pressing the
RETURN key at the points indicated.

define variable *frame* =
 make(<simple-frame>, title: "A frame",
 layout: make(<button>)); // RETURN
start-frame(*frame*); // RETURN
frame-size(*frame*); // RETURN

	See also:	
	frame-position

	frame-state

	set-frame-size

	
frame-state Generic function

	Returns the visible state of the specified frame.

	Signature:	frame-state frame => state

	Parameters:	
	frame – An instance of type <frame>.

	Values:	
	state – An instance of type one-of(#"detached", #"unmapped",
#"mapped", #"iconified", #"destroyed").

	Discussion:	Returns the visible state of the specified frame. The return value from
this function indicates whether frame is currently iconified, whether it
is mapped or unmapped, whether it has been destroyed, or whether it has
become detached from the thread of which it was a part.

	Example:	The following example creates a simple frame, then displays it and tests
its position. You should run this code in the interactor, pressing the
RETURN key at the points indicated.

define variable *frame* =
 make(<simple-frame>, title: "A frame",
 layout: make(<button>)); // RETURN
start-frame(*frame*); // RETURN
frame-state(*frame*); // RETURN
=> #"mapped"

	See also:	
	frame-position

	frame-size

	
frame-status-bar Generic function

	Returns the status bar used in the specified frame.

	Signature:	frame-status-bar frame => status-bar

	Parameters:	
	frame – An instance of type <frame>.

	Values:	
	status-bar – An instance of type false-or(<status-bar>).

	Discussion:	Returns the status bar used in frame.

	See also:	
	frame-status-bar-setter

	
frame-status-bar-setter Generic function

	Sets the status bar used in the specified frame.

	Signature:	frame-status-bar-setter status-bar frame => status-bar

	Parameters:	
	status-bar – An instance of type <status-bar>.

	frame – An instance of type <frame>.

	Values:	
	status-bar – An instance of type false-or(<status-bar>).

	Discussion:	Sets the status bar used in frame.

	See also:	
	frame-status-bar

	
frame-status-message Open Generic function

	Returns the status message for the specified frame.

	Signature:	frame-status-message frame => status-message

	Parameters:	
	frame – An instance of type <frame>.

	Values:	
	status-message – An instance of type false-or(<string>).

	Discussion:	Returns the status message for frame. This is the label in the status
bar for the frame. If the frame has no status bar, or if the label is
not set, this this function returns false.

	See also:	
	frame-status-bar

	frame-status-message-setter

	<status-bar>

	
frame-status-message-setter Generic function

	Sets the status message for the specified frame.

	Signature:	frame-status-message status-message frame => status-message

	Parameters:	
	status-message – An instance of type false-or(<string>).

	frame – An instance of type <frame>.

	Values:	
	status-message – An instance of type false-or(<string>).

	Discussion:	Sets the status message for frame. This is the label in the status
bar for the frame. If the frame has no status bar, then attempting to
set the label fails silently.

	See also:	
	frame-status-bar-setter

	frame-status-message

	<status-bar>

	
frame-thread Generic function

	Returns the thread with which the specified frame is associated.

	Signature:	frame-thread frame => thread

	Parameters:	
	frame – An instance of type <frame>.

	Values:	
	thread – An instance of type <thread>.

	Discussion:	Returns the thread with which frame is associated.

For more information about threads, refer to the manual Library
Reference: Core Features.

	
frame-title Generic function

	Returns the title of the specified frame.

	Signature:	frame-title frame => title

	Parameters:	
	frame – An instance of type <frame>.

	Values:	
	title – An instance of type false-or(<string>).

	Discussion:	Returns the title of frame. If this is #f, then the title bar is
removed from the frame, if this is possible. If this is not possible,
then a default message is displayed. Whether the title bar can be
removed from the frame or not is platform dependent.

	See also:	
	frame-title-setter

	
frame-title-setter Generic function

	Sets the title of the specified frame.

	Signature:	frame-title-setter title frame => title

	Parameters:	
	title – An instance of type false-or(<string>).

	frame – An instance of type <frame>.

	Values:	
	title – An instance of type false-or(<string>).

	Discussion:	Sets the title of frame. The title of a frame is displayed in the
title bar of the frame. If title is #f, then the platform attempts
to remove the title bar from the frame, if possible.

	See also:	
	frame-title

	
frame-tool-bar Generic function

	Returns the tool bar used in the specified frame.

	Signature:	frame-tool-bar frame => tool-bar

	Parameters:	
	frame – An instance of type <frame>.

	Values:	
	tool-bar – An instance of type false-or(<tool-bar>).

	Discussion:	Returns the tool bar used in frame.

	See also:	
	frame-tool-bar-setter

	
frame-tool-bar-setter Generic function

	Sets the tool bar used in the specified frame.

	Signature:	frame-tool-bar-setter tool-bar frame => tool-bar

	Parameters:	
	tool-bar – An instance of type false-or(<tool-bar>).

	frame – An instance of type <frame>.

	Values:	
	tool-bar – An instance of type false-or(<tool-bar>).

	Discussion:	Sets the tool bar used in frame.

	See also:	
	frame-tool-bar

	
frame-top-level Generic function

	Returns the top level loop function for the specified frame.

	Signature:	frame-top-level frame => top-level

	Parameters:	
	frame – An instance of type <frame>.

	Values:	
	top-level – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	Discussion:	Returns the top level loop function for frame. The top level loop
function for a frame is the “command loop” for the frame.

The default method for frame-top-level calls read-event
and then handle-event.

	See also:	
	handle-event

	
<frame-unmapped-event> Instantiable Sealed Class

	The class of events that indicate a frame has been unmapped.

	Superclasses:	<frame-event>

	Discussion:	The class of events that indicate a frame has been unmapped, that is,
removed from the screen. An instance of this class is distributed
whenever a frame is unmapped. A frame may be unmapped by either
iconifying it, or by exiting or destroying the frame completely, so that
it no longer exists.

	Example:	The following example defines a method that can inform you when an
instance of a class of frame you have defined is unmapped.

define method handle-event
 (frame :: <my-frame>,
 event :: <frame-unmapped-event>)
 => ()
 notify-user
 (format-to-string("Frame %= unmapped", frame))
end method handle-event;

	See also:	
	<frame-mapped-event>

	
global-command-table Variable

	The command table inherited by all new command tables.

	Type:	<command-table>

	Discussion:	This is the command table from which all other command tables inherit by
default. You should not explicitly add anything to or remove anything
from this command table. DUIM can use this command to store internals or
system-wide commands. You should not casually install any commands or
translators into this command table.

	See also:	
	<command-table>

	user-command-table

	
iconify-frame Generic function

	Iconifies the specified frame.

	Signature:	iconify-frame frame => ()

	Parameters:	
	frame – An instance of type <frame>.

	Discussion:	Iconifies frame. The appearance of the iconified frame depends on the
behavior of the operating system in which the application is running.
For instance, in Windows 95 or Windows NT 4.0, the icon is displayed in
the task bar at the bottom of the screen.

	Example:	The following example creates and displays a simple frame, then
iconifies it. You should run this code in the interactor, pressing the
RETURN key at the points indicated.

define variable *frame* =
 make(<simple-frame>, title: "A frame",
 layout: make(<button>)); // RETURN
start-frame(*frame*); // RETURN
iconify-frame(*frame*); // RETURN

	See also:	
	deiconify-frame

	destroy-frame

	exit-frame

	frame-icon

	lower-frame

	raise-frame

	
layout-frame Generic function

	Resizes the specified frame and lays out the current pane hierarchy
inside it.

	Signature:	layout-frame frame #key width height => ()

	Parameters:	
	frame – An instance of type <frame>.

	width – An instance of type false-or(<integer>).

	height – An instance of type false-or(<integer>).

	Discussion:	Resizes the frame and lays out the current pane hierarchy according to
the layout protocol. This function is automatically invoked on a frame
when it is adopted, after its pane hierarchy has been generated.

If width and height are provided, then this function resizes the
frame to the specified size. It is an error to provide just width.

If no optional arguments are provided, this function resizes the frame
to the preferred size of the top-level pane as determined by the space
composition pass of the layout protocol.

In either case, after the frame is resized, the space allocation pass of
the layout protocol is invoked on the top-level pane.

	
lower-frame Generic function

	Lowers the specified frame to the bottom of the stack of visible
windows.

	Signature:	lower-frame frame => ()

	Parameters:	
	frame – An instance of type <frame>.

	Discussion:	Lowers frame to the bottom of the stack of visible windows. After
calling this function, frame will appear beneath any occluding windows
that may be on the screen.

	Example:	The following example creates and displays a simple frame, then lowers
it.

define variable *frame* =
 make(<simple-frame>, title: "A frame",
 layout: make(<button>));
start-frame(*frame*);
lower-frame(*frame*);

	See also:	
	deiconify-frame

	destroy-frame

	exit-frame

	iconify-frame

	raise-frame

	
make(<frame>) Method

	Creates an instance of a <frame>.

	Signature:	make (class == <frame>)
#key top-level command-queue layout icon
pointer-documentation command-table menu-bar tool-bar
status-bar title calling-frame top-level-sheet state
geometry resizable? properties thread event-queue
foreground background text-style palette save-under?
drop-shadow? dialog-for
=> simple-frame

	Parameters:	
	class – The class <frame>.

	top-level (#key) – An instance of type false-or(<sheet>). Default value: #f.

	command-queue (#key) – An instance of type false-or(<event-queue>).
Default value: #f.

	layout (#key) – An instance of type false-or(<sheet>). Default value: #f.

	icon (#key) – An instance of type false-or(<image>). Default value: #f.

	pointer-documentation (#key) – An instance of type false-or(<string>). Default value: #f.

	command-table (#key) – An instance of type false-or(<command-table>). Default value: #f.

	menu-bar (#key) – An instance of type false-or(<menu-bar>). Default value: #f.

	tool-bar (#key) – An instance of type false-or(<tool-bar>). Default value: #f.

	status-bar (#key) – An instance of type false-or(<status-bar>). Default value: #f.

	title (#key) – An instance of type false-or(<string>). Default value: #f.

	calling-frame (#key) – An instance of type false-or(<frame>). Default value: #f.

	state (#key) – An instance of type one-of(#"detached", #"unmapped",
#"mapped", #"iconified"). Default value: #"detached".

	geometry (#key) – An instance of type <vector> [http://opendylan.org/books/drm/Collection_Classes#vector]. Default value: vector(#f, #f, #f, #f).

	resizable? (#key) – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #t.

	properties (#key) – An instance of type <stretchy-object-vector> [http://opendylan.org/books/drm/<stretchy-object-vector>]. Default value: make(<stretchy-vector>).

	thread (#key) – An instance of type false-or(<thread>). Default value: #f.

	event-queue (#key) – An instance of type false-or(<event-queue>). Default value: #f.

	foreground (#key) – An instance of type false-or(<ink>). Default value: #f.

	background (#key) – An instance of type false-or(<ink>). Default value: #f.

	text-style (#key) – An instance of type false-or(<text-style>). Default value: #f.

	palette (#key) – An instance of type false-or(<palette>). Default value: #f.

	save-under? (#key) – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #f.

	drop-shadow? (#key) – An instance of type <boolean> [http://opendylan.org/books/drm/Simple_Object_Classes#boolean]. Default value: #f.

	dialog-for (#key) – An instance of type <dialog-frame>.

	Values:	
	simple-frame – An instance of type <frame>.

	Discussion:	Creates and returns an instance of <frame> or
one of its subclasses.

The top-level argument specifies the top-level command-loop in which
the frame runs.

The command-queue argument specifies a command-queue for the frame.

The layout argument specifies a layout for the frame.

The icon argument specifies an icon that will be used when the frame
is iconized. In all current versions of Windows, this icon is also
visible in the left hand corner of the title bar of the frame when it is
not iconized.

The pointer-documentation argument specifies pointer-documentation for
the frame.

The command-table argument specifies a command table for the frame.

The menu-bar argument specifies a menu bar for the frame.

The tool-bar argument specifies a tool bar for the frame.

The status-bar argument specifies a status bar for the frame.

The title argument specifies a title for the frame.

The calling-frame argument specifies a calling frame for the frame.

The state argument specifies a frame-state. The frame can be mapped or
unmapped (that is, visible on the screen, or not), iconified, or
detached.

The geometry argument specifies a for the frame. The four components
of this keyword represent the x and y position of the frame, and the
width and height of the frame, respectively.

The resizable? argument specifies whether or not the frame is
resizable.

The properties argument specifies properties for the frame.

The thread argument specifies the thread in which the frame will run.
See the Library Reference: Core Features manual for full details about
how threads are handled.

The event-queue specifies an event-queue for the frame.

The arguments foreground and background specify a foreground color
for the frame. In addition, text-style specifies a text style for the
frame, and palette specifies a color palette for the frame.

	See also:	
	<frame>

	
make-menu-from-command-table-menu Generic function

	Returns a menu from the menu definition in the specified command table.

	Signature:	make-menu-from-command-table-menu
command-table-menu-items frame framem
#key command-table label mnemonic item-callback
=> menu

	Parameters:	
	command-table-menu-items – An instance of type <sequence> [http://opendylan.org/books/drm/Collection_Classes#sequence].

	frame – An instance of type <frame>.

	framem – An instance of type <frame-manager>.

	command-table (#key) – An instance of type <command-table>.

	label (#key) – An instance of type <label>.

	mnemonic (#key) – An instance of type false-or(<gesture>).

	item-callback (#key) – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function].

	Values:	
	menu – An instance of type <menu>.

	Discussion:	Returns a menu from the menu definition in the specified command table.
This function is used by
make-menus-from-command-table to individually
create each menu defined in the command table. The function
make-menus-from-command-table then puts each of the
menus created together in the appropriate way.

The command-table-menu-items argument defines the items that are to be
placed in the menu. It is a sequence of instances of
<command-table-menu-item>.

The frame and framem arguments define the frame and the frame
manager in which the menu created is to be placed.

The command-table argument specifies the command table in which the
definition of the menu created can be found.

The label argument defines a label for the menu created.

The mnemonic argument defines a keyboard mnemonic for the menu
created.

	See also:	
	make-menus-from-command-table

	
make-menus-from-command-table Generic function

	Returns a set of menus from the menu definitions in the specified
command table.

	Signature:	make-menus-from-command-table command-table frame framem #key label => menus

	Parameters:	
	command-table – An instance of type <command-table>.

	frame – An instance of type <frame>.

	framem – An instance of type <frame-manager>.

	label (#key) – An instance of type <label>.

	Values:	
	menus – An instance of type limited(<sequence>, of: <menu>).

	Discussion:	Returns a set of menus from the menu definitions in command-table.

The frame and framem arguments specify the frame and frame manager
in which the menus are to be placed.

The label argument lets you specify a label for the set of menus.

	See also:	make-menu-from-command-table

	
menu-item-accelerator Generic function

	Returns the accelerator for the specified command table menu item.

	Signature:	menu-item-accelerator menu-item => accelerator

	Parameters:	
	menu-item – An instance of type <command-table-menu-item>.

	Values:	
	accelerator – An instance of type <gesture>.

	Discussion:	Returns the keyboard accelerator for menu-item. Note that menu-item
must be defined in a command table.

	See also:	
	menu-item-mnemonic

	
menu-item-mnemonic Generic function

	Returns the mnemonic for the specified menu item.

	Signature:	menu-item-mnemonic menu-item => mnemonic

	Parameters:	
	menu-item – An instance of type <command-table-menu-item>.

	Values:	
	mnemonic – An instance of type false-or(<gesture>).

	Discussion:	Returns the keyboard mnemonic for menu-item.

	See also:	
	menu-item-accelerator

	
menu-item-name Generic function

	Returns the name of the specified menu item.

	Signature:	menu-item-name menu-item => name

	Parameters:	
	menu-item – An instance of type <command-table-menu-item>.

	Values:	
	name – An instance of type <string> [http://opendylan.org/books/drm/Collection_Classes#string].

	Discussion:	Returns the name of menu-item.

	See also:	
	menu-item-options

	menu-item-type

	menu-item-value

	
menu-item-options Generic function

	Returns the options for the specified menu item.

	Signature:	menu-item-options menu-item => options

	Parameters:	
	menu-item – An instance of type <command-table-menu-item>.

	Values:	
	options – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Discussion:	Returns the options for menu-item.

	See also:	
	menu-item-name

	menu-item-type

	menu-item-value

	
menu-item-type Generic function

	Returns the type of the specified menu item.

	Signature:	menu-item-type menu-item => type

	Parameters:	
	menu-item – An instance of type <command-table-menu-item>.

	Values:	
	type – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Discussion:	Returns the type of menu-item.

	See also:	
	menu-item-name

	menu-item-options

	menu-item-value

	
menu-item-value Generic function

	Returns the value of the specified menu item.

	Signature:	menu-item-value menu-item => value

	Parameters:	
	menu-item – An instance of type <command-table-menu-item>.

	Values:	
	value – An instance of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Discussion:	Returns the value of menu-item.

	See also:	
	menu-item-name

	menu-item-options

	menu-item-type

	
move-to-next-page Generic function

	Moves to the next page of the specified multi-page dialog.

	Signature:	move-to-next-page wizard => ()

	Parameters:	
	wizard – An instance of type <wizard-frame>.

	Discussion:	Moves to the next page in sequence of wizard. This is the default
callback for the Next button in a wizard frame.

	See also:	
	dialog-next-callback

	<wizard-frame>

	
move-to-previous-page Generic function

	Moves to the previous page of the specified multi-page dialog.

	Signature:	move-to-previous-page wizard => ()

	Parameters:	
	wizard – An instance of type <wizard-frame>.

	Discussion:	Moves to the previous page in sequence of wizard. This is the default
callback for the Back button in a wizard frame.

	See also:	
	dialog-back-callback

	<wizard-frame>

	
note-progress Generic function

	Note the progress of an event in the specified progress note.

	Signature:	note-progress numerator denominator #key note label pointer-cursor => ()

	Parameters:	
	numerator – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	denominator – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	note (#key) – An instance of type <progress-note>.
Default value: *progress-note*.

	label (#key) – An instance of type <label>.

	pointer-cursor (#key) – An instance of type <pointer>.

	Discussion:	Note the progress of an event in note.

If a numerator and denominator are supplied, then the progress is
displayed in terms of those figures. For example, if numerator is 1,
and denominator is 10, then the progress is displayed in tenths.

If supplied, pointer-cursor is used as a cursor when the mouse pointer
is placed over the owner frame.

	See also:	
	noting-progress

	progress-note

	
noting-progress Statement Macro

	Performs a body of code, noting its progress.

	Macro Call:	noting-progress ({*sheet* }, {*label* }) {*body* } end

	Parameters:	
	sheet – A Dylan expression bnf.

	label – A Dylan expression bnf.

	body – A Dylan body bnf.

	Discussion:	Performs a body of code, noting its progress, for the specified sheet.

The sheet argument is an expression that evaluates to an instance of
<sheet>. The label argument is an expression
that evaluates to an instance of <string> [http://opendylan.org/books/drm/Collection_Classes#string].

	See also:	
	note-progress

	
progress-note Thread Variable

	Specifies a default progress note that can be used.

	Type:	<object> [http://opendylan.org/books/drm/Object_Classes#object]

	Value:	#f

	Discussion:	This variable is used to supply a default progress note to use if no
progress note is explicitly specified.

	See also:	
	note-progress

	
<property-frame> Open Instantiable Class

	The class of property frames.

	Superclasses:	<dialog-frame>

	Init-Keywords:	
	pages – An instance of type false-or(limited(<sequence>, of: <page>)).
Default value: #f.

	apply-callback – An instance of type false-or(<function>). Default value: #f.

	apply-button – An instance of type false-or(<button>).
Default value: #f.

Note: The following two useful init-keywords are inherited from
<dialog-frame>:

	Init-Keywords:	
	pages – An instance of type false-or(<sequence>).
Default value: #f.

	page-changed-callback – An instance of type false-or(<function>).
Default value: #f.

	Discussion:	The class of property frames. These are dialogs that can contain
property sheets of some description. This is the class of dialogs with
several pages, each presented as a label in a tab control.

[image: _images/frames-5.png]
A property frame

The pages: init-keyword defines the pages available for the property
frame.

The apply callback and button define an additional Apply button
available in property frames. The Apply button applies any changes made
in the current page of the dialog, but does not dismiss the dialog from
the screen. By default, there is no Apply button defined.

The page-changed callback lets you specified a callback that should be
invoked if the current page in the property frame is changed by clicking
on a different page tab.

	Operations:	
	dialog-apply-button

	dialog-apply-button-setter

	dialog-apply-callback

	dialog-current-page

	dialog-current-page-setter

	dialog-page-changed-callback

	dialog-page-changed-callback-setter

	dialog-page-complete?

	dialog-page-complete?-setter

	dialog-pages

	dialog-pages-setter

	See also:	
	dialog-apply-button

	dialog-apply-callback

	<dialog-frame>

	<property-page>

	<wizard-frame>

	
<property-page> Open Instantiable Class

	The class of property pages.

	Superclasses:	<page>

	Discussion:	The class of property pages. These are pages that can be displayed in an
instance of <property-frame>.
[image: _images/frames-6.png]
A property page

Internally, this class maps into the Windows property page control.

	See also:	
	<page>

	<property-frame>

	<property-page>

	<tab-control-page>

	<wizard-page>

	
raise-frame Generic function

	Raises the specified frame to the top of the stack of visible windows.

	Signature:	raise-frame frame => ()

	Parameters:	
	frame – An instance of type <frame>.

	Discussion:	Raises frame to the top of the stack of visible windows. After calling
this function, frame will appear above any occluding windows that may
be on the screen.

	Example:	The following example creates and displays a simple frame, then lowers
and raises it. You should run this code in the interactor, pressing the
RETURN key at the points indicated.

define variable *frame* =
 make(<simple-frame>, title: "A frame",
 layout: make(<button>)); // RETURN
start-frame(*frame*); // RETURN
lower-frame(*frame*); // RETURN
raise-frame(*frame*); // RETURN

	See also:	
	deiconify-frame

	destroy-frame

	exit-frame

	iconify-frame

	lower-frame

	
redo-command Generic function

	Performs the last performed command again.

	Signature:	redo-command command frame => #rest values

	Parameters:	
	command – An instance of type <command>.

	frame – An instance of type <frame>.

	values – Instances of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Discussion:	Performs command again. The command is the command that was last
executed using execute-command.

Note that the command described by command must be undoable.

You can both specialize this function and call it directly in your code.

	See also:	
	execute-command

	
remove-command Generic function

	Removes a command from the specified command table.

	Signature:	remove-command command-table command => ()

	Parameters:	
	command-table – An instance of type <command-table>.

	command – An instance of type <command>.

	Discussion:	Removes command from command-table.

	See also:	
	add-command

	
remove-command-table Function

	Removes the specified command table.

	Signature:	remove-command-table command-table => ()

	Parameters:	
	command-table – An instance of type <command-table>.

	Discussion:	Removes command-table.

	
remove-command-table-menu-item Generic function

	Removes a menu item from the specified command table.

	Signature:	remove-command-table-menu-item command-table string => ()

	Parameters:	
	command-table – An instance of type <command-table>.

	string – An instance of type <string> [http://opendylan.org/books/drm/Collection_Classes#string].

	Discussion:	Removes the menu item identified by string from command-table.

	See also:	
	add-command-table-menu-item

	
set-frame-position Generic function

	Sets the position of the specified frame.

	Signature:	set-frame-position frame x y => ()

	Parameters:	
	frame – An instance of type <frame>.

	x – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	y – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Sets the position of frame. The coordinates x and y are measured
from the top left of the screen, measured in pixels.

	See also:	
	frame-position

	set-frame-size

	
set-frame-size Generic function

	Sets the size of the specified frame.

	Signature:	set-frame-size frame width height => ()

	Parameters:	
	frame – An instance of type <frame>.

	width – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	height – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Sets the size of frame.

	Example:	The following example creates and displays a simple frame, then resizes
it. You should run this code in the interactor, pressing the RETURN key
at the points indicated.

	See also:	
	frame-size

	set-frame-position

	
<simple-command> Open Abstract Instantiable Class

	The class of simple commands.

	Superclasses:	<object> [http://opendylan.org/books/drm/Object_Classes#object]

	Init-Keywords:	
	function – An instance of type <function> [http://opendylan.org/books/drm/Function_Classes#function]. Required.

	arguments – An instance of type <sequence> [http://opendylan.org/books/drm/Collection_Classes#sequence]. Default value #[].

	Discussion:	The class of simple commands. A simple command has an associated
function and some arguments. Simple commands are not undoable.

The first argument to the function is always the frame.

	See also:	
	<command>

	
<simple-frame> Open Abstract Instantiable Class

	The class of simple frames.

	Superclasses:	<frame>

	Init-Keywords:	
	command-queue – An instance of type false-or(<event-queue).
Default value: make(<event-queue>).

	layout – An instance of type false-or(<sheet>).
Default value: ``#f.

	command-table – An instance of type false-or(<command-table>).
Default value: #f.

	menu-bar – An instance of type false-or(<menu-bar>).
Default value: #f.

	tool-bar – An instance of type false-or(<tool-bar>).
Default value: #f.

	status-bar – An instance of type false-or(<status-bar>).
Default value: #f.

	Discussion:	The class of simple frames.

The command-queue: init-keyword specifies a command-queue for the
frame.

The layout: init-keyword specifies a layout for the frame.

The command-table: init-keyword specifies a command table for the
frame.

The menu-bar: init-keyword specifies a menu bar for the frame.

The tool-bar: init-keyword specifies a tool bar for the frame.

The status-bar: init-keyword specifies a status bar for the frame.

	Operations:	
	frame-command-table

	frame-command-table-setter

	frame-layout

	frame-layout-setter

	frame-menu-bar

	frame-menu-bar-setter

	frame-status-bar

	frame-status-bar-setter

	frame-status-message

	frame-status-message-setter

	frame-tool-bar

	frame-tool-bar-setter

	frame-top-level

	start-frame

	
<simple-undoable-command> Open Abstract Instantiable Class

	The class of simple commands that can contain an undo action.

	Superclasses:	<object> [http://opendylan.org/books/drm/Object_Classes#object]

	Init-Keywords:	
	undo-command – An instance of type <command>.

	Discussion:	The class of simple commands that can contain an undo action. A simple
undoable command is like a simple command, except that it points to a
command that can undo it, represented by the undo-command:
init-keyword.

	See also:	
	<simple-command>

	
start-dialog Generic function

	Displays a DUIM frame as a dialog box.

	Signature:	start-dialog dialog => #rest values

	Parameters:	
	dialog – An instance of type <dialog-frame>.

	Values:	
	#rest values – Instances of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Discussion:	Displays a DUIM frame as a dialog box.

The function start-dialog dynamically binds an <abort> [http://opendylan.org/books/drm/Condition_Classes#abort] restart
around the event loop for the dialog that is started. The restart allows
the event loop to be re-entered, and enables any callbacks run from the
dialog to signal an <abort> [http://opendylan.org/books/drm/Condition_Classes#abort] (via the abort [http://opendylan.org/books/drm/Operations_on_Conditions#abort] function, for instance),
in order to terminate execution of the current callback and return to
event processing. This facility is useful for implementing operations
that cancel gestures and for debugging DUIM applications from Dylan
debuggers.

	See also:	
	cancel-dialog

	<dialog-frame>

	exit-dialog

	start-frame

	
start-frame Generic function

	Starts the specified frame.

	Signature:	start-frame frame #key owner mode => status-code

	Parameters:	
	frame – An instance of type <frame>.

	owner – An instance of type false-or(<frame>). Default value: #f.

	mode – An instance of type one-of("modal", #"modeless", #"system-modal").
Default value: #f.

	Values:	
	status-code – An instance of type <integer> [http://opendylan.org/books/drm/Number_Classes#integer].

	Discussion:	Starts frame, optionally setting the owner of the frame and the
mode in which it will run.

The function start-frame dynamically binds an <abort> [http://opendylan.org/books/drm/Condition_Classes#abort] restart around
the event loop for the frame that is started. The restart allows the
event loop to be re-entered, and enables any callbacks run from the
frame to signal an <abort> [http://opendylan.org/books/drm/Condition_Classes#abort] (via the abort [http://opendylan.org/books/drm/Operations_on_Conditions#abort] function, for instance),
in order to terminate execution of the current callback and return to
event processing. This facility is useful for implementing operations
that cancel gestures and for debugging DUIM applications from Dylan
debuggers.

	Example:	The following example creates a simple frame, then displays it. You
should run this code in the interactor, pressing the RETURN key at the
points indicated.

define variable *frame* =
 make(<simple-frame>, title: "A frame",
 layout: make(<button>)); // RETURN

start-frame(*frame*); // RETURN

	See also:	
	exit-frame

	frame-mapped?-setter

	start-dialog

	
undo-command Generic function

	Calls the undo command for the specified command.

	Signature:	undo-command command frame => #rest values

	Parameters:	
	command – An instance of type <command>.

	frame – An instance of type <frame>.

	Values:	
	#rest values – Instances of type <object> [http://opendylan.org/books/drm/Object_Classes#object].

	Discussion:	Calls the undo command for command, undoing the effects of calling
command. Note that command must be undoable.

You can call this command directly in your own code, as well as
specialize it.

	See also:	
	command-undoable?

	
user-command-table Variable

	A user-defined command table that can be inherited by other command
tables.

	Type:	<command-table>

	Discussion:	This is a command table that can be used by the programmer for any
purpose. DUIM does not use it for anything, and its contents are
completely undefined.If desired, all new command tables can inherit the command table
specified by this variable.

	See also:	
	<command-table>

	global-command-table

	
<wizard-frame> Class

	

	Open:	

	Instantiable:	

The class of wizard frames.

	Superclasses:	<dialog-frame>

	Init-Keywords:	
	page – An instance of type <page>.

	pages – An instance of type false-or(limited(<sequence>, of:<page>).
Default value: #f.

	apply-callback – An instance of type false-or(<function>). Default value: #f.

	apply-button – An instance of type false-or(<button>). Default value: #f.

Note that the following two useful init-keywords are inherited from
<dialog-frame>:

	Init-Keywords:	
	pages – An instance of type false-or(<sequence>). Default value: #f.

	page-changed-callback – An instance of type false-or(<function>).
Default value: #f.

	Discussion:	The class of wizard frames. These are frames that are used to create
wizards (series of connected dialogs) that are used to guide the user
through a structured task, such as installing an application.

[image: _images/frames-7.png]
A wizard frame

A wizard frame is a multi-page dialog, in which the user specifies
requested information before proceeding to the next page in the
sequence. At the end of the sequence, the user exits the dialog to send
the relevant information back to the controlling application.

When a wizard frame is created, each page in the frame automatically has
a Next and Back button to let the user navigate forward and backward
through the sequence of pages.

In addition, if apply-button: is specified, an Apply button is
displayed in the frame. By default, clicking on this button lets the
user apply the changes made so far without dismissing the frame from the
screen. If specified, the apply-callback: function is invoked when the
Apply button is clicked.

The layout of a wizard frame is controlled using a <stack-layout>.

	Operations:	
	compute-next-page

	compute-previous-page

	dialog-back-button

	dialog-back-button-setter

	dialog-back-callback

	dialog-current-page

	dialog-current-page-setter

	dialog-next-button

	dialog-next-button-setter

	dialog-next-callback

	dialog-next-enabled?

	dialog-next-enabled?-setter

	dialog-next-page

	dialog-next-page-setter

	dialog-page-changed-callback

	dialog-page-changed-callback-setter

	dialog-page-complete?

	dialog-page-complete?-setter

	dialog-pages

	dialog-pages-setter

	dialog-previous-page

	dialog-previous-page-setter

	move-to-next-page

	move-to-previous-page

	Example:	define frame <my-wizard> (<wizard-frame>)
 pane name-pane (frame)
 make(<text-field>);
 pane organization-pane (frame)
 make(<text-field>);
 pane job-description-pane (frame)
 make(<text-field>);
 pane years-employed-pane (frame)
 make(<text-field>, value-type: <integer>);
 pane first-page-layout (frame)
 make(<table-layout>,
 columns: 2,
 x-alignment: #(#"right", #"left"),
 children: vector(make(<label>,
 label: "Name:"),
 frame.name-pane,
 make(<label>,
 label: "Organization:"),
 frame.organization-pane));
 pane second-page-layout (frame)
 make(<table-layout>,
 columns: 2,
 x-alignment: #(#"right", #"left"),
 children: vector
 (make(<label>,
 label: "Job Description:"),
 frame.job-description-pane,
 make(<label>,
 label: "Years Employed:"),
 frame.years-employed-pane));
 pane first-page (frame)
 make(<wizard-page>,
 child: frame.first-page-layout);
 pane second-page (frame)
 make(<wizard-page>,
 child: frame.second-page-layout);
 pages (frame)
 vector(frame.first-page, frame.second-page);
 keyword title: = "My Wizard";
end frame <my-wizard>;

	See also:	
	<dialog-frame>

	<property-frame>

	<wizard-page>

	
<wizard-page> Open Instantiable Class

	The class of wizard pages.

	Superclasses:	<page>

	Discussion:	The class of wizard pages. These are pages that can be displayed in an
instance of <wizard-frame>, and are used for a
single dialog in the structured task that the wizard guides the user
through.
[image: _images/frames-8.png]
A wizard page

	See also:	
	<page>

	<property-page>

	<tab-control-page>

	<wizard-frame>

 Copyright 2011, Dylan Hackers.
 Created using Sphinx 1.3.6.

 API Index

 Navigation

 	
 index

 	
 api |

 	DUIM Reference 1.0 documentation

 API Index

 = |
 A |
 B |
 C |
 D |
 E |
 F |
 G |
 H |
 I |
 K |
 L |
 M |
 N |
 O |
 P |
 Q |
 R |
 S |
 T |
 U |
 V |
 W |
 X |
 Y

 			

 		
 =	

 	[image: -]
 	
 =	

 	
 	
 duim-dcs:duim-dcs:= (generic function)	

 	
 	
 duim-geometry:duim-geometry:=(<region>) (method)	

 	
 	
 duim-geometry:duim-geometry:=(<transform>) (method)	

 	
 	
 duim-sheets:duim-sheets:= (generic function)	

 	
 	
 duim:duim-frames:=(<command>) (method)	

 			

 		
 A	

 	
 	
 $alt-key (constant)	

 	
 	
 <action-gadget> (class)	

 	
 	
 <application-exited-event> (class)	

 	
 	
 <area> (class)	

 	
 	
 abort-path (generic function)	

 	
 	
 activate-gadget (generic function)	

 	
 	
 add-child (generic function)	

 	
 	
 add-clipboard-data (generic function)	

 	
 	
 add-clipboard-data-as (generic function)	

 	
 	
 add-colors (generic function)	

 	
 	
 add-column (generic function)	

 	
 	
 add-command (generic function)	

 	
 	
 add-command-table-menu-item (generic function)	

 	
 	
 add-item (generic function)	

 	
 	
 add-node (generic function)	

 	
 	
 allocate-space (generic function)	

 	
 	
 apply-in-frame (generic function)	

 	
 	
 arc-to (generic function)	

 	
 	
 area? (generic function)	

 			

 		
 B	

 	
 	
 $background (constant)	

 	
 	
 $black (constant)	

 	
 	
 $blue (constant)	

 	
 	
 $boole-1 (constant)	

 	
 	
 $boole-2 (constant)	

 	
 	
 $boole-and (constant)	

 	
 	
 $boole-andc1 (constant)	

 	
 	
 $boole-andc2 (constant)	

 	
 	
 $boole-c1 (constant)	

 	
 	
 $boole-c2 (constant)	

 	
 	
 $boole-clr (constant)	

 	
 	
 $boole-eqv (constant)	

 	
 	
 $boole-ior (constant)	

 	
 	
 $boole-nand (constant)	

 	
 	
 $boole-nor (constant)	

 	
 	
 $boole-orc1 (constant)	

 	
 	
 $boole-orc2 (constant)	

 	
 	
 $boole-set (constant)	

 	
 	
 $boole-xor (constant)	

 	
 	
 $bricks-stipple (constant)	

 	
 	
 <basic-user-pane> (class)	

 	
 	
 <border> (class)	

 	
 	
 <bounding-box> (class)	

 	
 	
 <brush> (class)	

 	
 	
 <button-box> (class)	

 	
 	
 <button-press-event> (class)	

 	
 	
 <button-release-event> (class)	

 	
 	
 <button> (class)	

 	
 	
 beep (generic function)	

 	
 	
 boundary-event-kind (generic function)	

 	
 	
 bounding-box (generic function)	

 	
 	
 bounding-box? (generic function)	

 	
 	
 box-bottom (function)	

 	
 	
 box-edges (generic function)	

 	
 	
 box-height (function)	

 	
 	
 box-left (function)	

 	
 	
 box-position (generic function)	

 	
 	
 box-right (function)	

 	
 	
 box-size (generic function)	

 	
 	
 box-top (function)	

 	
 	
 box-width (function)	

 	
 	
 brush-background (generic function)	

 	
 	
 brush-fill-rule (generic function)	

 	
 	
 brush-fill-style (generic function)	

 	
 	
 brush-foreground (generic function)	

 	
 	
 brush-mode (generic function)	

 	
 	
 brush-stipple (generic function)	

 	
 	
 brush-stretch-mode (generic function)	

 	
 	
 brush-tile (generic function)	

 	
 	
 brush-ts-x (generic function)	

 	
 	
 brush-ts-y (generic function)	

 	
 	
 brush? (generic function)	

 	
 	
 button-index (function)	

 	
 	
 button-index-name (function)	

 			

 		
 C	

 	
 	
 $control-key (constant)	

 	
 	
 $cross-hatch (constant)	

 	
 	
 $cyan (constant)	

 	
 	
 <caret> (class)	

 	
 	
 <check-box> (class)	

 	
 	
 <check-button> (class)	

 	
 	
 <check-menu-box> (class)	

 	
 	
 <check-menu-button> (class)	

 	
 	
 <clipboard> (class)	

 	
 	
 <collection-gadget> (class)	

 	
 	
 <color-not-found> (class)	

 	
 	
 <color> (class)	

 	
 	
 <column-layout> (class)	

 	
 	
 <combo-box> (class)	

 	
 	
 <command-table-menu-item> (class)	

 	
 	
 <command-table> (class)	

 	
 	
 <command> (class)	

 	
 	
 <cursor> (class)	

 	
 	
 call-in-frame (generic function)	

 	
 	
 cancel-dialog (generic function)	

 	
 	
 caret-position (generic function)	

 	
 	
 caret-sheet (generic function)	

 	
 	
 caret-size (generic function)	

 	
 	
 caret-visible? (generic function)	

 	
 	
 caret-visible?-setter (generic function)	

 	
 	
 child-containing-position (generic function)	

 	
 	
 children-overlapping-region (generic function)	

 	
 	
 choose-color (generic function)	

 	
 	
 choose-directory (generic function)	

 	
 	
 choose-file (generic function)	

 	
 	
 choose-from-dialog (generic function)	

 	
 	
 choose-from-menu (generic function)	

 	
 	
 choose-text-style (generic function)	

 	
 	
 clear-box (generic function)	

 	
 	
 clear-clipboard (generic function)	

 	
 	
 clear-progress-note (generic function)	

 	
 	
 clipboard-data-available? (generic function)	

 	
 	
 clipboard-owner (generic function)	

 	
 	
 clipboard-sheet (generic function)	

 	
 	
 close-clipboard (function)	

 	
 	
 close-path (generic function)	

 	
 	
 color-ihs (generic function)	

 	
 	
 color-luminosity (generic function)	

 	
 	
 color-palette? (generic function)	

 	
 	
 color-rgb (generic function)	

 	
 	
 color? (generic function)	

 	
 	
 command-arguments (generic function)	

 	
 	
 command-enabled? (generic function)	

 	
 	
 command-enabled?-setter (generic function)	

 	
 	
 command-function (generic function)	

 	
 	
 command-table-accelerators (generic function)	

 	
 	
 command-table-commands (generic function)	

 	
 	
 command-table-menu (generic function)	

 	
 	
 command-table-name (generic function)	

 	
 	
 command-table? (generic function)	

 	
 	
 command-undoable? (generic function)	

 	
 	
 command? (generic function)	

 	
 	
 complete-from-generator (generic function)	

 	
 	
 complete-from-sequence (generic function)	

 	
 	
 compose-rotation-with-transform (generic function)	

 	
 	
 compose-scaling-with-transform (generic function)	

 	
 	
 compose-space (generic function)	

 	
 	
 compose-transform-with-rotation (generic function)	

 	
 	
 compose-transform-with-scaling (generic function)	

 	
 	
 compose-transform-with-translation (generic function)	

 	
 	
 compose-transforms (generic function)	

 	
 	
 compose-translation-with-transform (generic function)	

 	
 	
 compute-next-page (generic function)	

 	
 	
 compute-previous-page (generic function)	

 	
 	
 contain (generic function)	

 	
 	
 contract-node (generic function)	

 	
 	
 contrasting-colors-limit (generic function)	

 	
 	
 contrasting-dash-patterns-limit (generic function)	

 	
 	
 copy-area (generic function)	

 	
 	
 copy-from-pixmap (generic function)	

 	
 	
 copy-to-pixmap (generic function)	

 	
 	
 current-frame (function)	

 	
 	
 current-pane (generic function)	

 	
 	
 cursor? (generic function)	

 	
 	
 curve-to (generic function)	

 			

 		
 D	

 	
 	
 $dash-dot-dot-pen (constant)	

 	
 	
 $dash-dot-pen (constant)	

 	
 	
 $dashed-pen (constant)	

 	
 	
 $diagonal-hatch-down (constant)	

 	
 	
 $diagonal-hatch-up (constant)	

 	
 	
 $dotted-pen (constant)	

 	
 	
 <device-event> (class)	

 	
 	
 <device-font> (class)	

 	
 	
 <dialog-frame> (class)	

 	
 	
 <display> (class)	

 	
 	
 <double-click-event> (class)	

 	
 	
 <drawing-pane> (class)	

 	
 	
 default-background (generic function)	

 	
 	
 default-background-setter (generic function)	

 	
 	
 default-foreground (generic function)	

 	
 	
 default-foreground-setter (generic function)	

 	
 	
 default-port (function)	

 	
 	
 default-port-setter (function)	

 	
 	
 default-text-style (generic function)	

 	
 	
 default-text-style-setter (generic function)	

 	
 	
 define command-table (macro)	

 	
 	
 define frame (macro)	

 	
 	
 define pane (macro)	

 	
 	
 deiconify-frame (generic function)	

 	
 	
 destroy-frame (generic function)	

 	
 	
 destroy-pixmap (generic function)	

 	
 	
 destroy-port (generic function)	

 	
 	
 destroy-sheet (generic function)	

 	
 	
 dialog-apply-button (generic function)	

 	
 	
 dialog-apply-button-setter (generic function)	

 	
 	
 dialog-apply-callback (generic function)	

 	
 	
 dialog-back-button (generic function)	

 	
 	
 dialog-back-button-setter (generic function)	

 	
 	
 dialog-back-callback (generic function)	

 	
 	
 dialog-cancel-button (generic function)	

 	
 	
 dialog-cancel-button-setter (generic function)	

 	
 	
 dialog-cancel-callback (generic function)	

 	
 	
 dialog-cancel-callback-setter (generic function)	

 	
 	
 dialog-current-page (generic function)	

 	
 	
 dialog-current-page-setter (generic function)	

 	
 	
 dialog-exit-button (generic function)	

 	
 	
 dialog-exit-button-setter (generic function)	

 	
 	
 dialog-exit-callback (generic function)	

 	
 	
 dialog-exit-callback-setter (generic function)	

 	
 	
 dialog-exit-enabled? (generic function)	

 	
 	
 dialog-exit-enabled?-setter (generic function)	

 	
 	
 dialog-help-button (generic function)	

 	
 	
 dialog-help-button-setter (generic function)	

 	
 	
 dialog-help-callback (generic function)	

 	
 	
 dialog-next-button (generic function)	

 	
 	
 dialog-next-button-setter (generic function)	

 	
 	
 dialog-next-callback (generic function)	

 	
 	
 dialog-next-enabled? (generic function)	

 	
 	
 dialog-next-enabled?-setter (generic function)	

 	
 	
 dialog-next-page (generic function)	

 	
 	
 dialog-next-page-setter (generic function)	

 	
 	
 dialog-page-changed-callback (generic function)	

 	
 	
 dialog-page-changed-callback-setter (generic function)	

 	
 	
 dialog-page-complete? (generic function)	

 	
 	
 dialog-page-complete?-setter (generic function)	

 	
 	
 dialog-pages (generic function)	

 	
 	
 dialog-pages-setter (generic function)	

 	
 	
 dialog-previous-page (generic function)	

 	
 	
 dialog-previous-page-setter (generic function)	

 	
 	
 display (generic function)	

 	
 	
 display-depth (generic function)	

 	
 	
 display-height (generic function)	

 	
 	
 display-menu (generic function)	

 	
 	
 display-mm-height (generic function)	

 	
 	
 display-mm-width (generic function)	

 	
 	
 display-orientation (generic function)	

 	
 	
 display-pixel-height (generic function)	

 	
 	
 display-pixel-width (generic function)	

 	
 	
 display-pixels-per-point (generic function)	

 	
 	
 display-progress-note (generic function)	

 	
 	
 display-units (generic function)	

 	
 	
 display-width (generic function)	

 	
 	
 display? (generic function)	

 	
 	
 do-allocate-space (generic function)	

 	
 	
 do-children-containing-position (generic function)	

 	
 	
 do-children-overlapping-region (generic function)	

 	
 	
 do-compose-space (generic function)	

 	
 	
 do-coordinates (function)	

 	
 	
 do-displays (function)	

 	
 	
 do-endpoint-coordinates (function)	

 	
 	
 do-frames (generic function)	

 	
 	
 do-polygon-coordinates (generic function)	

 	
 	
 do-polygon-segments (generic function)	

 	
 	
 do-ports (function)	

 	
 	
 do-regions (generic function)	

 	
 	
 do-sheet-children (generic function)	

 	
 	
 do-sheet-tree (generic function)	

 	
 	
 do-with-drawing-options (generic function)	

 	
 	
 do-with-output-to-pixmap (generic function)	

 	
 	
 do-with-pointer-grabbed (generic function)	

 	
 	
 do-with-sheet-medium (generic function)	

 	
 	
 do-with-text-style (generic function)	

 	
 	
 do-with-transform (generic function)	

 	
 	
 draw-arrow (generic function)	

 	
 	
 draw-bezier-curve (generic function)	

 	
 	
 draw-circle (generic function)	

 	
 	
 draw-design (generic function)	

 	
 	
 draw-ellipse (generic function)	

 	
 	
 draw-image (generic function)	

 	
 	
 draw-line (generic function)	

 	
 	
 draw-lines (generic function)	

 	
 	
 draw-oval (generic function)	

 	
 	
 draw-pixmap (generic function)	

 	
 	
 draw-point (generic function)	

 	
 	
 draw-points (generic function)	

 	
 	
 draw-polygon (generic function)	

 	
 	
 draw-rectangle (generic function)	

 	
 	
 draw-rectangles (generic function)	

 	
 	
 draw-regular-polygon (generic function)	

 	
 	
 draw-text (generic function)	

 	
 	
 draw-triangle (generic function)	

 			

 		
 E	

 	
 	
 $everywhere (constant)	

 	
 	
 <ellipse> (class)	

 	
 	
 <elliptical-arc> (class)	

 	
 	
 <event> (class)	

 	
 	
 ellipse-center-point (generic function)	

 	
 	
 ellipse-center-position (generic function)	

 	
 	
 ellipse-end-angle (generic function)	

 	
 	
 ellipse-radii (generic function)	

 	
 	
 ellipse-start-angle (generic function)	

 	
 	
 ellipse? (generic function)	

 	
 	
 elliptical-arc? (generic function)	

 	
 	
 end-path (generic function)	

 	
 	
 even-scaling-transform? (generic function)	

 	
 	
 event-button (generic function)	

 	
 	
 event-character (generic function)	

 	
 	
 event-destroy-frame? (generic function)	

 	
 	
 event-key-name (generic function)	

 	
 	
 event-matches-gesture? (generic function)	

 	
 	
 event-modifier-state (generic function)	

 	
 	
 event-pointer (generic function)	

 	
 	
 event-region (generic function)	

 	
 	
 event-sheet (generic function)	

 	
 	
 event-status-code (generic function)	

 	
 	
 event-x (generic function)	

 	
 	
 event-y (generic function)	

 	
 	
 event? (generic function)	

 	
 	
 execute-command (generic function)	

 	
 	
 exit-dialog (generic function)	

 	
 	
 exit-frame (generic function)	

 	
 	
 expand-node (generic function)	

 			

 		
 F	

 	
 	
 $fill (constant)	

 	
 	
 $foreground (constant)	

 	
 	
 <fixed-layout> (class)	

 	
 	
 <frame-created-event> (class)	

 	
 	
 <frame-destroyed-event> (class)	

 	
 	
 <frame-event> (class)	

 	
 	
 <frame-exit-event> (class)	

 	
 	
 <frame-exited-event> (class)	

 	
 	
 <frame-focus-event> (class)	

 	
 	
 <frame-manager> (class)	

 	
 	
 <frame-mapped-event> (class)	

 	
 	
 <frame-unmapped-event> (class)	

 	
 	
 <frame> (class)	

 	
 	
 fill-path (generic function)	

 	
 	
 find-color (generic function)	

 	
 	
 find-display (function)	

 	
 	
 find-frame (function)	

 	
 	
 find-frame-manager (function)	

 	
 	
 find-item (generic function)	

 	
 	
 find-node (generic function)	

 	
 	
 find-port (function)	

 	
 	
 fix-coordinate (function)	

 	
 	
 fixed-width-font? (generic function)	

 	
 	
 font-ascent (generic function)	

 	
 	
 font-descent (generic function)	

 	
 	
 font-height (generic function)	

 	
 	
 font-metrics (generic function)	

 	
 	
 font-width (generic function)	

 	
 	
 force-display (generic function)	

 	
 	
 frame-accelerators (generic function)	

 	
 	
 frame-accelerators-setter (generic function)	

 	
 	
 frame-can-exit? (generic function)	

 	
 	
 frame-command-table (generic function)	

 	
 	
 frame-command-table-setter (generic function)	

 	
 	
 frame-default-button (generic function)	

 	
 	
 frame-default-button-setter (generic function)	

 	
 	
 frame-event-queue (generic function)	

 	
 	
 frame-fixed-height? (generic function)	

 	
 	
 frame-fixed-width? (generic function)	

 	
 	
 frame-icon (generic function)	

 	
 	
 frame-icon-setter (generic function)	

 	
 	
 frame-input-focus (generic function)	

 	
 	
 frame-input-focus-setter (generic function)	

 	
 	
 frame-layout (generic function)	

 	
 	
 frame-layout-setter (generic function)	

 	
 	
 frame-manager (generic function)	

 	
 	
 frame-manager-frames (generic function)	

 	
 	
 frame-manager-palette (generic function)	

 	
 	
 frame-manager-palette-setter (generic function)	

 	
 	
 frame-manager? (generic function)	

 	
 	
 frame-mapped? (generic function)	

 	
 	
 frame-mapped?-setter (generic function)	

 	
 	
 frame-menu-bar (generic function)	

 	
 	
 frame-menu-bar-setter (generic function)	

 	
 	
 frame-mode (generic function)	

 	
 	
 frame-owner (generic function)	

 	
 	
 frame-palette (generic function)	

 	
 	
 frame-palette-setter (generic function)	

 	
 	
 frame-position (generic function)	

 	
 	
 frame-resizable? (generic function)	

 	
 	
 frame-size (generic function)	

 	
 	
 frame-state (generic function)	

 	
 	
 frame-status-bar (generic function)	

 	
 	
 frame-status-bar-setter (generic function)	

 	
 	
 frame-status-message (generic function)	

 	
 	
 frame-status-message-setter (generic function)	

 	
 	
 frame-thread (generic function)	

 	
 	
 frame-title (generic function)	

 	
 	
 frame-title-setter (generic function)	

 	
 	
 frame-tool-bar (generic function)	

 	
 	
 frame-tool-bar-setter (generic function)	

 	
 	
 frame-top-level (generic function)	

 	
 	
 frame? (generic function)	

 	
 	
 fully-merged-text-style? (generic function)	

 			

 		
 G	

 	
 	
 $green (constant)	

 	
 	
 global-command-table (variable)	

 	
 	
 <gadget> (class)	

 	
 	
 <gesture> (class)	

 	
 	
 <grid-layout> (class)	

 	
 	
 <group-box> (class)	

 	
 	
 gadget-accelerator (generic function)	

 	
 	
 gadget-accelerator-setter (generic function)	

 	
 	
 gadget-activate-callback (generic function)	

 	
 	
 gadget-activate-callback-setter (generic function)	

 	
 	
 gadget-client (generic function)	

 	
 	
 gadget-client-setter (generic function)	

 	
 	
 gadget-command (generic function)	

 	
 	
 gadget-command-setter (generic function)	

 	
 	
 gadget-default? (generic function)	

 	
 	
 gadget-default?-setter (generic function)	

 	
 	
 gadget-documentation (generic function)	

 	
 	
 gadget-documentation-setter (generic function)	

 	
 	
 gadget-enabled? (generic function)	

 	
 	
 gadget-enabled?-setter (generic function)	

 	
 	
 gadget-id (generic function)	

 	
 	
 gadget-id-setter (generic function)	

 	
 	
 gadget-items (generic function)	

 	
 	
 gadget-items-setter (generic function)	

 	
 	
 gadget-key-press-callback (generic function)	

 	
 	
 gadget-key-press-callback-setter (generic function)	

 	
 	
 gadget-label (generic function)	

 	
 	
 gadget-label-key (generic function)	

 	
 	
 gadget-label-setter (generic function)	

 	
 	
 gadget-mnemonic (generic function)	

 	
 	
 gadget-mnemonic-setter (generic function)	

 	
 	
 gadget-orientation (generic function)	

 	
 	
 gadget-popup-menu-callback (generic function)	

 	
 	
 gadget-popup-menu-callback-setter (generic function)	

 	
 	
 gadget-ratios (generic function)	

 	
 	
 gadget-ratios-setter (generic function)	

 	
 	
 gadget-read-only? (generic function)	

 	
 	
 gadget-scrolling-horizontally? (generic function)	

 	
 	
 gadget-scrolling-vertically? (generic function)	

 	
 	
 gadget-selection (generic function)	

 	
 	
 gadget-selection-mode (generic function)	

 	
 	
 gadget-selection-setter (generic function)	

 	
 	
 gadget-slug-size (generic function)	

 	
 	
 gadget-slug-size-setter (generic function)	

 	
 	
 gadget-test (generic function)	

 	
 	
 gadget-text (generic function)	

 	
 	
 gadget-text-setter (generic function)	

 	
 	
 gadget-value (generic function)	

 	
 	
 gadget-value-changed-callback (generic function)	

 	
 	
 gadget-value-changed-callback-setter (generic function)	

 	
 	
 gadget-value-changing-callback (generic function)	

 	
 	
 gadget-value-changing-callback-setter (generic function)	

 	
 	
 gadget-value-key (generic function)	

 	
 	
 gadget-value-range (generic function)	

 	
 	
 gadget-value-range-setter (generic function)	

 	
 	
 gadget-value-setter (generic function)	

 	
 	
 gadget-value-type (generic function)	

 	
 	
 gadget-x-alignment (generic function)	

 	
 	
 gadget-y-alignment (generic function)	

 	
 	
 gadget? (generic function)	

 	
 	
 gesture-button (generic function)	

 	
 	
 gesture-keysym (generic function)	

 	
 	
 gesture-modifier-state (generic function)	

 	
 	
 gesture-spec-equal (function)	

 	
 	
 get-clipboard-data-as (generic function)	

 	
 	
 get-default-background (generic function)	

 	
 	
 get-default-foreground (generic function)	

 	
 	
 get-default-text-style (generic function)	

 			

 		
 H	

 	
 	
 $hearts-stipple (constant)	

 	
 	
 $horizontal-hatch (constant)	

 	
 	
 $hyper-key (constant)	

 	
 	
 handle-event (generic function)	

 	
 	
 handle-repaint (generic function)	

 	
 	
 horizontally (macro)	

 			

 		
 I	

 	
 	
 $identity-transform (constant)	

 	
 	
 <image> (class)	

 	
 	
 <ink> (class)	

 	
 	
 iconify-frame (generic function)	

 	
 	
 identity-transform? (generic function)	

 	
 	
 image-depth (generic function)	

 	
 	
 image-height (generic function)	

 	
 	
 image-width (generic function)	

 	
 	
 image? (generic function)	

 	
 	
 ink? (generic function)	

 	
 	
 invert-transform (generic function)	

 	
 	
 invertible-transform? (generic function)	

 	
 	
 item-object (generic function)	

 			

 		
 K	

 	
 	
 <key-press-event> (class)	

 	
 	
 <key-release-event> (class)	

 	
 	
 <keyboard-event> (class)	

 	
 	
 <keyboard-gesture> (class)	

 			

 		
 L	

 	
 	
 $largest-coordinate (constant)	

 	
 	
 $left-button (constant)	

 	
 	
 <label> (class)	

 	
 	
 <layout> (class)	

 	
 	
 <leaf-pane> (class)	

 	
 	
 <line> (class)	

 	
 	
 <list-box> (class)	

 	
 	
 <list-control-view> (type)	

 	
 	
 <list-control> (class)	

 	
 	
 <list-item> (class)	

 	
 	
 labelling (macro)	

 	
 	
 layout-border (generic function)	

 	
 	
 layout-border-setter (generic function)	

 	
 	
 layout-equalize-heights? (generic function)	

 	
 	
 layout-equalize-widths? (generic function)	

 	
 	
 layout-frame (generic function)	

 	
 	
 line-end-point (generic function)	

 	
 	
 line-end-position (generic function)	

 	
 	
 line-start-point (generic function)	

 	
 	
 line-start-position (generic function)	

 	
 	
 line-to (generic function)	

 	
 	
 line? (generic function)	

 	
 	
 list-control-icon-function (generic function)	

 	
 	
 list-control-icon-function-setter (generic function)	

 	
 	
 list-control-view (generic function)	

 	
 	
 list-control-view-setter (generic function)	

 	
 	
 lower-frame (generic function)	

 	
 	
 lower-sheet (generic function)	

 			

 		
 M	

 	
 	
 $magenta (constant)	

 	
 	
 $meta-key (constant)	

 	
 	
 $middle-button (constant)	

 	
 	
 $modifier-keys (constant)	

 	
 	
 <medium> (class)	

 	
 	
 <menu-bar> (class)	

 	
 	
 <menu-box> (class)	

 	
 	
 <menu-button> (class)	

 	
 	
 <menu> (class)	

 	
 	
 <multiple-child-composite-pane> (class)	

 	[image: -]
 	
 make	

 	
 	
 duim-dcs:duim-dcs:make (generic function)	

 	
 	
 duim-layouts:duim-layouts:make(<space-requirement>) (method)	

 	
 	
 duim:duim-frames:make(<frame>) (method)	

 	
 	
 make-3-point-transform (function)	

 	
 	
 make-bounding-box (function)	

 	
 	
 make-color-for-contrasting-color (generic function)	

 	
 	
 make-contrasting-colors (function)	

 	
 	
 make-contrasting-dash-patterns (function)	

 	
 	
 make-device-font (function)	

 	
 	
 make-ellipse (function)	

 	
 	
 make-elliptical-arc (function)	

 	
 	
 make-frame-manager (generic function)	

 	
 	
 make-gray-color (function)	

 	
 	
 make-ihs-color (function)	

 	
 	
 make-item (generic function)	

 	
 	
 make-line (function)	

 	
 	
 make-menu-from-command-table-menu (generic function)	

 	
 	
 make-menu-from-items (generic function)	

 	
 	
 make-menus-from-command-table (generic function)	

 	
 	
 make-modifier-state (function)	

 	
 	
 make-node (generic function)	

 	
 	
 make-palette (generic function)	

 	
 	
 make-pane (generic function)	

 	
 	
 make-pattern (function)	

 	
 	
 make-pixmap (generic function)	

 	
 	
 make-point (function)	

 	
 	
 make-polygon (function)	

 	
 	
 make-polyline (function)	

 	
 	
 make-rectangle (function)	

 	
 	
 make-reflection-transform (function)	

 	
 	
 make-rgb-color (function)	

 	
 	
 make-rotation-transform (function)	

 	
 	
 make-scaling-transform (function)	

 	
 	
 make-stencil (function)	

 	
 	
 make-text-style (function)	

 	
 	
 make-transform (function)	

 	
 	
 make-translation-transform (function)	

 	
 	
 medium-background (generic function)	

 	
 	
 medium-background-setter (generic function)	

 	
 	
 medium-brush (generic function)	

 	
 	
 medium-brush-setter (generic function)	

 	
 	
 medium-clipping-region (generic function)	

 	
 	
 medium-clipping-region-setter (generic function)	

 	
 	
 medium-default-text-style (generic function)	

 	
 	
 medium-default-text-style-setter (generic function)	

 	
 	
 medium-drawable (generic function)	

 	
 	
 medium-drawable-setter (generic function)	

 	
 	
 medium-foreground (generic function)	

 	
 	
 medium-foreground-setter (generic function)	

 	
 	
 medium-merged-text-style (generic function)	

 	
 	
 medium-pen (generic function)	

 	
 	
 medium-pen-setter (generic function)	

 	
 	
 medium-pixmap (generic function)	

 	
 	
 medium-pixmap-setter (generic function)	

 	
 	
 medium-sheet (generic function)	

 	
 	
 medium-text-style (generic function)	

 	
 	
 medium-text-style-setter (generic function)	

 	
 	
 medium-transform (generic function)	

 	
 	
 medium-transform-setter (generic function)	

 	
 	
 medium? (generic function)	

 	
 	
 menu-item-accelerator (generic function)	

 	
 	
 menu-item-mnemonic (generic function)	

 	
 	
 menu-item-name (generic function)	

 	
 	
 menu-item-options (generic function)	

 	
 	
 menu-item-type (generic function)	

 	
 	
 menu-item-value (generic function)	

 	
 	
 menu-owner (generic function)	

 	
 	
 merge-text-styles (generic function)	

 	
 	
 modifier-key-index (function)	

 	
 	
 modifier-key-index-name (function)	

 	
 	
 move-to (generic function)	

 	
 	
 move-to-next-page (generic function)	

 	
 	
 move-to-previous-page (generic function)	

 			

 		
 N	

 	
 	
 $nowhere (constant)	

 	
 	
 <null-pane> (class)	

 	
 	
 node-children (generic function)	

 	
 	
 node-children-setter (generic function)	

 	
 	
 node-expanded? (generic function)	

 	
 	
 node-object (generic function)	

 	
 	
 node-parents (generic function)	

 	
 	
 node-state (generic function)	

 	
 	
 note-progress (generic function)	

 	
 	
 notify-user (generic function)	

 	
 	
 noting-progress (macro)	

 			

 		
 O	

 	
 	
 $option-key (constant)	

 	
 	
 <option-box> (class)	

 	
 	
 open-clipboard (function)	

 			

 		
 P	

 	
 	
 $parquet-stipple (constant)	

 	
 	
 $pointer-buttons (constant)	

 	
 	
 progress-note (variable)	

 	
 	
 <page> (class)	

 	
 	
 <palette-full> (class)	

 	
 	
 <palette> (class)	

 	
 	
 <password-field> (class)	

 	
 	
 <path> (class)	

 	
 	
 <pattern> (class)	

 	
 	
 <pen> (class)	

 	
 	
 <pinboard-layout> (class)	

 	
 	
 <pixmap-medium> (class)	

 	
 	
 <pixmap> (class)	

 	
 	
 <point> (class)	

 	
 	
 <pointer-boundary-event> (class)	

 	
 	
 <pointer-button-event> (class)	

 	
 	
 <pointer-drag-event> (class)	

 	
 	
 <pointer-enter-event> (class)	

 	
 	
 <pointer-event> (class)	

 	
 	
 <pointer-exit-event> (class)	

 	
 	
 <pointer-gesture> (class)	

 	
 	
 <pointer-motion-event> (class)	

 	
 	
 <pointer> (class)	

 	
 	
 <polygon> (class)	

 	
 	
 <polyline> (class)	

 	
 	
 <port-terminated-event> (class)	

 	
 	
 <port> (class)	

 	
 	
 <progress-bar> (class)	

 	
 	
 <property-frame> (class)	

 	
 	
 <property-page> (class)	

 	
 	
 <push-box> (class)	

 	
 	
 <push-button> (class)	

 	
 	
 <push-menu-box> (class)	

 	
 	
 <push-menu-button> (class)	

 	
 	
 palette? (generic function)	

 	
 	
 pane-display-function (generic function)	

 	
 	
 pane-layout (generic function)	

 	
 	
 path? (generic function)	

 	
 	
 pattern? (generic function)	

 	
 	
 pen-cap-shape (generic function)	

 	
 	
 pen-dashes (generic function)	

 	
 	
 pen-joint-shape (generic function)	

 	
 	
 pen-units (generic function)	

 	
 	
 pen-width (generic function)	

 	
 	
 pen? (generic function)	

 	
 	
 pixmap? (generic function)	

 	
 	
 point-position (generic function)	

 	
 	
 point-x (generic function)	

 	
 	
 point-y (generic function)	

 	
 	
 point? (generic function)	

 	
 	
 pointer-button-state (generic function)	

 	
 	
 pointer-cursor (generic function)	

 	
 	
 pointer-cursor-setter (generic function)	

 	
 	
 pointer-position (generic function)	

 	
 	
 pointer-sheet (generic function)	

 	
 	
 pointer? (generic function)	

 	
 	
 polygon-coordinates (generic function)	

 	
 	
 polygon-points (generic function)	

 	
 	
 polygon? (generic function)	

 	
 	
 polyline-closed? (generic function)	

 	
 	
 polyline? (generic function)	

 	
 	
 port (generic function)	

 	
 	
 port-modifier-state (generic function)	

 	
 	
 port-name (generic function)	

 	
 	
 port-pointer (generic function)	

 	
 	
 port-server-path (generic function)	

 	
 	
 port-type (generic function)	

 	
 	
 port? (generic function)	

 			

 		
 Q	

 	
 	
 queue-event (generic function)	

 	
 	
 queue-repaint (generic function)	

 			

 		
 R	

 	
 	
 $red (constant)	

 	
 	
 $right-button (constant)	

 	
 	
 <radio-box> (class)	

 	
 	
 <radio-button> (class)	

 	
 	
 <radio-menu-box> (class)	

 	
 	
 <radio-menu-button> (class)	

 	
 	
 <rectangle> (class)	

 	
 	
 <reflection-underspecified> (class)	

 	
 	
 <region-set> (class)	

 	
 	
 <region> (class)	

 	
 	
 <row-layout> (class)	

 	
 	
 raise-frame (generic function)	

 	
 	
 raise-sheet (generic function)	

 	
 	
 read-image (generic function)	

 	
 	
 read-image-as (generic function)	

 	
 	
 rectangle-edges (generic function)	

 	
 	
 rectangle-height (generic function)	

 	
 	
 rectangle-max-point (generic function)	

 	
 	
 rectangle-max-position (generic function)	

 	
 	
 rectangle-min-point (generic function)	

 	
 	
 rectangle-min-position (generic function)	

 	
 	
 rectangle-size (generic function)	

 	
 	
 rectangle-width (generic function)	

 	
 	
 rectangle? (generic function)	

 	
 	
 rectilinear-transform? (generic function)	

 	
 	
 redo-command (generic function)	

 	
 	
 reflection-transform? (generic function)	

 	
 	
 region-contains-position? (generic function)	

 	
 	
 region-contains-region? (generic function)	

 	
 	
 region-difference (generic function)	

 	
 	
 region-empty? (generic function)	

 	
 	
 region-equal (generic function)	

 	
 	
 region-intersection (generic function)	

 	
 	
 region-intersects-region? (generic function)	

 	
 	
 region-set-function (generic function)	

 	
 	
 region-set-regions (generic function)	

 	
 	
 region-set? (generic function)	

 	
 	
 region-union (generic function)	

 	
 	
 region? (generic function)	

 	
 	
 relayout-children (generic function)	

 	
 	
 relayout-parent (generic function)	

 	
 	
 remove-child (generic function)	

 	
 	
 remove-colors (generic function)	

 	
 	
 remove-column (generic function)	

 	
 	
 remove-command (generic function)	

 	
 	
 remove-command-table (function)	

 	
 	
 remove-command-table-menu-item (generic function)	

 	
 	
 remove-item (generic function)	

 	
 	
 remove-node (generic function)	

 	
 	
 repaint-sheet (generic function)	

 	
 	
 replace-child (generic function)	

 	
 	
 restore-clipping-region (generic function)	

 	
 	
 rigid-transform? (generic function)	

 			

 		
 S	

 	
 	
 $shift-key (constant)	

 	
 	
 $smallest-coordinate (constant)	

 	
 	
 $solid-pen (constant)	

 	
 	
 $super-key (constant)	

 	
 	
 <scroll-bar> (class)	

 	
 	
 <separator> (class)	

 	
 	
 <sheet-event> (class)	

 	
 	
 <sheet> (class)	

 	
 	
 <simple-command> (class)	

 	
 	
 <simple-frame> (class)	

 	
 	
 <simple-pane> (class)	

 	
 	
 <simple-undoable-command> (class)	

 	
 	
 <single-child-composite-pane> (class)	

 	
 	
 <singular-transform> (class)	

 	
 	
 <slider> (class)	

 	
 	
 <space-requirement> (class)	

 	
 	
 <spacing> (class)	

 	
 	
 <spin-box> (class)	

 	
 	
 <splitter> (class)	

 	
 	
 <stack-layout> (class)	

 	
 	
 <status-bar> (class)	

 	
 	
 <stencil> (class)	

 	
 	
 scaling-transform? (generic function)	

 	
 	
 scroll-position (generic function)	

 	
 	
 scrolling (macro)	

 	
 	
 set-box-edges (generic function)	

 	
 	
 set-box-position (generic function)	

 	
 	
 set-box-size (generic function)	

 	
 	
 set-caret-position (generic function)	

 	
 	
 set-frame-position (generic function)	

 	
 	
 set-frame-size (generic function)	

 	
 	
 set-pointer-position (generic function)	

 	
 	
 set-scroll-position (generic function)	

 	
 	
 set-sheet-edges (generic function)	

 	
 	
 set-sheet-position (generic function)	

 	
 	
 set-sheet-size (generic function)	

 	
 	
 sheet-ancestor? (generic function)	

 	
 	
 sheet-child (generic function)	

 	
 	
 sheet-child-setter (generic function)	

 	
 	
 sheet-children (generic function)	

 	
 	
 sheet-children-setter (generic function)	

 	
 	
 sheet-edges (generic function)	

 	
 	
 sheet-event-mask (generic function)	

 	
 	
 sheet-event-mask-setter (generic function)	

 	
 	
 sheet-event-queue (generic function)	

 	
 	
 sheet-frame (generic function)	

 	
 	
 sheet-mapped? (generic function)	

 	
 	
 sheet-mapped?-setter (generic function)	

 	
 	
 sheet-medium (generic function)	

 	
 	
 sheet-parent (generic function)	

 	
 	
 sheet-parent-setter (generic function)	

 	
 	
 sheet-pointer-cursor (generic function)	

 	
 	
 sheet-pointer-cursor-setter (generic function)	

 	
 	
 sheet-position (generic function)	

 	
 	
 sheet-region (generic function)	

 	
 	
 sheet-region-setter (generic function)	

 	
 	
 sheet-size (generic function)	

 	
 	
 sheet-state (generic function)	

 	
 	
 sheet-text-cursor (generic function)	

 	
 	
 sheet-transform (generic function)	

 	
 	
 sheet-transform-setter (generic function)	

 	
 	
 sheet-viewport (generic function)	

 	
 	
 sheet-viewport-region (generic function)	

 	
 	
 sheet-withdrawn? (generic function)	

 	
 	
 sheet? (generic function)	

 	
 	
 space-requirement-height (generic function)	

 	
 	
 space-requirement-max-height (generic function)	

 	
 	
 space-requirement-max-width (generic function)	

 	
 	
 space-requirement-min-height (generic function)	

 	
 	
 space-requirement-min-width (generic function)	

 	
 	
 space-requirement-width (generic function)	

 	
 	
 space-requirement? (generic function)	

 	
 	
 splitter-split-bar-moved-callback (generic function)	

 	
 	
 splitter-split-bar-moved-callback-setter (generic function)	

 	
 	
 splitter-split-box-callback (generic function)	

 	
 	
 splitter-split-box-callback-setter (generic function)	

 	
 	
 stack-layout-mapped-page (generic function)	

 	
 	
 stack-layout-mapped-page-setter (generic function)	

 	
 	
 start-dialog (generic function)	

 	
 	
 start-frame (generic function)	

 	
 	
 start-path (generic function)	

 	
 	
 status-bar-label-pane (generic function)	

 	
 	
 status-bar-progress-bar (generic function)	

 	
 	
 stencil? (generic function)	

 	
 	
 stroke-path (generic function)	

 	
 	
 synchronize-display (generic function)	

 			

 		
 T	

 	
 	
 $tiles-stipple (constant)	

 	
 	
 <tab-control-page> (class)	

 	
 	
 <tab-control> (class)	

 	
 	
 <table-column> (class)	

 	
 	
 <table-control-view> (type)	

 	
 	
 <table-control> (class)	

 	
 	
 <table-item> (class)	

 	
 	
 <table-layout> (class)	

 	
 	
 <text-editor> (class)	

 	
 	
 <text-field> (class)	

 	
 	
 <text-gadget> (class)	

 	
 	
 <text-style> (class)	

 	
 	
 <timer-event> (class)	

 	
 	
 <tool-bar> (class)	

 	
 	
 <top-level-sheet> (class)	

 	
 	
 <transform-error> (class)	

 	
 	
 <transform-underspecified> (class)	

 	
 	
 <transform> (class)	

 	
 	
 <tree-control> (class)	

 	
 	
 <tree-node> (class)	

 	
 	
 tab-control-current-page (generic function)	

 	
 	
 tab-control-current-page-setter (generic function)	

 	
 	
 tab-control-labels (generic function)	

 	
 	
 tab-control-pages (generic function)	

 	
 	
 tab-control-pages-setter (generic function)	

 	
 	
 table-contents (generic function)	

 	
 	
 table-contents-setter (generic function)	

 	
 	
 table-control-view (generic function)	

 	
 	
 table-control-view-setter (generic function)	

 	
 	
 tabling (macro)	

 	
 	
 text-size (generic function)	

 	
 	
 text-style-components (generic function)	

 	
 	
 text-style-family (generic function)	

 	
 	
 text-style-mapping (generic function)	

 	
 	
 text-style-mapping-exists? (generic function)	

 	
 	
 text-style-mapping-setter (generic function)	

 	
 	
 text-style-size (generic function)	

 	
 	
 text-style-slant (generic function)	

 	
 	
 text-style-strikeout? (generic function)	

 	
 	
 text-style-underline? (generic function)	

 	
 	
 text-style-weight (generic function)	

 	
 	
 text-style? (generic function)	

 	
 	
 top-level-sheet (generic function)	

 	
 	
 transform-angles (generic function)	

 	
 	
 transform-box (generic function)	

 	
 	
 transform-distance (generic function)	

 	
 	
 transform-position (generic function)	

 	
 	
 transform-region (generic function)	

 	
 	
 transform? (generic function)	

 	
 	
 translation-transform? (generic function)	

 	
 	
 tree-control-children-generator (generic function)	

 	
 	
 tree-control-children-generator-setter (generic function)	

 	
 	
 tree-control-children-predicate (generic function)	

 	
 	
 tree-control-children-predicate-setter (generic function)	

 	
 	
 tree-control-icon-function (generic function)	

 	
 	
 tree-control-initial-depth (generic function)	

 	
 	
 tree-control-initial-depth-setter (generic function)	

 	
 	
 tree-control-roots (generic function)	

 	
 	
 tree-control-roots-setter (generic function)	

 			

 		
 U	

 	
 	
 user-command-table (variable)	

 	
 	
 <undefined-text-style-mapping> (class)	

 	
 	
 undo-command (generic function)	

 	
 	
 untransform-angles (generic function)	

 	
 	
 untransform-box (generic function)	

 	
 	
 untransform-distance (generic function)	

 	
 	
 untransform-position (generic function)	

 	
 	
 untransform-region (generic function)	

 	
 	
 update-gadget (generic function)	

 			

 		
 V	

 	
 	
 $vertical-hatch (constant)	

 	
 	
 <value-gadget> (class)	

 	
 	
 <value-range-gadget> (class)	

 	
 	
 <viewport> (class)	

 	
 	
 vertically (macro)	

 	
 	
 viewport-region (generic function)	

 	
 	
 viewport? (generic function)	

 			

 		
 W	

 	
 	
 $white (constant)	

 	
 	
 <window-configuration-event> (class)	

 	
 	
 <window-event> (class)	

 	
 	
 <window-repaint-event> (class)	

 	
 	
 <wizard-frame> (class)	

 	
 	
 <wizard-page> (class)	

 	
 	
 with-border (macro)	

 	
 	
 with-brush (macro)	

 	
 	
 with-clipboard (macro)	

 	
 	
 with-clipping-region (macro)	

 	
 	
 with-cursor-visible (macro)	

 	
 	
 with-drawing-options (macro)	

 	
 	
 with-frame-manager (macro)	

 	
 	
 with-identity-transform (macro)	

 	
 	
 with-output-to-pixmap (macro)	

 	
 	
 with-pen (macro)	

 	
 	
 with-pointer-grabbed (macro)	

 	
 	
 with-rotation (macro)	

 	
 	
 with-scaling (macro)	

 	
 	
 with-sheet-medium (macro)	

 	
 	
 with-spacing (macro)	

 	
 	
 with-text-style (macro)	

 	
 	
 with-transform (macro)	

 	
 	
 with-translation (macro)	

 	
 	
 withdraw-sheet (generic function)	

 	
 	
 write-image (generic function)	

 			

 		
 X	

 	
 	
 $xor-brush (constant)	

 			

 		
 Y	

 	
 	
 $yellow (constant)	

 Copyright 2011, Dylan Hackers.
 Created using Sphinx 1.3.6.

 Index

 Navigation

 	
 index

 	
 api |

 	DUIM Reference 1.0 documentation

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

Symbols

 	

 	$alt-key

 	$background

 	$black

 	$blue

 	$boole-1

 	$boole-2

 	$boole-and

 	$boole-andc1

 	$boole-andc2

 	$boole-c1

 	$boole-c2

 	$boole-clr

 	$boole-eqv

 	$boole-ior

 	$boole-nand

 	$boole-nor

 	$boole-orc1

 	$boole-orc2

 	$boole-set

 	$boole-xor

 	$bricks-stipple

 	$control-key

 	$cross-hatch

 	$cyan

 	$dash-dot-dot-pen

 	$dash-dot-pen

 	$dashed-pen

 	$diagonal-hatch-down

 	$diagonal-hatch-up

 	$dotted-pen

 	$everywhere

 	$fill

 	$foreground

 	$green

 	$hearts-stipple

 	$horizontal-hatch

 	$hyper-key

 	$identity-transform

 	$largest-coordinate

 	$left-button

 	$magenta

 	$meta-key

 	$middle-button

 	$modifier-keys

 	$nowhere

 	$option-key

 	$parquet-stipple

 	$pointer-buttons

 	$red

 	$right-button

 	$shift-key

 	$smallest-coordinate

 	$solid-pen

 	$super-key

 	$tiles-stipple

 	$vertical-hatch

 	$white

 	$xor-brush

 	$yellow

 	global-command-table

 	progress-note

 	user-command-table

 	<action-gadget>

 	<application-exited-event>

 	<area>

 	<basic-user-pane>

 	<border>

 	<bounding-box>

 	<brush>

 	<button-box>

 	<button-press-event>

 	<button-release-event>

 	<button>

 	<caret>

 	<check-box>

 	<check-button>

 	<check-menu-box>

 	<check-menu-button>

 	<clipboard>

 	<collection-gadget>

 	<color-not-found>

 	<color>

 	<column-layout>

 	<combo-box>

 	<command-table-menu-item>

 	<command-table>

 	<command>

 	<cursor>

 	<device-event>

 	<device-font>

 	<dialog-frame>

 	<display>

 	<double-click-event>

 	<drawing-pane>

 	<ellipse>

 	<elliptical-arc>

 	<event>

 	<fixed-layout>

 	<frame-created-event>

 	<frame-destroyed-event>

 	<frame-event>

 	<frame-exit-event>

 	<frame-exited-event>

 	<frame-focus-event>

 	<frame-manager>

 	<frame-mapped-event>

 	<frame-unmapped-event>

 	<frame>

 	<gadget>

 	<gesture>

 	<grid-layout>

 	

 	<group-box>

 	<image>

 	<ink>

 	<key-press-event>

 	<key-release-event>

 	<keyboard-event>

 	<keyboard-gesture>

 	<label>

 	<layout>

 	<leaf-pane>

 	<line>

 	<list-box>

 	<list-control-view>

 	<list-control>

 	<list-item>

 	<medium>

 	<menu-bar>

 	<menu-box>

 	<menu-button>

 	<menu>

 	<multiple-child-composite-pane>

 	<null-pane>

 	<option-box>

 	<page>

 	<palette-full>

 	<palette>

 	<password-field>

 	<path>

 	<pattern>

 	<pen>

 	<pinboard-layout>

 	<pixmap-medium>

 	<pixmap>

 	<point>

 	<pointer-boundary-event>

 	<pointer-button-event>

 	<pointer-drag-event>

 	<pointer-enter-event>

 	<pointer-event>

 	<pointer-exit-event>

 	<pointer-gesture>

 	<pointer-motion-event>

 	<pointer>

 	<polygon>

 	<polyline>

 	<port-terminated-event>

 	<port>

 	<progress-bar>

 	<property-frame>

 	<property-page>

 	<push-box>

 	<push-button>

 	<push-menu-box>

 	<push-menu-button>

 	<radio-box>

 	<radio-button>

 	<radio-menu-box>

 	<radio-menu-button>

 	<rectangle>

 	<reflection-underspecified>

 	<region-set>

 	<region>

 	<row-layout>

 	<scroll-bar>

 	<separator>

 	<sheet-event>

 	<sheet>

 	<simple-command>

 	<simple-frame>

 	<simple-pane>

 	<simple-undoable-command>

 	<single-child-composite-pane>

 	<singular-transform>

 	<slider>

 	<space-requirement>

 	<spacing>

 	<spin-box>

 	<splitter>

 	<stack-layout>

 	<status-bar>

 	<stencil>

 	<tab-control-page>

 	<tab-control>

 	<table-column>

 	<table-control-view>

 	<table-control>

 	<table-item>

 	<table-layout>

 	<text-editor>

 	<text-field>

 	<text-gadget>

 	<text-style>

 	<timer-event>

 	<tool-bar>

 	<top-level-sheet>

 	<transform-error>

 	<transform-underspecified>

 	<transform>

 	<tree-control>

 	<tree-node>

 	<undefined-text-style-mapping>

 	<value-gadget>

 	<value-range-gadget>

 	<viewport>

 	<window-configuration-event>

 	<window-event>

 	<window-repaint-event>

 	<wizard-frame>

 	<wizard-page>

 	=, [1]

 	

 	=(<command>)

 	=(<region>)

 	=(<transform>)

A

 	

 	abort-path, [1]

 	activate-gadget

 	add-child

 	add-clipboard-data

 	add-clipboard-data-as

 	add-colors

 	add-column

 	add-command

 	

 	add-command-table-menu-item

 	add-item

 	add-node

 	allocate-space

 	apply-in-frame

 	arc-to, [1]

 	area?

B

 	

 	beep

 	boundary-event-kind

 	bounding-box

 	bounding-box?

 	box-bottom

 	box-edges

 	box-height

 	box-left

 	box-position

 	box-right

 	box-size

 	box-top

 	box-width

 	

 	brush-background

 	brush-fill-rule

 	brush-fill-style

 	brush-foreground

 	brush-mode

 	brush-stipple

 	brush-stretch-mode

 	brush-tile

 	brush-ts-x

 	brush-ts-y

 	brush?

 	button-index

 	button-index-name

C

 	

 	call-in-frame

 	cancel-dialog

 	caret-position

 	caret-sheet

 	caret-size

 	caret-visible?

 	caret-visible?-setter

 	child-containing-position

 	children-overlapping-region

 	choose-color

 	choose-directory

 	choose-file

 	choose-from-dialog

 	choose-from-menu

 	choose-text-style

 	clear-box

 	clear-clipboard

 	clear-progress-note

 	clipboard-data-available?

 	clipboard-owner

 	clipboard-sheet

 	close-clipboard

 	close-path, [1]

 	color-ihs

 	color-luminosity

 	color-palette?

 	color-rgb

 	color?

 	command-arguments

 	command-enabled?

 	command-enabled?-setter

 	

 	command-function

 	command-table-accelerators

 	command-table-commands

 	command-table-menu

 	command-table-name

 	command-table?

 	command-undoable?

 	command?

 	complete-from-generator

 	complete-from-sequence

 	compose-rotation-with-transform

 	compose-scaling-with-transform

 	compose-space

 	compose-transform-with-rotation

 	compose-transform-with-scaling

 	compose-transform-with-translation

 	compose-transforms

 	compose-translation-with-transform

 	compute-next-page

 	compute-previous-page

 	contain

 	contract-node

 	contrasting-colors-limit

 	contrasting-dash-patterns-limit

 	copy-area

 	copy-from-pixmap

 	copy-to-pixmap

 	current-frame

 	current-pane

 	cursor?

 	curve-to, [1]

D

 	

 	default-background

 	default-background-setter

 	default-foreground

 	default-foreground-setter

 	default-port

 	default-port-setter

 	default-text-style

 	default-text-style-setter

 	define command-table

 	define frame

 	define pane

 	deiconify-frame

 	destroy-frame

 	destroy-pixmap

 	destroy-port

 	destroy-sheet

 	dialog-apply-button

 	dialog-apply-button-setter

 	dialog-apply-callback

 	dialog-back-button

 	dialog-back-button-setter

 	dialog-back-callback

 	dialog-cancel-button

 	dialog-cancel-button-setter

 	dialog-cancel-callback

 	dialog-cancel-callback-setter

 	dialog-current-page

 	dialog-current-page-setter

 	dialog-exit-button

 	dialog-exit-button-setter

 	dialog-exit-callback

 	dialog-exit-callback-setter

 	dialog-exit-enabled?

 	dialog-exit-enabled?-setter

 	dialog-help-button

 	dialog-help-button-setter

 	dialog-help-callback

 	dialog-next-button

 	dialog-next-button-setter

 	dialog-next-callback

 	dialog-next-enabled?

 	dialog-next-enabled?-setter

 	dialog-next-page

 	dialog-next-page-setter

 	dialog-page-changed-callback

 	dialog-page-changed-callback-setter

 	dialog-page-complete?

 	dialog-page-complete?-setter

 	dialog-pages

 	dialog-pages-setter

 	dialog-previous-page

 	dialog-previous-page-setter

 	

 	display

 	display-depth

 	display-height

 	display-menu

 	display-mm-height

 	display-mm-width

 	display-orientation

 	display-pixel-height

 	display-pixel-width

 	display-pixels-per-point

 	display-progress-note

 	display-units

 	display-width

 	display?

 	do-allocate-space

 	do-children-containing-position

 	do-children-overlapping-region

 	do-compose-space

 	do-coordinates

 	do-displays

 	do-endpoint-coordinates

 	do-frames

 	do-polygon-coordinates

 	do-polygon-segments

 	do-ports

 	do-regions

 	do-sheet-children

 	do-sheet-tree

 	do-with-drawing-options

 	do-with-output-to-pixmap

 	do-with-pointer-grabbed

 	do-with-sheet-medium

 	do-with-text-style

 	do-with-transform

 	draw-arrow

 	draw-bezier-curve

 	draw-circle

 	draw-design

 	draw-ellipse

 	draw-image

 	draw-line

 	draw-lines

 	draw-oval

 	draw-pixmap

 	draw-point

 	draw-points

 	draw-polygon

 	draw-rectangle

 	draw-rectangles

 	draw-regular-polygon

 	draw-text

 	draw-triangle

E

 	

 	ellipse-center-point

 	ellipse-center-position

 	ellipse-end-angle

 	ellipse-radii

 	ellipse-start-angle

 	ellipse?

 	elliptical-arc?

 	end-path, [1]

 	even-scaling-transform?

 	event-button

 	event-character

 	event-destroy-frame?

 	event-key-name

 	

 	event-matches-gesture?

 	event-modifier-state

 	event-pointer

 	event-region

 	event-sheet

 	event-status-code

 	event-x

 	event-y

 	event?

 	execute-command

 	exit-dialog

 	exit-frame

 	expand-node

F

 	

 	fill-path, [1]

 	find-color

 	find-display

 	find-frame

 	find-frame-manager

 	find-item

 	find-node

 	find-port

 	fix-coordinate

 	fixed-width-font?

 	font-ascent

 	font-descent

 	font-height

 	font-metrics

 	font-width

 	force-display

 	frame-accelerators

 	frame-accelerators-setter

 	frame-can-exit?

 	frame-command-table

 	frame-command-table-setter

 	frame-default-button

 	frame-default-button-setter

 	frame-event-queue

 	frame-fixed-height?

 	frame-fixed-width?

 	frame-icon

 	frame-icon-setter

 	frame-input-focus

 	frame-input-focus-setter

 	frame-layout

 	

 	frame-layout-setter

 	frame-manager

 	frame-manager-frames

 	frame-manager-palette

 	frame-manager-palette-setter

 	frame-manager?

 	frame-mapped?

 	frame-mapped?-setter

 	frame-menu-bar

 	frame-menu-bar-setter

 	frame-mode

 	frame-owner

 	frame-palette

 	frame-palette-setter

 	frame-position

 	frame-resizable?

 	frame-size

 	frame-state

 	frame-status-bar

 	frame-status-bar-setter

 	frame-status-message

 	frame-status-message-setter

 	frame-thread

 	frame-title

 	frame-title-setter

 	frame-tool-bar

 	frame-tool-bar-setter

 	frame-top-level

 	frame?

 	fully-merged-text-style?

G

 	

 	gadget-accelerator

 	gadget-accelerator-setter

 	gadget-activate-callback

 	gadget-activate-callback-setter

 	gadget-client

 	gadget-client-setter

 	gadget-command

 	gadget-command-setter

 	gadget-default?

 	gadget-default?-setter

 	gadget-documentation

 	gadget-documentation-setter

 	gadget-enabled?

 	gadget-enabled?-setter

 	gadget-id

 	gadget-id-setter

 	gadget-items

 	gadget-items-setter

 	gadget-key-press-callback

 	gadget-key-press-callback-setter

 	gadget-label

 	gadget-label-key

 	gadget-label-setter

 	gadget-mnemonic

 	gadget-mnemonic-setter

 	gadget-orientation

 	gadget-popup-menu-callback

 	gadget-popup-menu-callback-setter

 	gadget-ratios

 	gadget-ratios-setter

 	gadget-read-only?

 	

 	gadget-scrolling-horizontally?

 	gadget-scrolling-vertically?

 	gadget-selection

 	gadget-selection-mode

 	gadget-selection-setter

 	gadget-slug-size

 	gadget-slug-size-setter

 	gadget-test

 	gadget-text

 	gadget-text-setter

 	gadget-value

 	gadget-value-changed-callback

 	gadget-value-changed-callback-setter

 	gadget-value-changing-callback

 	gadget-value-changing-callback-setter

 	gadget-value-key

 	gadget-value-range

 	gadget-value-range-setter

 	gadget-value-setter

 	gadget-value-type

 	gadget-x-alignment

 	gadget-y-alignment

 	gadget?

 	gesture-button

 	gesture-keysym

 	gesture-modifier-state

 	gesture-spec-equal

 	get-clipboard-data-as

 	get-default-background

 	get-default-foreground

 	get-default-text-style

H

 	

 	handle-event

 	handle-repaint

 	

 	horizontally

I

 	

 	iconify-frame

 	identity-transform?

 	image-depth

 	image-height

 	image-width

 	

 	image?

 	ink?

 	invert-transform

 	invertible-transform?

 	item-object

L

 	

 	labelling

 	layout-border

 	layout-border-setter

 	layout-equalize-heights?

 	layout-equalize-widths?

 	layout-frame

 	line-end-point

 	line-end-position

 	line-start-point

 	

 	line-start-position

 	line-to, [1]

 	line?

 	list-control-icon-function

 	list-control-icon-function-setter

 	list-control-view

 	list-control-view-setter

 	lower-frame

 	lower-sheet

M

 	

 	make

 	

 	make(<frame>)

 	make(<space-requirement>)

 	make-3-point-transform

 	make-bounding-box

 	make-color-for-contrasting-color

 	make-contrasting-colors

 	make-contrasting-dash-patterns

 	make-device-font

 	make-ellipse

 	make-elliptical-arc

 	make-frame-manager

 	make-gray-color

 	make-ihs-color

 	make-item

 	make-line

 	make-menu-from-command-table-menu

 	make-menu-from-items

 	make-menus-from-command-table

 	make-modifier-state

 	make-node

 	make-palette

 	make-pane

 	make-pattern

 	make-pixmap

 	make-point

 	make-polygon

 	make-polyline

 	make-rectangle

 	make-reflection-transform, [1]

 	make-rgb-color

 	make-rotation-transform

 	make-scaling-transform

 	make-stencil

 	make-text-style

 	make-transform

 	make-translation-transform

 	medium-background

 	

 	medium-background-setter

 	medium-brush

 	medium-brush-setter

 	medium-clipping-region

 	medium-clipping-region-setter

 	medium-default-text-style

 	medium-default-text-style-setter

 	medium-drawable

 	medium-drawable-setter

 	medium-foreground

 	medium-foreground-setter

 	medium-merged-text-style

 	medium-pen

 	medium-pen-setter

 	medium-pixmap

 	medium-pixmap-setter

 	medium-sheet

 	medium-text-style

 	medium-text-style-setter

 	medium-transform

 	medium-transform-setter

 	medium?

 	menu-item-accelerator

 	menu-item-mnemonic

 	menu-item-name

 	menu-item-options

 	menu-item-type

 	menu-item-value

 	menu-owner

 	merge-text-styles

 	modifier-key-index

 	modifier-key-index-name

 	move-to, [1]

 	move-to-next-page

 	move-to-previous-page

N

 	

 	node-children

 	node-children-setter

 	node-expanded?

 	node-object

 	node-parents

 	

 	node-state

 	note-progress

 	notify-user

 	noting-progress

O

 	

 	open-clipboard

P

 	

 	palette?

 	pane-display-function

 	pane-layout

 	path?

 	pattern?

 	pen-cap-shape

 	pen-dashes

 	pen-joint-shape

 	pen-units

 	pen-width

 	pen?

 	pixmap?

 	point-position

 	point-x

 	point-y

 	point?

 	pointer-button-state

 	

 	pointer-cursor

 	pointer-cursor-setter

 	pointer-position

 	pointer-sheet

 	pointer?

 	polygon-coordinates

 	polygon-points

 	polygon?

 	polyline-closed?

 	polyline?

 	port

 	port-modifier-state

 	port-name

 	port-pointer

 	port-server-path

 	port-type

 	port?

Q

 	

 	queue-event

 	

 	queue-repaint

R

 	

 	raise-frame

 	raise-sheet

 	read-image

 	read-image-as

 	rectangle-edges

 	rectangle-height

 	rectangle-max-point

 	rectangle-max-position

 	rectangle-min-point

 	rectangle-min-position

 	rectangle-size

 	rectangle-width

 	rectangle?

 	rectilinear-transform?

 	redo-command

 	reflection-transform?

 	region-contains-position?

 	region-contains-region?

 	region-difference

 	region-empty?

 	region-equal

 	

 	region-intersection

 	region-intersects-region?

 	region-set-function

 	region-set-regions

 	region-set?

 	region-union

 	region?

 	relayout-children

 	relayout-parent

 	remove-child

 	remove-colors

 	remove-column

 	remove-command

 	remove-command-table

 	remove-command-table-menu-item

 	remove-item

 	remove-node

 	repaint-sheet

 	replace-child

 	restore-clipping-region

 	rigid-transform?

S

 	

 	scaling-transform?

 	scroll-position

 	scrolling

 	set-box-edges

 	set-box-position

 	set-box-size

 	set-caret-position

 	set-frame-position

 	set-frame-size

 	set-pointer-position

 	set-scroll-position

 	set-sheet-edges

 	set-sheet-position

 	set-sheet-size

 	sheet-ancestor?

 	sheet-child

 	sheet-child-setter

 	sheet-children

 	sheet-children-setter

 	sheet-edges

 	sheet-event-mask

 	sheet-event-mask-setter

 	sheet-event-queue

 	sheet-frame

 	sheet-mapped?

 	sheet-mapped?-setter

 	sheet-medium

 	sheet-parent

 	sheet-parent-setter

 	sheet-pointer-cursor

 	sheet-pointer-cursor-setter

 	sheet-position

 	

 	sheet-region

 	sheet-region-setter

 	sheet-size

 	sheet-state

 	sheet-text-cursor

 	sheet-transform

 	sheet-transform-setter

 	sheet-viewport

 	sheet-viewport-region

 	sheet-withdrawn?

 	sheet?

 	space-requirement-height

 	space-requirement-max-height

 	space-requirement-max-width

 	space-requirement-min-height

 	space-requirement-min-width

 	space-requirement-width

 	space-requirement?

 	splitter-split-bar-moved-callback

 	splitter-split-bar-moved-callback-setter

 	splitter-split-box-callback

 	splitter-split-box-callback-setter

 	stack-layout-mapped-page

 	stack-layout-mapped-page-setter

 	start-dialog

 	start-frame

 	start-path, [1]

 	status-bar-label-pane

 	status-bar-progress-bar

 	stencil?

 	stroke-path, [1]

 	synchronize-display

T

 	

 	tab-control-current-page

 	tab-control-current-page-setter

 	tab-control-labels

 	tab-control-pages

 	tab-control-pages-setter

 	table-contents

 	table-contents-setter

 	table-control-view

 	table-control-view-setter

 	tabling

 	text-size

 	text-style-components

 	text-style-family

 	text-style-mapping

 	text-style-mapping-exists?

 	text-style-mapping-setter

 	text-style-size

 	text-style-slant

 	text-style-strikeout?

 	text-style-underline?

 	

 	text-style-weight

 	text-style?

 	top-level-sheet

 	transform-angles

 	transform-box

 	transform-distance

 	transform-position

 	transform-region

 	transform?

 	translation-transform?

 	tree-control-children-generator

 	tree-control-children-generator-setter

 	tree-control-children-predicate

 	tree-control-children-predicate-setter

 	tree-control-icon-function

 	tree-control-initial-depth

 	tree-control-initial-depth-setter

 	tree-control-roots

 	tree-control-roots-setter

U

 	

 	undo-command

 	untransform-angles

 	untransform-box

 	untransform-distance

 	

 	untransform-position

 	untransform-region

 	update-gadget

V

 	

 	vertically

 	viewport-region

 	

 	viewport?

W

 	

 	with-border

 	with-brush

 	with-clipboard

 	with-clipping-region

 	with-cursor-visible

 	with-drawing-options

 	with-frame-manager

 	with-identity-transform

 	with-output-to-pixmap

 	with-pen

 	

 	with-pointer-grabbed

 	with-rotation

 	with-