

 Navigation

 	
 index

 	
 next |

 	Building Applications With DUIM

Building Applications With DUIM

Contents:

	Copyright

	Preface
	About this manual

	Running examples in this manual

	Further reading

	Introduction
	Overview of the DUIM libraries

	The DUIM programming model

	Designing A Simple DUIM Application
	Introduction

	Design of the application

	Creating the basic sheet hierarchy

	Improving The Design
	Defining a project

	Starting the application

	Adding a default callback

	Defining a new frame class

	Adding a tool bar

	Adding a status bar

	Gluing the new design together

	Creating a dialog for adding new items

	Adding Menus To The Application
	A description of the menu system

	Creating a menu hierarchy

	Gluing the final design together

	Adding Callbacks to the Application
	Defining the underlying data structures for tasks

	Specifying a callback in the definition of each gadget

	Defining the callbacks

	Enhancing the task list manager

	Using Command Tables
	Introduction

	Implementing a command table

	Re-implementing the menus of the task list manager

	Including command tables in frame definitions

	Changes required to run Task List 2

	A Tour of the DUIM Libraries
	Introduction

	A tour of gadgets

	A tour of layouts

	A tour of sheets

	A tour of frames

	Where to go from here

	Source Code For The Task List Manager
	A task list manager using menu gadgets

	A task list manager using command tables

Indices and tables

	Index

	Search Page

 Copyright 2011, Dylan Hackers.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Building Applications With DUIM

Copyright

Copyright © 1995-2000 Functional Objects, Inc.

Portions copyright © 2011 Dylan Hackers.

Companies, names and data used in examples herein are fictitious unless
otherwise noted.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
“Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Other brand or product names are the registered trademarks or trademarks
of their respective holders.

 Copyright 2011, Dylan Hackers.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Building Applications With DUIM

Preface

About this manual

This manual, Building Applications using DUIM, provides an
introduction to developing your own windowed applications using
Open Dylan and, in particular, the interface-building functionality
provided by the DUIM library suite. It is designed to complement
Getting Started with Open Dylan, which provides information on
using the Open Dylan development environment, and the DUIM
Reference Manual, which provides a complete reference to the DUIM
library suite. You are advised to look at Getting Started with
Open Dylan before reading this manual in any depth.

This manual is divided into several parts:

Introduction provides an introduction to the concepts
behind the DUIM libraries, and their intended use.

The chapters Designing A Simple DUIM Application through to Adding Callbacks to the Application
provide an extended example of how to use DUIM to design the user
interface to an application. A simple working application is developed
from first principles, and this is used as an illustration of some of
the most useful features provided by the DUIM libraries. Designing A Simple DUIM Application
provides an initial design for the application, Improving The Design improves
on this initial design. Adding Menus To The Application shows you how you can add a menu
system to an application and Adding Callbacks to the Application demonstrates how to
give the application some useful functionality. Using Command Tables
introduces the concept of command tables, by re-implementing some of
the functionality already described in Adding Menus To The Application. For reference, the
full source code of the application described in these chapters is provided
in Source Code For The Task List Manager.

A Tour of the DUIM Libraries provides an overall tour of what is available in the
suite of DUIM libraries. It provides much less detail than the
chapters covering application development, but covers a broader
spectrum of functionality. This chapter can be seen as a general
introduction to the material covered in the DUIM Reference Manual.

The material provided in A Tour of the DUIM Libraries is reasonably independent from
the material provided in Chapters Designing A Simple DUIM Application to Adding Callbacks to the Application,
and if you wish, you can read through the tour before looking at the example
application. Whichever order you approach them in, you should expect
some repetition of subject matter, however.

Running examples in this manual

Naturally, when developing your own DUIM applications, you create, edit,
and compile files of source code, and organize them as projects based on
Dylan libraries and modules, just as you would when developing Dylan
code that uses any other library. When developing your application, you
can also take advantage of the development environment to make this
process smoother, and to execute sections of code using the interactor.
Many of the examples in this manual can be run directly from the
interactor. Furthermore, this manual assumes that you are reasonably
familiar with the development environment provided by Open Dylan.
If you are not, please refer to the Getting Started with Open
Dylan manual.

When developing your own projects using the New Project wizard, new
modules that use the DUIM library, and any other relevant libraries are
created for you. You may also like to use the Dylan Playground to
experiment safely with your development code while keeping your
project-specific modules clean. You can open the Dylan Playground by
choosing Tools > Open Playground from the Dylan the main window.

The full source code for both versions of the application is provided as
part of the Open Dylan installation. To load them into the
environment, choose Tools > Open Example Project and look in the
Documentation category, at the examples labeled Task List.

Further reading

For more information about DUIM, you should refer to the DUIM Reference
Manual. This provides complete reference material on all the libraries
and modules provided by DUIM. A wide variety of examples are also
provided as part of the standard installation. These can be loaded into
the environment by choosing Tools > Open Example Project from the main
window.

 Copyright 2011, Dylan Hackers.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Building Applications With DUIM

Introduction

Overview of the DUIM libraries

The Dylan User Interface Manager (DUIM—pronounced “dwim”) is a
Dylan-based programming interface that provides a layered set of
portable facilities for constructing user interfaces.

While DUIM provides an API to user interface facilities for the Dylan
application programmer, it is not itself a window system toolkit. DUIM
uses the service of the underlying window system and UI toolkits as much
as possible. DUIM’s API is intended to insulate the programmer from most
of the complexities of portability, since the DUIM application need only
deal with DUIM objects and functions regardless of their operating
platform (that is, the combination of Dylan, the host computer, and the
host window environment).

DUIM is a high level library that allows you to concentrate on how the
interface looks and behaves rather than how to implement it on a
particular platform. It abstracts out many of the concepts common to all
window environments. The programmer is encouraged to think in terms of
these abstractions, rather than in the specific capabilities of a
particular host system. For example, using DUIM, you can specify the
appearance of output in high-level terms and those high-level
descriptions are turned into the appropriate appearance for the given
host. Thus, the application has the same fundamental interface across
multiple environments, although the details will differ from system to
system.

The DUIM programming model

The Dylan User Interface Manager (DUIM) provides a complete functional
interface so that you can use Open Dylan to develop and build
graphical user interfaces (GUIs) for your applications. It comprises a
suite of libraries, each of which provides a specific set of components
necessary for developing a GUI.

DUIM has a simple overall design, ensuring that developers who are
relatively new to Dylan can produce results quickly and effectively. At
the same time, the design is robust enough to allow more experienced
developers to extend and use DUIM in non-standard ways when required, in
order to produce specific behavior.

Because it is completely written in Dylan, DUIM is able to harness all
the power of the Dylan language. This means not only the clean
object-oriented design of Dylan, but also the power of functionality
such as macros and collections, together with the concise nature of the
language syntax. This makes it easy to implement quite complicated GUI
designs from the ground up, using small, clear pieces of code. This is
in contrast to other GUI design libraries that have to rely on a much
more verbose underlying language, such as C, which in turn leads to more
complex GUI code that is harder to improve upon and maintain.

In the functionality that it provides, DUIM has a number of goals:

It should be as easy to use as possible.

As well as providing the minimum feature set necessary to build a GUI,
DUIM provides functionality that lets you use common GUI features
easily.

It should be as compact as possible.

DUIM does not provide so much functionality that either you, or the
environment, is swamped in complexity.

It should be as portable as possible.

It should be relatively easy to compile code in, and for, as many
different hardware and software configurations as possible.

DUIM provides support for all the controls available in every modern GUI
environment, and also allows you to develop your own controls as
required. As far as possible, DUIM code is not specific to any
particular platform, and whenever possible, controls native to the
target environment are used in the resulting executable. This has two
important consequences for your code:

By using controls native to the target environment, it is easy to
develop an application that has the correct look and feel for your
platform.

It enables DUIM code to be compiled and run on any platform for which a
DUIM backend has been implemented.

A DUIM interface is built from frames ; each window in your
application is represented by a frame. Each frame contains a hierarchy
of sheets, in which each sheet represents a unique piece of your
window (the menu bar, buttons, and so on). DUIM also handles the event
loop for you, allowing you to write methods to handle just the events
you wish to treat specially.

The components of the sheet structure itself consist of three types of
DUIM object:

	Gadgets, which are discrete GUI controls such as buttons, panes, and
menus. These are the basic behavioral element of a GUI, and provide
methods to handle events such as mouse clicks.

	Layouts, which are controls that, rather than having a physical
appearance on screen, describe the arrangement of the sheets that are
their children.

	User-defined sheets, which are implemented by you rather than by DUIM
itself.

To implement a user-defined sheet, you create a new class and write
methods to handle the different events that it receives, such as
repainting itself, supporting mouse events, or handling the clipboard.

To develop an application using DUIM, you typically have to define a
number of classes of frame (one for every kind of window or dialog in
your application). The definition of each frame class contains a
description of the sheet hierarchy that describes the contents of the
frame, together with any slots and initial values that are required by
the frame class. Once the frame classes are defined, you need to define
callback functions that are invoked when certain events occur within the
scope of the sheet hierarchy, such as mouse button clicks or textual
input. These callback functions encapsulate the behavior of the
application.

The chapters Designing A Simple DUIM Application to Using Command Tables provide an extended
tutorial that illustrates the basic and most common principles
involved in building a GUI for a simple application.

As well as a rich set of GUI controls, DUIM provides support for the
following features that are required in GUI design:

	Dialogs You can build your own dialogs, wizards, and property
frames using pre-supplied DUIM classes. In addition, a number of
convenience functions are provided which let you add common dialogs
(such as file requesters) to your GUI without having to design the
dialog from scratch.

	Graphics DUIM provides portable models for colors, fonts, images,
and generic drawing operations.

	Events DUIM provides portable models for keyboard handling and
mouse handling, to simplify the process of writing your own event
handling routines.

	Layouts DUIM makes it easy to lay out groups of controls in a
variety of standard ways, letting you arrange controls in columns,
rows, or tables. DUIM takes care of any necessary calculations,
ensuring that the size of each control, and the spacing between
controls, is correct, without the need for any explicit layout
calculation on your part.

 Copyright 2011, Dylan Hackers.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Building Applications With DUIM

Designing A Simple DUIM Application

Introduction

The next few chapters of the manual introduce you to some of the most
important DUIM concepts, and show you how to go about designing and
implementing a simple DUIM application. On a first read through, you
should work through each chapter in turn, since each chapter relies
heavily on the information in the previous chapters.

Design of the application

For the purposes of this example, the application developed is a simple
task list manager. The design of the application attempts to achieve the
following goals:

	The design is simple enough that the principles of the programming
model should not be obscured by the code itself.

	The design attempts to use the most common elements of the various
DUIM libraries.

	The design is extensible, so that you can customize it to your own
needs.

A task list manager was chosen because it is representative of the sort
of GUI application that you will probably want to develop. Although the
overall design is quite simple, it demonstrates several commonly used
elements and techniques, and is easily extensible beyond the scope of
this manual, should you wish to experiment with the code. The concept of
a task list manager is familiar to the majority of readers, so you can
study the code and the programming model, without having to spend time
figuring out what the application itself is supposed to do.

The final task list manager is shown in Designing A Simple DUIM Application. To load the code
for the final design into the environment, choose Tools > Open Example
Project from any window in the environment, and load the Task List 1
project from the Documentation category of the Open Example Project dialog.

[image: _images/tasklist.png]
The Task List Manager Application

The task list manager is very simple to use. You create a list of things
that you need to do, assigning a priority to each task as you create it.
The application can display the tasks in your list sorted in a variety
of ways. You can save your task list to a file on disk, and open files
of the same type.

The task list manager demonstrates the use of menus and a variety of
button, list, and text controls.

Creating the basic sheet hierarchy

This section shows you how to create gadgets and sheets that make up the
overall visual design of the interface. It shows you how to improve upon
an initial design, but does not go into any details on the callbacks
necessary for the application; at the end of this section you have an
initial visual design.

Placing all the elements in a single layout

The main part of the task list manager is a list box that is used for
displaying the tasks that you add in the course of using the program.
For the initial design, there are buttons that let you add and remove
tasks from the list, and a text field into which you type the text for
new tasks.

To begin with, the following code creates all these elements, and places
them in a single window, one above the other.

make(<column-layout>,
 children: vector (make (<list-box>, items: #(), lines:15),
 make (<text-field>, label: "Task text:"),
 make (<push-button>, label: "Add task"),
 make (<push-button>,
 label: "Remove task")));

You might notice a number of problems with this initial design:

Firstly, the items have all been created correctly, but the resulting
window is not particularly attractive. In order to improve the
appearance, you need to rearrange the elements in the window by making
better use of the layout facilities provided by DUIM.

Secondly, the application does not yet look very much like a typical
Windows application. Rather than individual buttons, the application
should have a tool bar, and it is not common to have a text field in the
main window of an application. There is no menu bar. Currently, the
application has more of the feel of a dialog box, than a main
application window. These issues are addressed later on in the example.

Redesigning the layout

To address the issue of layout first, you should group the text field
and the Add task button in a row; since the two elements are
inherently connected (the task you add is the one whose text is
displayed in the text field), it makes sense to group them visually as
well.

The following code creates the necessary row layout:

horizontally ()
 make (<text-field>, label: "Task text:");
 make (<push-button>, label: "Add task");
end

Note that the macro horizontally has been used here. This macro takes
any expressions that are passed to it and creates a row layout from the
results of evaluating those expressions. The macro vertically works in
a similar way, creating a column layout from its arguments. Use
vertically to combine the row layout you just created with the Remove
task button that still needs to be incorporated:

vertically ()
 horizontally ()
 make (<text-field>, label: "Task text:");
 make (<push-button>, label: "Add task");
 end;
 make (<push-button>, label: "Remove task");
end

Finally, you need to add this sheet hierarchy to another row layout, so
that the main list box for the application is on the left, and the sheet
hierarchy containing the buttons and text field is on the right:

horizontally ()
 make (<list-box>, items: #(), lines: 15);
 vertically ()
 horizontally ()
 make (<text-field>, label: "Task text:");
 make (<push-button>, label: "Add task");
 end;
 make (<push-button>, label: "Remove task");
 end;
end

In the last few steps, you have exclusively used horizontally and
vertically. In fact, it does not matter if you use these macros, or
if you create instances of <row-layout> and <column-layout>
explicitly using make.

Note

You may have to resize the window to see everything.

Adding a radio box

There is one aspect of the initial design that you have not yet
incorporated into the structure: the radio box. This serves two purposes
in the application:

	It lets you choose the priority for a new task.

	It displays the priority of any task selected in the list.

The code to create the radio box is as follows:

make (<radio-box>, label: "Priority:",
 items: #("High", "Medium", "Low"),
 orientation: #"vertical");

Notice that the orientation: init-keyword can be used to ensure that
each item is displayed one above the other.

It is probably best to place the radio box immediately below the Remove
task button. To do this, you need to add the definition for the radio
box at the appropriate position in the call to vertically.

(horizontally ()
 make (<list-box>, items: #(), lines: 15);
 vertically ()
 horizontally ()
 make (<text-field>, label: "Task text:");
 make (<push-button>, label: "Add task");
 end;
 make (<push-button>, label: "Remove task");
 make (<radio-box>, label: "Priority:",
 items: #("High", "Medium", "Low"),
 orientation: #"vertical");
 end);

Using contain to run examples interactively

You can use the function contain to run any of the examples above
using the interactor available in the Dylan environment. This function
lets you see the results of your work immediately, without the need to
compile any source code or build a project, and is extremely useful for
experimenting interactively when you are developing your initial ideas
for a GUI design.

The contain function takes any expression that describes a hierarchy
of sheets as an argument. It creates a frame which contains this sheet
hierarchy, and displays the resulting frame on the screen.

Thus, to run any of the code segments shown in this chapter, simply pass
them to contain as an argument. Here are two examples, adapted from
earlier examples in this chapter, as illustrations of how to use
contain.

contain (horizontally ()
 make (<text-field>, label: "Task text:");
 make (<push-button>, label: "Add task");
 end);
contain (make (<text-field>, label: "Task text:"));

At this point, take a few minutes to go back over this chapter and
practice using contain to run the code fragments that have already
been discussed.

 Copyright 2011, Dylan Hackers.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Building Applications With DUIM

Improving The Design

The simple layout hierarchy described in Creating the basic sheet
hierarchy has a
number of problems associated with it, all of which revolve around the
fact that the task list manager does not yet look very much like a
standard Windows application. Although it is a simple design that does
not warrant a complicated user interface, the design you have already
seen looks more like a dialog box than an application window.

This section shows you how to improve on the basic design, adding a menu
bar and replacing the buttons with a proper tool bar. It also shows you
how to move the text field into a separate dialog that pops up when you
click the Add task button in the tool bar.

From this point on, the interface is defined more formally, using
frames. Up to now, the layout hierarchy has been presented informally,
and you have used contain to display the layout interactively. This is
fine for code that you want to evaluate once only, perhaps using the
interactor, but for permanent code, a more rigorous framework is
preferable.

Defining a project

From this point on, you should put the code for the task list manager
into a project, rather than evaluating pieces of code using the
interactor. Please refer to the Getting Started with Open Dylan
for complete details on how to manage projects using the environment;
this section provides brief details that tell you how to create a
project specifically for the task list manager application. Use the New
Project wizard to create a GUI application, and call the project
task-list when prompted. The New Project wizard offers the option of
generating template source code to help you get started. For
this example, you must ensure that this option is switched off (this
is the default setting).

Two versions of the task list manager are included with Open Dylan,
so that you can load the code straight into the environment if you wish.
These are available in the Open Example Project dialog, in the
Documentation category. You can display this dialog by choosing Tools >
Open Example Project from the environment. The two versions included
represent the state of the task list manager at the end of
Adding Callbacks to the Application, and at the end of Using Command Tables.

Note

Please note that both projects have the same name within the
source code— task-list —and you should not load them both into
the environment at the same time.

The number of source code files in a given project, and the names you
give them, is entirely up to you. For the purposes of this example, you
will use the files suggested by the New Project wizard. When you use the
New Project wizard, Open Dylan will create a number of files for a
project named task-list.

	module.dylan and library.dylan

	These files define the library and modules for the project. For the
purposes of this application, you can ignore these files.

	task-list.dylan

	Add non-GUI-specific code to this file.

Finally, you need to create the following new file using File > New,
and add it to the project using the Project > Insert File command.
Make sure that this file is the last one listed in the project window.

	frame.dylan

	Add the GUI-specific code to this file.

Starting the application

As you add source code to the files in your project, there will be times
when you want to build the project to test it. This section defines some
methods that let you run the application in a clean way. Add these
methods to frame.dylan.

The frame class that is used to implement the task list manager is
called <task-frame>. This class will be introduced in Defining a
new frame class. You can define a method to create an instance of
<task-frame> as follows:

define method start-task () => ()
 let frame = make(<task-frame>);
 start-frame(frame);
end method start-task;

This method is provided as a convenient way to create the frame and then
start its event loop. It returns when the event loop shuts down.

Note

Obviously, you should not call this method until you have
defined a frame class called <task-frame>.

Finally, you can start the application with the following method, and
its subsequent call:

define method main (arguments :: <sequence>) => ()
 // handle the arguments
 start-task();
end method main;

begin
 main(application-arguments()) // Start the application!
end;

Make sure that this is the very last definition in the file
frame.dylan, and remember that frame.dylan should itself be the
last file listed in the project window.

Once you have added these methods to your code, you can compile and link
the code, and run the application to test it, using the appropriate
commands in the Dylan environment.

Note that, unlike languages such as C, Dylan does not insist on a single
entrance point to an application such as the one given here. All the
same, it is still good practice to define one if you can. The main
difference between the use of the method main here, and the use of the
main function in C, is in the arguments that need to be passed. In C,
you need to pass two generic arguments: argc, which specifies the
number of arguments you are passing, and argv, an array of strings
that define the arguments themselves. In Dylan, however, you only need
to pass the second of these arguments; since any Dylan collection
already knows its own size, you do not need to pass the number of
arguments as an additional parameter.

Adding a default callback

Nothing is more frustrating than designing a user interface that does
not respond to user input. Although, in the early stages at least, the
user interface does nothing particularly useful, you can at least define
a “not yet implemented” message that can be used until you define real
behavior for the application.

The definition of the function that gives you this default behavior is
as follows:

define function not-yet-implemented (gadget :: <gadget>) => ()
 notify-user("Not yet implemented!", owner: sheet-frame(gadget))
end function not-yet-implemented;

Add this function to frame.dylan.

You can call this function from any gadget in the task list manager by
defining it as the activate callback for each gadget. There are several
types of callback, and this is the type that is used most in the task
list manager. You can define the activate callback for any gadget using
the activate-callback: init-keyword. More information about callbacks
is given in Adding Callbacks to the Application, in which some real callbacks are
defined, to make the task list manager do something more substantial.

Defining a new frame class

To begin with, define a frame class using the layout hierarchy you have
already created. Although it might seem redundant to implement an
inelegant layout again, it is easier to illustrate the basic techniques
using a design you are already familiar with. In addition, there are
several elements in the design that can be reused successfully.

Add the code described in this section to frame.dylan.

Defining a new class of frame is just like defining any Dylan class,
except that there are several extra options available beyond the slot
options normally available to define class. Each of these extra
options lets you describe a particular aspect of the user interface. To
define the new frame class, use the following structure:

define frame <task-frame> (<simple-frame>)
 // definitions of frame slots and options go here
end frame <task-frame>;

In this case, <task-frame> is the name of the new class of frame,
and``<simple-frame>`` is its superclass. Like ordinary Dylan classes,
frame classes can have any number of superclasses, with multiple
superclasses separated by commas. The superclass of any “standard” frame
is usually <simple-frame>. If you were designing a dialog box, its
superclass would be <dialog-frame>. If you were designing a wizard,
its superclass would be <wizard-frame>.

Adding slots to a frame class is exactly the same as adding slots to a
standard Dylan class. You can define slot names, init-keywords,
init-functions, default values, and so on. For this example, you are not
defining any slots.

Each user interface element in the new class of frame is specified as a
pane with a name and a definition. A pane is a sheet within a layout,
and you can think of panes as sheets that represent concrete classes in
an interface (as opposed to abstract classes). In effect, specifying a
pane allows you to group together existing gadgets into some meaningful
relationship that effectively creates a new gadget, without actually
defining a gadget class.

The name is used to refer to the pane, both from within the frame
definition itself, and from other code. The pane definition includes
code to create the interface element. A pane specification also includes
a place to declare a local variable that can be used within the pane’s
definition to refer to the surrounding frame.

The following code fragment defines the two buttons, the text field, the
radio box, and the list box from the initial design:

pane add-button (frame)
 make(<push-button>, label: "Add task",
 activate-callback: not-yet-implemented);
pane remove-button (frame)
 make(<push-button>, label: "Remove task",
 activate-callback: not-yet-implemented);
pane task-text (frame)
 make(<text-field>, label: "Task text:",
 activate-callback: not-yet-implemented);
pane priority-box (frame)
 make (<radio-box>, label: "Priority:",
 items: #("High", "Medium", "Low"),
 orientation: #"vertical",
 activate-callback: not-yet-implemented);
pane task-list (frame)
 make(<list-box>, items: #(), lines: 15,
 activate-callback: not-yet-implemented);

Note that the definition of each element is identical to the
definitions included in the original layout described in Creating the
basic sheet hierarchy (except that
activate callbacks have been added to the code). Adding (frame)
immediately after the name of each pane lets you refer to the frame
itself within the frame definition using a local variable. This means
that you can refer to any pane within the frame using normal slot
syntax; that is, a pane called my-pane can be referred to as
frame.my-pane throughout all of the definition of the frame
class. This ability is essential when you come to layout each pane in
the frame itself.

In addition, you need to define the layout in which to place these
panes. This is itself just another pane, and its definition is again
identical to the original layout described in Creating the basic
sheet hierarchy,
with one exception; rather than defining each element explicitly, you
just include a reference to the relevant pane that you have already
defined using normal slot syntax, thus:

pane task-layout (frame)
 horizontally ()
 frame.task-list;
 vertically ()
 horizontally ()
 frame.task-text;
 frame.add-button;
 end;
 frame.remove-button;
 frame.priority-box;
 end;
end;

To describe the top-level layout for the frame, you need to refer to
this pane using the layout option, as follows:

layout (frame) frame.task-layout;

You actually have a certain amount of freedom when choosing what to
define as a pane in the definition of a frame class. For example, the
layout in the task-layout pane actually contains a number of
sub-layouts. If you wanted, each one of these sub-layouts could be
defined as a separate pane within the frame definition. Note, however,
that you only have to “activate” the top-most layout; there should only
be one use of the layout option.

Similarly, you are free to use whatever programming constructs you like
when defining elements in your code. Just as in the earlier examples,
you could define the layouts with explicit calls to make, rather than
by using the horizontally and vertically macros. Thus, the following
definition of task-layout is just as valid as the one above:

pane task-layout (frame)
 make(<row-layout>,
 children: vector(frame.task-list,
 make(<column-layout>,
 children: vector(make(<row-layout>,
 children: vector(frame.task-text, frame.add-button))))));

Notice that this construct is rather more complicated than the one using
macros!

Throughout this section, you may have noticed that you can identify a
sequence of steps that need to occur inside the definition of a frame.
It is good practice to keep this sequence in mind when writing your own
frame-based code:

	Define the content panes

	Define the layout panes

	Use the layout option

If you glue all the code defined in this section together, you end up
with the following complete definition of a frame class.

define frame <task-frame> (<simple-frame>)
 pane add-button (frame)
 make(<push-button>, label: "Add task",
 activate-callback: not-yet-implemented);
 pane remove-button (frame)
 make(<push-button>, label: "Remove task",
 activate-callback: not-yet-implemented);
 pane task-text (frame)
 make(<text-field>, label: "Task text:",
 activate-callback: not-yet-implemented);
 pane priority-box (frame)
 make(<radio-box>, label: "Priority:",
 items: #("High", "Medium", "Low"),
 orientation: #"vertical",
 activate-callback: not-yet-implemented);
 pane task-list (frame)
 make (<list-box>, items: #(), lines: 15,
 activate-callback: not-yet-implemented);
 pane task-layout (frame)
 horizontally ()
 frame.task-list;
 vertically ()
 horizontally ()
 frame.task-text;
 frame.add-button;
 end;
 frame.remove-button;
 frame.priority-box;
 end;
 end;
 layout (frame) frame.task-layout;
 keyword title: = "Task List Manager";
end frame <task-frame>;

Note the addition of a title: keyword at the end of the definition.
This can be used to give any instance of the frame class a title that is
displayed in the title bar of the frame’s window when it is mapped to
the screen.

At this stage, the application still has no real functionality, and
there is no improvement in the interface compared to the initial design,
but by defining a frame class, the implementation is inherently more
robust, making it easier to modify and, eventually, maintain.

If you want to try running your code, remember that you need to define
some additional methods to create a frame instance and exit it cleanly.
Methods for doing this were provided in Starting the
application. If you define these methods now, you
can create running versions of each successive generation of the
application as it is developed.

Adding a tool bar

So far, you have seen how to experiment interactively to create an
initial interface design. You have also seen how you can take that
initial design and turn it into a more rigorous definition, for use
within project source code, using a frame class. However, the design of
the interface still leaves a lot to be desired, and the application
still does not do anything. In this section, you start to look at
improving the overall design of the interface.

To begin with, add a tool bar to the interface of the application. Most
modern applications have a tool bar that runs along the top edge of the
main application window, beneath the application menu bar. Tool bars
contain a number of buttons that give you quick access to some of the
most common commands in the application. Each button has a label that
designates its use, or, more often, a small icon. Although you have
already added buttons to the interface that perform important tasks,
they have the appearance of buttons in a dialog box, rather than buttons
in the main window of an application. The solution is to use a tool bar.

Adding a tool bar to the definition of a frame class is very similar to
defining the overall layout of the panes in a frame class. You need to
create the tool bar as a pane in the frame definition, and then
incorporate it using the tool-bar clause, as shown below:

pane task-tool-bar (frame)
 make(<tool-bar>, child: ...);
// ...more definitions here...
tool-bar (frame) frame.task-tool-bar;

A tool bar has a layout as its child, and each button in the tool bar is
defined as a child of that layout. You can either define each button
within the definition of the tool bar itself, or, more appropriately,
define each button as a pane in the frame, and then refer to the names
of these panes in the tool bar definition.

In fact, the buttons you defined in the earlier interface design can be
used just as easily in a tool bar as they can within the main layout of
the application itself. However, first you must remove the buttons from
the task-layout pane of the definition of <task-frame>. (If you fail
to do this, DUIM attempts to use the same buttons in two different parts
of the interface, with undefined results.) A complete definition of a
simple tool bar containing two buttons is as follows:

pane task-tool-bar (frame)
 make(<tool-bar>,
 child: horizontally ()
 frame.add-button;
 frame.remove-button
 end);
// ...more definitions here...
tool-bar (frame) frame.task-tool-bar;

A tool bar that only contains two buttons is on the lean side, however,
so let’s add two more buttons to open a file and save a file to disk.

pane open-button (frame)
 make(<push-button>,
 label: "Open file",
 activate-callback: not-yet-implemented);
pane save-button (frame)
 make(<push-button>,
 label: "Save file",
 activate-callback: not-yet-implemented);
// ...more definitions here...
pane task-tool-bar (frame)
 make(<tool-bar>,
 child: horizontally ()
 frame.open-button;
 frame.save-button;
 frame.add-button;
 frame.remove-button
 end);
// ...more definitions here...
tool-bar (frame) frame.task-tool-bar;

More commonly, an icon is used to label buttons in a tool bar, rather
than a text label. You can do this by supplying an instance of <image>
to the label: init-keyword when you define the button, rather than an
instance of <string> [http://opendylan.org/books/drm/Collection_Classes#string].

So now the application has a tool bar. Somewhat oddly, it does not yet
have a menu bar or a system of menus — most tool bars represent a subset
of the commands already available from the application’s menu system. A
menu system is added to the task list manager in Adding Menus To The Application.

Adding a status bar

As well as a tool bar, most applications have a status bar. This is a
bar that runs along the bottom edge of the main application window, and
displays information about the current status of the application. At its
most basic, a status bar provides a label that displays text of some
sort. In many applications, status bars contain a number of different
fields, providing a wide range of functionality. At their most complex,
a status bar may have several different labels that display information
about the current state of the application, and labels that display help
for the currently selected menu command.

It is worth adding a very simple status bar to the task list
application. This contains a label that could eventually be used to
display the name of the file currently loaded into the application.
Adding a status bar to the definition of a frame class is very similar
to adding a tool bar: you need to define a pane that describes the
status bar, and then you need to incorporate it using the status-bar
clause.

pane task-status-bar (frame)
 make(<status-bar>, label: "Task Manager");
// ...more definitions here...
status-bar (frame) frame.task-status-bar;

Now you have added a status bar to the application. The next step is to
glue all the pieces together once again to create your modified frame
design.

Gluing the new design together

In improving the initial design of the application, you have added a
tool bar and a status bar. Adding a tool bar, in particular, has
obviated the need for some of the elements that you added to the earlier
version of the frame design. In this section, you throw away those
elements that are no longer needed, and add in the new elements, to
create a new, improved design for the frame class.

One part of the initial design you have not yet improved on is the radio
box that shows the priority of any task in the list. Ideally, rather
than using a radio box, you would display the priority of each task
alongside the task itself, within the list box. For now, however, keep
the radio box.

pane priority-box (frame)
 make(<radio-box>,
 items: $priority-items,
 orientation: #"horizontal",
 label-key: first,
 value-key: second,
 value: #"medium",
 activate-callback: not-yet-implemented);

Notice that the orientation is no longer constrained to be vertical. In
the new design, a horizontal radio box looks better. By default, the
orientation of a radio box is horizontal, so you could just completely
remove the initialization of the orientation: init-keyword from the
definition of the pane. In general, though, if you care about the
orientation of a gadget, you should specify it explicitly, so leave the
init-keyword in the pane definition, and change its value, as shown
above.

Next, notice that the items are now specified using a named constant,
rather than by embedding literals in the pane definition. The definition
of this constant is as follows:

define constant $priority-items
 = #(#("Low", #"low"),
 #("Medium", #"medium"),
 #("High", #"high"));

Add the definition for this constant to frame.dylan.

Using lists of string and symbol values in this constant lets you assign
values to the individual components of the radio box elegantly, in
conjunction with the other improvements to the definition of
priority-box.

	The label key is a function which is passed an entry from the sequence
and returns a string to use as the label.

Assigning first to the label key of priority-box ensures that the
first element from each sub-list of $priority-items (the string) is
used as the label for the appropriate item. Thus, the first button in
priority box is labeled “Low”.

	The value key is a function which is passed an entry and returns the
logical value of the entry.

Assigning second to the value key of priority-box ensures that the
second element from each sub-list of $priority-items (the symbol) is
used as the value for the appropriate item. Thus, the first button in
priority box has the value #"low".

Lastly, priority-box is given a default value: #"medium". This
ensures that the button labeled “Medium” is selected by default whenever
priority-box is first created.

The definitions for add-button, remove-button, and task-list
remain unchanged from the initial design. In addition, you need to add
the definitions for open-button and save-button described in
Adding a tool bar.

You also need to add in the definitions for the tool bar and status bar
themselves, as described in Adding a tool bar
and Adding a status bar.

The definition for task-layout has become much simpler. Because you
have added buttons to the tool bar, the main layout for the application
has reduced to a single column layout whose children are task-list and
priority-box.

The definition for the new design of the frame class now looks as
follows (button definitions vary slightly for the Task List 2 project,
see A task list manager using command tables):

define frame <task-frame> (<simple-frame>)
 // definition of buttons
 pane add-button (frame)
 make(<push-button>, label: "Add task",
 activate-callback: not-yet-implemented);
 pane remove-button (frame)
 make(<push-button>, label: "Remove task",
 activate-callback: not-yet-implemented);
 pane open-button (frame)
 make(<push-button>, label: "Open file",
 activate-callback: not-yet-implemented);
 pane save-button (frame)
 make(<push-button>, label: "Save file",
 activate-callback: not-yet-implemented);
 // definition of radio box
 pane priority-box (frame)
 make (<radio-box>,
 items: $priority-items,
 orientation: #"horizontal",
 label-key: first,
 value-key: second,
 value: #"medium",
 activate-callback: not-yet-implemented);
 // definition of tool bar
 pane task-tool-bar (frame)
 make(<tool-bar>,
 child: horizontally ()
 frame.open-button;
 frame.save-button;
 frame.add-button;
 frame.remove-button
 end);
 // definition of status bar
 pane task-status-bar (frame)
 make(<status-bar>, label: "Task Manager");
 // definition of list
 pane task-list (frame)
 make (<list-box>, items: #(), lines: 15,
 activate-callback: not-yet-implemented);
 // main layout
 pane task-layout (frame)
 vertically ()
 frame.task-list;
 frame.priority-box;
 end;
 // activation of frame elements
 layout (frame) frame.task-layout;
 tool-bar (frame) frame.task-tool-bar;
 status-bar (frame) frame.task-status-bar;
 // frame title
 keyword title: = "Task List Manager";
end frame <task-frame>;

Note that this definition does not incorporate the original task-text
pane defined in Defining a new frame class. In fact, this part of the
original interface is handled differently in the final design, and is
re-implemented in Creating a dialog for adding new items.

Creating a dialog for adding new items

You may be wondering what has happened to task-text, the text field
in which you typed the text of each new task. In the new design, this is
moved to a new dialog box that is popped up whenever you choose a
command to add a new task to the list. This section shows you how to
define this dialog.

The method prompt-for-task below creates and displays a dialog that
asks the user to type the text for a new task. The definition of
task-text is very similar to the definition you provided in the
initial design, with the exception that the activate callback exits the
dialog, rather than calling the not-yet-implemented function.

[image: _images/new-task.png]
The dialog box created by the prompt-for-task method

The method takes two keyword arguments: a title, which is assigned a
value by default, and an owner, which is used as the owner for the
dialog that is displayed by prompt-for-task. Note that the title is
never explicitly set by any calls to prompt-for-task in the task list
manager; it is provided here as an illustration of how you can provide a
default value for a keyword argument, rather than requiring that it
either always be passed in the call to the method, or that it be
hard-wired into the code.

The method returns two values: the name of the new task, that is, the
text that the user types into the text field, and the priority of the
new task.

Add this method to frame.dylan.

Note

The definition of the prompt-for-task method uses the
<priority> type. Note that this type is defined in Defining
the underlying data structures for tasks. Until
the relevant code in Defining the underlying data structures for
tasks
is added to your project, any attempt to build it will generate a
serious warning.

define method prompt-for-task
 (#key title = "Type text of new task", owner)
 => (name :: false-or(<string>),
 priority :: false-or(<priority>))
 let task-text = make(<text-field>,
 label: "Task text:",
 activate-callback: exit-dialog);
 let priority-field = make(<radio-box>,
 items: $priority-items,
 label-key: first,
 value-key: second,
 value: #"medium");
 let frame-add-task-dialog = make(<dialog-frame>,
 title: title,
 owner: owner,
 layout: vertically ()
 task-text;
 priority-field
 end,
 input-focus: task-text);
 if (start-dialog(frame-add-task-dialog))
 values(gadget-value(task-text), gadget-value(priority-field))
 end
end method prompt-for-task;

Notice that the dialog used in the prompt-for-task method is created
inline within the method definition. In this particular case, the dialog
is only ever needed within the context of prompt-for-task and so it is
not necessary to use define frame to create a distinct class of frame
specifically for this dialog.

Note also that OK and Cancel buttons are generated automatically for
a dialog box; you do not need to define them explicitly.

Later on, the activate callback you define for the add-button pane
calls this method, then inserts the return value into the list
task-list.

 Copyright 2011, Dylan Hackers.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Building Applications With DUIM

Adding Menus To The Application

Now it is time to consider adding some menus to your application. There
are two basic ways that you can create a system of menus for your
application:

	Design a hierarchical series of panes using the <menu-bar>,
<menu>, and various menu buttons classes, and glue the elements of
this design together in the correct order.

	Use a command table.

In this chapter, the first of these methods is demonstrated. For
information about command tables, refer to Using Command Tables. Before
discussing the first method listed above, the overall design of the
menu system for the task list manager is discussed.

A description of the menu system

Before implementing the menus for the task list manager, it is worth
describing what you are going to implement. The menu system of the task
list manager comprises four menus: a File menu, Edit menu, Task
menu, and Help. Each of these menus contains a number of commands, as
follows:

	File menu
The File menu contains four commands that operate on
the files loaded into the task list manager. The Open command opens
a new file. The Save command saves the currently loaded file to
disk. The Save As command saves the currently loaded file to disk
under a new name. The Exit command quits the task application
completely.

	Edit menu
The Edit menu contains the standard clipboard commands:
Cut, Copy, and Paste.

	Task menu
The Task menu contains two commands that operate on
individual tasks. The Add command adds a new task to the list. The
Remove command removes the selected task from the list.

	Help menu
In a full-blown application, you would use commands in
the Help menu as one hook into your online help system (other hooks
being provided by buttons in dialog boxes and the F1 key). In this
application, the Help menu contains a single command that simply
displays a simple About dialog for the application.

Creating a menu hierarchy

As you might expect, creating a menu hierarchy in a frame definition is
a matter of defining a series of panes for the frame. At the top-most
level in the menu hierarchy is the menu bar itself. The menu bar
contains each menu defined for the application and each menu contains
the menu commands that themselves perform operations. Once the panes
have been defined, the menu bar needs to be included in the frame using
the menu-bar clause.

First of all, you can create a pane that defines the menu bar itself as
follows:

pane task-menu-bar (frame)
 make(<menu-bar>,
 children: vector(frame.file-menu,
 frame.edit-menu,
 frame.task-menu,
 frame.help-menu));

Next, define the File and Tasks menus themselves:

pane file-menu (frame)
 make(<menu>, label: "File",
 children: vector(frame.open-menu-button,
 frame.save-menu-button,
 frame.save-as-menu-button,
 frame.exit-menu-button));
pane edit-menu (frame)
 make(<menu>, label: "Edit",
 children: vector(frame.cut-menu-button,
 frame.copy-menu-button,
 frame.paste-menu-button));
pane task-menu (frame)
 make(<menu>, label: "Task",
 children: vector(frame.add-menu-button,
 frame.remove-menu-button));
pane help-menu (frame)
 make(<menu>, label: "Help",
 children: vector(frame.about-menu-button));

Finally, you need to define the menu commands themselves. A command that
appears on a menu is defined as an instance of <menu-button>, and so
there is a strong similarity between these buttons and some of the
buttons already defined. DUIM also generates mnemonics for each menu
item; thus, the items appear as File and Edit, and so forth. (Note
that the make-keyboard-gesture function that appears below is defined
in Keyboard accelerators.)

// Commands in the File menu
pane open-menu-button (frame)
 make(<menu-button>, label: "Open...",
 activate-callback: not-yet-implemented,
 accelerator: make-keyboard-gesture(#"o", #"control"),
 documentation: "Opens an existing file.");
pane save-menu-button (frame)
 make(<menu-button>, label: "Save",
 activate-callback: not-yet-implemented,
 accelerator: make-keyboard-gesture(#"s", #"control"),
 documentation: "Saves the current file to disk.");
pane save-as-menu-button (frame)
 make(<menu-button>, label: "Save As...",
 activate-callback: save-as-file,
 documentation: "Saves the current file with a new name.");
pane exit-menu-button (frame)
 make(<menu-button>, label: "Exit",
 activate-callback: not-yet-implemented,
 accelerator: make-keyboard-gesture(#"f4", #"alt"),
 documentation: "Exits the application.");

//Commands in the Edit menu
pane cut-menu-button (frame)
 make(<menu-button>, label: "Cut",
 activate-callback: not-yet-implemented,
 accelerator: make-keyboard-gesture(#"x", #"control"),
 documentation: "Cut the selection to the clipboard.");
pane copy-menu-button (frame)
 make(<menu-button>, label: "Copy",
 activate-callback: not-yet-implemented,
 accelerator: make-keyboard-gesture(#"c", #"control"),
 documentation: "Copy the selection to the clipboard.");
pane paste-menu-button (frame)
 make(<menu-button>, label: "Paste",
 activate-callback: not-yet-implemented,
 accelerator: make-keyboard-gesture(#"v", #"control"),
 documentation: "Paste the selection in the clipboard at the current position.");

//Commands in the Task menu
pane add-menu-button (frame)
 make(<menu-button>, label: "Add...",
 activate-callback: not-yet-implemented,
 accelerator: make-keyboard-gesture
 (#"a", #"control", #"shift"),
 documentation: "Add a new task.");
pane remove-menu-button (frame)
 make(<menu-button>, label: "Remove",
 activate-callback: not-yet-implemented,
 accelerator: make-keyboard-gesture
 (#"d", #"control", #"shift"),
 documentation: "Remove the selected task from the list.");

//Commands in the Help menu
pane about-menu-button (frame)
 make(<menu-button>, label: "About",
 activate-callback: not-yet-implemented,
 accelerator: make-keyboard-gesture(#"f1"),
 documentation:
 "Display information about the application.");

Once you have defined the menu bar and all the children that it is to
contain, you need to activate the menu bar in the frame by including the
following towards the end of the frame definition.

menu-bar (frame) frame.task-menu-bar;

The definitions of these menu buttons demonstrate two interesting new
features: the use of keyboard accelerators, and the use of documentation
strings.

Documentation strings

Documentation strings let you provide brief online help for gadgets such
as menu buttons. You can specify a documentation string for any gadget
using the documentation: init-keyword. Although you can make whatever
use you want of these strings, using the gadget-documentation and
gadget-documentation-setter methods, documentation strings for menu
buttons are used in status bars without any need for special action on
your part. If you display a menu and move the mouse pointer over the
items in the menu, then the documentation string defined for each item
is displayed in the status bar of the frame for as long as the mouse
pointer is over the menu item. It is generally good practice to supply
documentation strings for all the menu items in a frame. Documentation
strings for other gadgets become tooltips in Windows.

Keyboard accelerators

Keyboard accelerators let you define a combination of keys that can be
pressed in order to invoke the activate callback of a gadget. This means
that you can access the functionality of an application without having
to choose commands from menus using the mouse, and can make it much
quicker to use an application you are familiar with.

To specify a keyboard accelerator, you need to specify an alphanumeric
character, or a function key, together with any modifier keys (such as
the CONTROL or ALT keys) that should be held down while the alphanumeric
character is pressed. You actually create a keyboard accelerator by
calling the make method on <keyboard-gesture>, though to make it a
little easier, define the function below, which is used in the
definition of each menu button.

define function make-keyboard-gesture
 (keysym :: <symbol>, #rest modifiers)
=> (gesture :: <keyboard-gesture>)
 make(<keyboard-gesture>, keysym: keysym, modifiers: modifiers)
end function make-keyboard-gesture;

Add this definition to the file frame.dylan.

The keyboard accelerators defined demonstrate the several useful points
about keyboard accelerators:

	Whenever possible, use standard keyboard accelerators for standard
application commands on your platform. Here, you use CONTROL+O to
open a file, CONTROL+S to save a file, and CONTROL+X, CONTROL+C, and
CONTROL+V respectively for Cut, Copy, and Paste.

	As well as standard alphanumeric characters, you can use function
keys as keyboard accelerators.

	As well as the more common CONTROL key, you can use the ALT and SHIFT
keys as modifiers, though you should not use the SHIFT key as the
sole modifier.

	You can use more than one modifier key at once.

	If you wish, you need not use any modifier keys at all, as is the
case with the (slightly non-standard) keyboard accelerator for the
About command.

Gluing the final design together

You can now add the definitions of the menu bar, menus, and menu
buttons, to the definition of the <task-frame> class, to give the code
shown below. At this stage, the only thing missing from the final
application are real callback functions. Callbacks are dealt with in
Adding Callbacks to the Application.

Note that the final definition of <task-frame> includes the
definition of a slot: frame-task-list. This takes an instance of
the class <task-list> as a value, the default value being an empty
<task-list>. Although it has not been referred to so far, this
class will be used as the basic data structure in which task lists are
stored, and a more complete description of these data structures is
given in Defining the underlying data structures for tasks. It
transpires that defining the frame-task-list slot is essential for
some of the file handling routines that are described in Handling
files in the task list manager.

define frame <task-frame> (<simple-frame>)
 slot frame-task-list :: <task-list> = make(<task-list>);

 // definition of menu bar
 pane task-menu-bar (frame)
 make(<menu-bar>,
 children: vector(frame.file-menu,
 frame.edit-menu,
 frame.task-menu,
 frame.help-menu));

 // definition of menus
 pane file-menu (frame)
 make(<menu>, label: "File",
 children: vector(frame.open-menu-button,
 frame.save-menu-button,
 frame.save-as-menu-button,
 frame.exit-menu-button));
 pane edit-menu (frame)
 make(<menu>, label: "Edit",
 children: vector(frame.cut-menu-button,
 frame.copy-menu-button,
 frame.paste-menu-button));
 pane task-menu (frame)
 make(<menu>, label: "Task",
 children: vector(frame.add-menu-button,
 frame.remove-menu-button));

 pane help-menu (frame)
 make(<menu>, label: "Help",
 children: vector(frame.about-menu-button));

 // definition of menu buttons

 // Commands in the File menu
 pane open-menu-button (frame)
 make(<menu-button>, label: "Open...",
 activate-callback: not-yet-implemented,
 accelerator: make-keyboard-gesture(#"o", #"control"),
 documentation: "Opens an existing file.");
 pane save-menu-button (frame)
 make(<menu-button>, label: "Save",
 activate-callback: not-yet-implemented,
 accelerator: make-keyboard-gesture(#"s", #"control"),
 documentation: "Saves the current file to disk.");
 pane save-as-menu-button (frame)
 make(<menu-button>, label: "Save As...",
 activate-callback: save-as-file,
 documentation:
 "Saves the current file with a new name.");
 pane exit-menu-button (frame)
 make(<menu-button>, label: "Exit",
 activate-callback: not-yet-implemented,
 accelerator: make-keyboard-gesture(#"f4", #"alt"),
 documentation: "Exits the application.");

 //Commands in the Edit menu
 pane cut-menu-button (frame)
 make(<menu-button>, label: "Cut",
 activate-callback: not-yet-implemented,
 accelerator: make-keyboard-gesture(#"x", #"control"),
 documentation: "Cut the selection to the clipboard.");
 pane copy-menu-button (frame)
 make(<menu-button>, label: "Copy",
 activate-callback: not-yet-implemented,
 accelerator: make-keyboard-gesture(#"c", #"control"),
 documentation: "Copy the selection to the clipboard.");
 pane paste-menu-button (frame)
 make(<menu-button>, label: "Paste",
 activate-callback: not-yet-implemented,
 accelerator: make-keyboard-gesture(#"v", #"control"),
 documentation:
 "Paste the selection in the clipboard at the current position.");

 //Commands in the Task menu
 pane add-menu-button (frame)
 make(<menu-button>, label: "Add...",
 activate-callback: not-yet-implemented,
 accelerator: make-keyboard-gesture
 (#"a", #"control", #"shift"),
 documentation: "Add a new task.");
 pane remove-menu-button (frame)
 make(<menu-button>, label: "Remove",
 activate-callback: not-yet-implemented,
 accelerator: make-keyboard-gesture
 (#"d", #"control", #"shift"),
 documentation:
 "Remove the selected task from the list.");

 //Commands in the Help menu
 pane about-menu-button (frame)
 make(<menu-button>, label: "About",
 activate-callback: not-yet-implemented,
 accelerator: make-keyboard-gesture(#"f1"),
 documentation:
 "Display information about the application.");

 // definition of buttons
 pane add-button (frame)
 make(<push-button>, label: "Add task",
 activate-callback: not-yet-implemented);
 pane remove-button (frame)
 make(<push-button>, label: "Remove task",
 activate-callback: not-yet-implemented);
 pane open-button (frame)
 make(<push-button>, label: "Open file",
 activate-callback: not-yet-implemented);
 pane save-button (frame)
 make(<push-button>, label: "Save file",
 activate-callback: not-yet-implemented);

 // definition of radio box
 pane priority-box (frame)
 make (<radio-box>,
 items: $priority-items,
 orientation: #"horizontal",
 label-key: first,
 value-key: second,
 value: #"medium",
 activate-callback: not-yet-implemented);

 // definition of tool bar
 pane task-tool-bar (frame)
 make(<tool-bar>,
 child: horizontally ()
 frame.open-button;
 frame.save-button;
 frame.add-button;
 frame.remove-button
 end);

 // definition of status bar
 pane task-status-bar (frame)
 make(<status-bar>, label: "Task Manager");

 // definition of list
 pane task-list (frame)
 make (<list-box>, items: #(), lines: 15,
 activate-callback: not-yet-implemented);

 // main layout
 pane task-layout (frame)
 vertically ()
 frame.task-list;
 frame.priority-box;
 end;

 // activation of frame elements
 layout (frame) frame.task-layout;
 tool-bar (frame) frame.task-tool-bar;
 status-bar (frame) frame.task-status-bar;
 menu-bar (frame) frame.task-menu-bar;

 // frame title
 keyword title: = "Task List Manager";
end frame <task-frame>;

 Copyright 2011, Dylan Hackers.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Building Applications With DUIM

Adding Callbacks to the Application

At this point, the task list manager still does very little. If you try
running the code (as described in Starting the
application), and interacting with any of the
elements in the GUI (clicking on a button, choosing a menu command, and
so on), then only the “not yet implemented” message is displayed. This
section shows you how to remedy this situation, by adding callback
functions to the task list manager.

Getting the application to respond to mouse events such as clicking on a
button or choosing a menu command consists of two things:

For each gadget in the GUI, you need to specify which callbacks to use.
There are several different types of callback, depending on the type of
event for which you want to define behavior.

You need to define the callback functions themselves. These are the
functions that are invoked when a particular callback type is
detected, and are the functions you use to define the correct behavior
for your application.

In addition, you need to set up the basic data structures that allow you
to work with tasks in your application.

At this point, you may be wondering exactly what a callback is, and why
they are used to respond to application events, rather than event
handlers. If you have developed GUI applications using other development
environments, you may be more used to writing event handlers that work
for a whole class of objects, and discriminating on which instance of a
class to work on at any one time by means of case statements.

Writing event handlers in this way can be cumbersome. It turns out to be
much simpler to define a function that works only for a particular
instance of a class, and then refer to this function when defining the
class instance. This function is what is referred to as a callback. This
makes the source code for your application much clearer and easier to
write, and the only price you pay is that you have to specify a callback
for each gadget when you define the gadget itself.

In fact, DUIM provides a complete protocol for defining and handling
events of all descriptions. However, you only need to use this protocol
if you are creating new classes of gadgets, for which you need to define
the event behavior, or new classes of events (for example, support for
different input devices or notification of low resources). If you are
just using gadgets, then you only ever need to use callbacks.

Defining the underlying data structures for tasks

Before defining any real callbacks, it is time to consider how you can
represent task lists, and the information contained in them. This is
essential, not just for handling tasks within the application, but for
saving task lists to disk, and loading them back into the application.

Add the code described in this section to task-list.dylan.

There are two basic kinds of object that you need to model: task lists
and tasks. A task list is a collection of one or more tasks. The best
way to represent these is by defining a <task-list> class and a
<task> class.

The definition of <task-list>, below, contains three slots:

task-list-tasks

This slot specifies a sequence of tasks that are contained in the
task list. Each object in the sequence will be an instance of
<task>. The default for new task lists is an empty stretchy
vector. An init-keyword has been specified so that this slot can be
set when an instance of the class is initialized.

task-list-filename

This slot specifies the file on disk to which the task list has been
saved, if it has been saved at all. The default for new task lists is
#f, since the task list has not yet been saved to disk. An
init-keyword has been specified so that this slot can be set when an
instance of the class is initialized.

task-list-modified?

The purpose for this slot is less obvious. It is useful to flag
whether or not a task list has been modified so that, for instance,
the Save command in the application can be disabled if the task
list is unmodified. There is no init-keyword defined for this class,
because you only ever want to use the supplied default value for new
instances of <task-list>.

define class <task-list> (<object>)
 constant slot task-list-tasks = make(<stretchy-vector>),
 init-keyword: tasks:;
 slot task-list-filename :: false-or(<string>) = #f,
 init-keyword: filename:;
 slot task-list-modified? :: <boolean> = #f;
end class <task-list>;

Next, consider the information that needs to be encoded in each
individual task. There are two pieces of information that need to be
recorded:

	The text of the task, which should be a string.

	The priority, which should be one of high, medium, or low.

Priorities can be recorded using a constant, as shown below:

define constant <priority> = one-of(#"low", #"medium", #"high");

Notice that it is most straightforward to encode each priority as a
symbol. Later on, you will see how you can use as to convert each
symbol to a format that can be saved to disk and read back into the
application as a symbol.

The <task> class can then be defined as having two slots: one for the
task text itself, and another for the priority. Both have init-keywords
so that they can be specified when a new instance is created, and both
init-keywords are required; they must be specified whenever a task is
created.

define class <task> (<object>)
 slot task-name :: <string>,
 required-init-keyword: name:;
 slot task-priority :: <priority>,
 required-init-keyword: priority:;
end class <task>;

These three definitions are all that is needed to be able to represent
tasks and task lists within the task list application.

In order to handle tasks effectively in the GUI of the task list
manager, some changes are necessary to the definition of the task-list
pane in the definition of <task-frame>. These changes are needed to
ensure that information about tasks is passed to the task-list pane
correctly. Make these changes to the existing definition in the file
frame.dylan.

In Gluing the final design together, the
definition of task-list was given as:

// definition of list
pane task-list (frame)
 make (<list-box>, items: #(), lines: 15,
 activate-callback: not-yet-implemented);

First, you need to ensure that the items passed to task-list are the
tasks in the <task-list> associated with the frame. Recall that a
frame-task-list slot was specified in the definition of <task-frame>
; this slot is used to hold the instance of <task-list> that is
associated with the <task-frame>. The sequence of tasks contained in
the associated frame-task-list can then be found using the
frame-task-list.task-list-tasks accessor. To display these tasks in
the task-list pane, the items: init-keyword needs to be set to the
value of this accessor:

items: frame.frame-task-list.task-list-tasks,

Next, you need to ensure that the label for each task in the task-list
pane is the text of the task itself. As described above, the text of any
task is stored in its task-name slot. In order to display this text as
the label for every item in the list box, you need to specify the
task-name slot as the gadget-label-key of the list box. A label key
is a function that is used to calculate the label of each item in a
gadget, and it can be specified using the label-key: init-keyword:

label-key: task-name,

This gives the following new definition for the task-list pane:

// definition of list
pane task-list (frame)
 make (<list-box>,
 items: frame.frame-task-list.task-list-tasks,
 label-key: task-name,
 lines: 15,
 activate-callback: not-yet-implemented);

There is one final change that still needs to be made to this pane
definition. This is described in Updating the user interface.

Specifying a callback in the definition of each gadget

As you have already seen when using the not-yet-implemented callback,
providing a callback for a gadget is just a matter of specifying another
keyword-value pair in the definition of the gadget. There are two ways
that you can specify the callback function to use.

If you wish, you can define the callback function inline, making the
definition itself the value part of the keyword-value pair.

This can be useful for a simple callback function that you only need to
invoke from a single callback type in a single pane. However, if several
panes, or several types of callback, need to invoke the same callback
function, you need to define the function explicitly in each gadget that
uses it.

Alternatively, you can define a callback function explicitly in your
application code, and then refer to it by name in the keyword-value
pair.

This method is best for portability and reusability of your code, since
the same callback function can be referred to by name in as many gadgets
as you need to use it in, without having to redefine the callback
function in each gadget. It can also lead to more readable source code.
This technique is the one used throughout this example application.

As already mentioned, there are a number of different kinds of callback
available, depending on the behavior that you want to specify, and the
gadget for which you are defining a callback. When defining different
callbacks for a gadget, you need to use a different init-keyword for
each callback.

As you have already seen, by far the most common callback is the
activate callback. This type of callback is invoked when you activate
any instance of <action-gadget>. For buttons, the activate callback
is invoked when you click on the button. For menu commands, the activate
callback is invoked when you choose the command from the menu. The
activate callback is the callback that is used most in the task list
manager. You can specify an activate callback for any gadget using the
activate-callback: init-keyword. In addition, you have seen the
value-changed callback, which is invoked when the gadget-value has been
changed. You can specify this callback using the
value-changed-callback: init-keyword.

You have already defined a callback for all the gadgets in the GUI. All
you need to do now is replace the reference to not-yet-implemented
with the real function name that should get called when each gadget is
activated. Thus, to specify an activate callback for the Add task
button in the tool bar, redefine the button as follows in the definition
of the <task-frame> class:

pane add-button (frame)
 make(<push-button>, label: "Add task",
 activate-callback: frame-add-task);

You can use exactly the same callback in the new definition of
add-menu-button :

pane add-menu-button (frame)
 make(<menu-button>, label: "Add...",
 activate-callback: frame-add-task,
 accelerator: make-keyboard-gesture
 (#"a", #"control", #"shift"),
 documentation: "Add a new task.");

Notice how both of these gadgets specify the same activate callback.
This is because the Add command in the menu should perform exactly the
same action as the Add task button in the tool bar.

At this point, redefine the callback for each gadget listed in the table
below, making sure that you supply the same callback to those gadgets
that perform the same functions.

The callback functions used in the Task List Manager

Gadget

Callback

open-menu-button

open-file

save-menu-button

save-file

save-as-menu-button

save-as-file

exit-menu-button

exit-task

add-menu-button

frame-add-task

remove-menu-button

frame-remove-task

about-menu-button

about-task

add-button

frame-add-task

remove-button

frame-remove-task

open-button

open-file

save-button

save-file

The following sections show you how to define the callbacks themselves.
You will need to define other functions and methods, as well as the
callback functions listed above. These other functions and methods are
called by some of the callbacks themselves.

Defining the callbacks

This section shows you how to define the callbacks that are necessary in
the task list manager, as well as any other associated functions and
methods.

	First, you will look at methods and functions that enable file
handling in the task list manager; that is, functions and methods
that let you save and load files into the application.

	Next, you will look at methods and functions for adding and removing
tasks from the task list.

	Last, you will define a few additional methods that are necessary to
update the GUI elegantly, when other operations are performed.

All the code discussed in this chapter is structured so that callbacks
which affect the GUI do not also perform other tasks that are not
related to the GUI. This helps to keep the design of the application
clean, so that you can follow the code more easily, and is recommended
for all GUI design. Separating GUI code and non-GUI code also lets you
produce code that is more easily reusable, either in other parts of a
developing application, or in completely different applications.

Handling files in the task list manager

To begin with, you will define the functions and methods that let you
save files to disk and load them back into the task list manager. Once
you have added these to your code, you will be able to save and reload
your task lists into the application; this type of functionality is
essential in even the most trivial application.

There are three methods and two functions necessary for handling files.
The methods handle GUI-specific operations involved in loading and
saving files. The functions deal with the basic task of saving data
structures to disk, and loading them from disk. Add the definitions of
the methods to frame.dylan, and the definitions of the functions to
task-list.dylan.

Each method is invoked as a callback in the definition of the
<task-frame> class:

	open-file This method prompts the user to choose a filename, and
then loads that file into the task list manager by calling the
function load-task-list. It is used as the activate callback for
both open-button (on the application tool bar) and
open-menu-button (in the File menu of the application).

	save-file This method saves the task list currently loaded into the
application to disk. It is used as the activate callback for both
save-button (on the application tool bar) and save-menu-button
(in the File menu of the application).

	save-as-file This method saves the task list currently loaded into
the application to disk, and prompts the user to supply a name. It is
used as the activate callback for save-as-menu-button (in the
File menu of the application).

The following functions are called by the methods described above:

	save-task-list This function saves an instance of <task-list> to
a named file. It is called by save-as-file.

	load-task-list This function takes the contents of a file on disk
and converts it into an instance of <task-list>. It is called by
open-as-file.

The following sections present and explain the code for each of these
methods and functions in turn.

The open-file method

The code for open-file is shown below. Add this code to frame.dylan.

define method open-file
 (gadget :: <gadget>) => ()
 let frame = sheet-frame(gadget);
 let task-list = frame-task-list(frame);
 let filename
 = choose-file(frame: frame,
 default: task-list.task-list-filename,
 direction: #"input");
 if (filename)
 let task-list = load-task-list(filename);
 if (task-list)
 frame.frame-task-list := task-list;
 refresh-task-frame(frame)
 else
 notify-user(format-to-string("Failed to open file %s", filename),
 owner: frame)
 end
 end
end method open-file;

The method takes a gadget as an argument and returns no values. The
argument is the gadget that is used to invoke it, which in the case of
the task list manager means either open-menu-button (in the File
menu of the application) or open-button (on the tool bar). The
open-file method then sets three local variables:

	frame This contains the frame of which the gadget argument is a
part. This is a simple way of identifying the main application frame.

	task-list This contains the value of the frame-task-list slot for
frame. This identifies the instance of <task-list> that is being
used to hold the task list information currently loaded into the task
list manager.

	filename This is the name of the file that is to be loaded into the
task list manager, and the user is always prompted to supply it.

The method choose-file (a method provided by DUIM) is used to prompt
for a file to load. The portion of code that performs this task is
repeated here:

choose-file(frame: frame,
 default: task-list.task-list-filename,
 direction: #"input");

This method displays a standard file dialog box so that the user can
select a file on any disk connected to the host computer. For
open-file, you need to supply three arguments to choose-file : the
frame that owns the dialog, a default value to supply to the user, and
the direction of the interaction.

You need to supply a frame so that the system knows how to treat the
frame correctly, with respect to the dialog box. Thus, while the dialog
is displayed, the frame that owns it cannot be minimized, resized, or
interacted with in any way; this is standard behavior for modal dialog
boxes.

In this case, supplying a default value is useful in that it lets us
supply the filename for the currently loaded task list as a default
value. It determines this by examining the task-list-filename slot of
task-list (which, remember, is defined as a local variable and
represents the instance of <task-list> in use). If this slot has a
value, then it is offered as a default. (Note that if the currently
loaded task list has never been saved to disk, then this slot is #f,
and so no default is offered.)

The direction of interaction should also be specified when calling
choose-file, since the same generic function can be used to prompt
for a filename using a standard Open File dialog or a standard Save File
dialog. In this case, the direction is #"input", which indicates that
data is being read in (that is, Open File is used).

The rest of the open-file method deals with loading in the task list
information safely. It consists of two nested if statements as shown
below.

if (filename)
 let task-list = load-task-list(filename);
 if (task-list)
 frame.frame-task-list := task-list;
 refresh-task-frame(frame)
 else
 notify-user(format-to-string("Failed to open file %s", filename),
 owner: frame)
 end
end

The clause

if (filename)
 ...
end

is necessary to handle the case where the user cancels the Open file
dialog: on cancelling the dialog, the open-file method should return
silently with no side effects.

If a filename is supplied, then it is read from disk and converted into
a format that is readable by the application, in the line that reads

let task-list = load-task-list(filename);

The function load-task-list is described in The load-task-list
function.

The clause

if (task-list)
 ...
else
 ...
end

is necessary to handle the case where the filename specified does not
contain data that can be interpreted by load-task-list. If
task-list cannot be assigned, then the else code is run. This calls
the function notify-user, which is a simple way to display a short
message to the user in a message box.

If task-list can be assigned (that is, the contents of the specified
file have been successfully read by load-task-list), then two lines
of code are run. The line

frame.frame-task-list := task-list;

assigns the frame-task-list slot of frame to the value of task-list.

The line

refresh-task-frame(frame)

calls a method that refreshes the list of tasks displayed in the task
list manager, so that the contents of the newly loaded file are
correctly displayed on the screen. The method refresh-task-frame is
described in Updating the user interface.

The save-file method

The code for save-file is as follows:

define method save-file
 (gadget :: <gadget>) => ()
 let frame = sheet-frame(gadget);
 let task-list = frame-task-list(frame);
 save-as-file(gadget, filename: task-list.task-list-filename)
end method save-file;

Add this code to frame.dylan.

This method is very simple, in that it just calls the method
save-as-file, passing it a filename as an argument. The
save-as-file method then does the real work of updating the GUI and
calling the relevant code to save information to disk.

Just like the open-file method, save-file takes the gadget used to
invoke it as an argument and returns no values. In the case of the task
list manager the gadget is either open-menu-button (in the File menu
of the application) or open-button (on the tool bar). The save-file
method sets the following two local variables:

	frame The frame of which the gadget argument is a part, so that the
main application frame can be identified.

	task-list This contains the value of the frame-task-list slot for
frame. This identifies the instance of <task-list> that needs to
be saved to disk.

Note that similar local variables are used in the definition of
open-file.

The save-file method then calls save-as-file, passing it the
following two arguments:

	The gadget that invoked save-file.

	The filename associated with the instance of <task-list> that needs
to be saved to disk.

Notice that the second of these arguments may be #f, if the task list
has not previously been saved to disk.

The save-as-file method

The code for save-as-file is as follows:

define method save-as-file
 (gadget :: <gadget>, #key filename) => ()
 let frame = sheet-frame(gadget);
 let task-list = frame-task-list(frame);
 let filename
 = filename
 | choose-file(frame: frame,
 default: task-list.task-list-filename,
 direction: #"output");
 if (filename)
 if (save-task-list(task-list, filename: filename))
 frame.frame-task-list := task-list;
 refresh-task-frame(frame)
 else
 notify-user(format-to-string
 ("Failed to save file %s", filename),
 owner: frame)
 end
 end
end method save-as-file;

Add this code to frame.dylan.

Like open-file and save-file, this method takes a gadget as an
argument and returns no values. This argument is the gadget which is
used to invoke it. In addition, an optional keyword argument, a
filename, can be passed.

This method is a little unusual; as well as being the activate callback
for the save-as-menu-button (the command File > Save As), it is
also called by the save-file method.

	When directly invoked as an activate callback, the filename
argument is not passed to save-as-file. Instead, the user is
prompted to supply it. In addition, the gadget is
save-as-menu-button.

	When invoked by save-file, a filename may be passed, if the
associated task list has been saved before. In addition, the gadget
is either save-button or save-menu-button.

As with open-file, save-as-file sets three local variables:

	frame This is the frame containing the gadget passed as an
argument.

	task-list This contains the value of the frame-task-list slot for
frame, and identifies the instance of <task-list> to be saved.

	filename The filename to which the instance of <task-list> is
saved.

Unless filename is passed as an optional argument, the user is
prompted to supply a filename in which the task list information is to
be saved. As with open-file, the choose-file method is used to do
this. In fact, the call to choose-file here is identical to the call
to choose-file in open-file, with the exception of the direction
argument, which is set to #"output".

The rest of the save-as-file method deals with saving the task list
information safely. It is similar to the equivalent code in open-file,
and consists of two nested if statements as shown below.

if (filename)
 if (save-task-list(task-list, filename: filename))
 frame.frame-task-list := task-list;
 refresh-task-frame(frame)
 else
 notify-user(format-to-string("Failed to save file %s", filename),
 owner: frame)
 end
end

As with open-file, the clause

if (filename)
 ...
end

is necessary in case the user cancels the Save file dialog: on
cancelling the dialog, save-as-file should fail silently with no side
effects.

The second if statement is more interesting. The body of the if
statement is like the body of the equivalent if statement in
open-file :

frame.frame-task-list := task-list;
refresh-task-frame(frame)

This sets the frame-task-list slot of frame and then calls
refresh-task-frame to ensure that the correct information is shown on
the screen.

Similarly, the body of the else clause warns that the task list could
not be saved, when the if condition does not return true:

notify-user(format-to-string("Failed to save file %s", filename),
 owner: frame)

The interesting part of this if statement is the if condition
itself:

save-task-list(task-list, filename: filename)

As well as providing a test for whether the task list frame should be
updated, it actually performs the save operation, by calling the
function save-task-list with the required arguments.

The function save-task-list is described in The save-task-list
function and the method refresh-task-frame is described in
Updating the user interface.

The load-task-list function

The code for load-task-list is shown below. Because this function does
not use any DUIM code, it is described only briefly.

define function load-task-list
 (filename :: <string>) => (task-list :: false-or(<task-list>))
 let tasks = make(<stretchy-vector>);
 block (return)
 with-open-file (stream = filename, direction: #"input")
 while (#t)
 let name = read-line(stream, on-end-of-stream: #f);
 unless (name) return() end;
 let priority = read-line(stream, on-end-of-stream: #f);
 unless (priority)
 error("Unexpectedly missing priority!")
 end;
 let task = make(<task>, name: name,
 priority: as(<symbol>, priority));
 add!(tasks, task)
 end
 end
 end;
 make(<task-list>, tasks: tasks, filename: filename)
end function load-task-list;

Add this code to task-list.dylan.

The function load-task-list reads a file from disk and attempts to
convert its contents into an instance of <task-list>, which itself
contains any number of instances of <task>. It takes one argument,
the filename, and returns one value, the instance of <task-list>.

This function uses a generic function and a macro from the Streams
library to read information from the file. For full information about
this library, please refer to the I/O and Networks Library Reference.

The file format used by the task list manager is very simple, with each
element of a task occupying a single line in the file. Suppose
load-task-list is called on a file containing the following
information:

Wash the dog

medium

Video Men Behaving Badly

high

This would create an instance of <task-list> whose task-list-tasks
slot was a sequence of two instances of <task>.

	The first <task> would have a task-name of “Wash the dog” and a
task-priority of #"medium".

	The second <task> would have a task-name of “Video Men Behaving
Badly” and a task-priority of #"high".

The task-list-filename slot of the <task-list> is the filename
itself. Note that the task-list-modified? slot of the <task-list> is
set to #f, reflecting the fact that the task list is loaded, but
unchanged. This does not have to be done explicitly by load-task-list,
since #f is the default value of this slot, as you can see from its
definition in Defining the underlying data structures for tasks.

The file is opened for reading using the with-open-file macro. It is
then read a line at a time, setting the local variables name and
priority with each alternate line. After successfully setting both
name and priority, an instance of <task> is created, and added to
the stretchy vector tasks using add!. When the end of the file is
reached, #f is returned and an instance of <task-list> is created
from tasks and returned by the function.

Note how the as method is used to convert a string value such as
"medium" into a symbol such as #"medium". This is a useful
technique to use when you wish to save and load symbol information in an
application.

The save-task-list function

The code for save-task-list is shown below. Because this function does
not use any DUIM code, it is described only briefly.

define function save-task-list
 (task-list :: <task-list>, #key filename)
=> (saved? :: <boolean>)
 let filename = filename | task-list-filename(task-list);
 with-open-file (stream = filename, direction: #"output")
 for (task in task-list.task-list-tasks)
 format(stream, "%s\\n%s\\n",
 task.task-name, as(<string>, task.task-priority))
 end
 end;
 task-list.task-list-modified? := #f;
 task-list.task-list-filename := filename;
 #t
end function save-task-list;

Add this code to task-list.dylan.

The function save-task-list takes an instance of <task-list> as an
argument, and optionally a filename. It then attempts to save the
instance of <task-list> to the file specified by filename. It
returns a boolean value that indicates whether the file was successfully
saved or not. If filename is not passed as an argument to
save-task-list (in the case where the user has chosen File > Save or
clicked the Save button when working with a task list file that has
previously been saved), then the task-list-filename slot of the
<task-list> is used instead.

Like load-task-list, this function uses the Streams library to save
information to a file. For full information about this library, please
refer to the I/O and Networks Library Reference. It also uses the
format function from the Format library, which is described in the
same reference.

The file is opened for saving using the with-open-file macro (just
like load-task-list, but in the opposite direction), A for loop is
used to save each element in each task to the file. The format
function then writes each element to the file, separated by a newline
character. Note how the as method is used to convert the
task-priority symbol to a string when saving each priority value: this
is the reverse situation to load-task-list, where a method for as
was used to convert the string to a symbol.

Once every element in the file has been saved, the task-list-modified
slot of the <task-list> is reset to #f, and the
task-list-filename slot of the <task-list> is set to the filename
used by save-task-list. This last step is necessary to allow for the
case where the user has chosen the File > Save As command to save the
file under a different name.

Finally, save-task-list returns #t to indicate that the file has
been successfully saved.

Adding and removing tasks from the task list

This section describes the functions and methods necessary for adding to
the task list and removing tasks from the task list. A total of two
methods and two functions are necessary.

frame-add-task

This prompts the user for the details of a new task and adds it to
the list.

frame-remove-task

This removes the currently selected task from the list, prompting the
user before removing it completely.

add-task

This adds an instance of <task> to an instance of <task-list>.

remove-task

This removes an instance of <task> from an instance of
<task-list>.

As with the file handling code, DUIM code and non-DUIM code has been
separated. The methods beginning with frame- deal with the GUI-related
issues of adding and removing tasks, and the functions deal with the
underlying data structures.

Add the definitions of the methods to frame.dylan, and the
definitions of the functions to task-list.dylan.

DUIM support for adding and removing tasks

This section describes the methods necessary to provide support in the
task list manager GUI for adding and removing tasks.

Add the code described in this section to frame.dylan.

The code for frame-add-task is as follows:

define method frame-add-task (gadget :: <gadget>) => ()
 let frame = sheet-frame(gadget);
 let task-list = frame-task-list(frame);
 let (name, priority) = prompt-for-task(owner: frame);
 if (name & priority)
 let new-task = make(<task>, name: name, priority: priority);
 add-task(task-list, new-task);
 refresh-task-frame(frame);
 frame-selected-task(frame) := new-task
 end
end method frame-add-task;

The method takes a gadget as an argument and returns no values. The
argument is the gadget which is used to invoke it, which in the case of
the task list manager means either add-menu-button (in the Task menu
of the application) or add-button (on the tool bar). The
frame-add-task method then sets a number of local variables:

	frame The frame containing the gadget passed as an argument.

	task-list The value of the frame-task-list slot for frame.
This identifies the instance of <task-list> to which a task is to
be added.

	name The text of the task to be added.

	priority The priority of the task to be added.

As with other DUIM methods you have seen, frame and task-list are
specified using known slot values about the gadget supplied to
frame-add-task, and the frame that contains the gadget. The name
and priority values are specified by calling the prompt-for-task
method defined in Creating a dialog for adding new
items. This method displays a dialog into which
the user types the text for the new task and chooses the priority, both
of which values are returned from prompt-for-task.

Once all the local variables have been specified, the main body of code
for the method, repeated below, is executed.

if (name & priority)
 let new-task = make(<task>, name: name, priority: priority);
 add-task(task-list, new-task);
 refresh-task-frame(frame);
 frame-selected-task(frame) := new-task
end

This consists of four expressions around which is wrapped an if
statement.

	The first expression creates a new task from the values of the name
and priority local variables.

	The second expression adds the new task to task list, by calling the
add-task function.

	The third expression refreshes the display of the task list in the
task list manager, so that the new task is displayed on the screen
once it has been added.

	The fourth expression ensures that the new task is selected in the
task list manager. The frame-selected–task method is described in
Updating the user interface.

The if statement ensures that all the information needed to construct
the new task is specified before the new task is created.

The add-task function is described in Non-DUIM support for adding
and removing tasks.

The code for frame-remove-task is as follows:

define method frame-remove-task (gadget :: <gadget>) => ()
 let frame = sheet-frame(gadget);
 let task = frame-selected-task(frame);
 let task-list = frame-task-list(frame);
 if (notify-user(format-to-string
 ("Really remove task %s", task.task-name),
 owner: frame, style: #"question"))
 frame-selected-task(frame) := #f;
 remove-task(task-list, task);
 refresh-task-frame(frame)
 end
end method frame-remove-task;

As with frame-add-task, this method takes the gadget that is used to
invoke it as an argument and returns no values. In the case of the task
list manager, the gadget is either remove-menu-button (in the Task
menu of the application) or remove-button (on the tool bar). The
frame-remove-task method then sets a number of local variables:

	frame The frame containing the gadget passed as an argument.

	task The task that is to be removed. The task to be removed is the
one selected in the list of tasks on screen. The method
frame-selected-task is called to determine which task this is.

	task-list The value of the frame-task-list slot for frame.
This identifies the instance of <task-list> from which a task is to
be removed.

The method frame-selected-task is described in Updating the user
interface.

Once these local variables have been set, the rest of the code goes
about removing the task. The code consists of three expressions around
which is wrapped an if statement, as shown below.

if (notify-user(format-to-string
 ("Really remove task %s", task.task-name),
 owner: frame, style: #"question"))
 frame-selected-task(frame) := #f;
 remove-task(task-list, task);
 refresh-task-frame(frame)
end

Notice here that the method notify-user is used as the condition in
the if statement: if the call to notify-user returns #t, then the
subsequent expressions are executed. This use of notify-user
illustrates how you can use the method to generate a yes-no question for
the user to answer, by using the style: init-keyword. You might like
to compare the user of notify-user in this method with its use in
open-file or save-as-file ; essentially, the only difference is in
the use of the style: init-keyword.

If the call to notify-user returns #t, then three expressions are
executed:

	The first calls the setter for frame-selected-task, to ensure that no
items in the task list are selected.

	The second calls the function remove-task, which removes task from
task-list.

	Then, refresh-task-frame is called to ensure that the task that has
been removed is no longer displayed in the list of tasks on the
screen.

The methods defined for frame-selected-task are described in
Updating the user interface. The function remove-task is
described in Non-DUIM support for adding and removing tasks. The
refresh-task-frame method is described in Updating the user
interface.

Non-DUIM support for adding and removing tasks

This section describes the functions necessary for adding an instance of
<task> to a <task-list>, and removing a <task> from a
<task-list>. These functions are called by the callback functions
frame-add-task and frame-remove-task, respectively. Because these
functions do not use any DUIM code, they are described only briefly.

Add the code described in this section to task-list.dylan.

The code for add-task is as follows:

define function add-task
 (task-list :: <task-list>, task :: <task>) => ()
 add!(task-list.task-list-tasks, task);
 task-list.task-list-modified? := #t
end function add-task;

This function takes two arguments, a <task-list> and the <task> that
is to be added to it, and returns no values. The add-task function
first adds the <task> to the end of the sequence bound to the
task-list-tasks slot of the <task-list>, and then sets the
task-list-modified? slot of the <task-list> to #t, to indicate
that a change in the <task-list> has occurred.

The code for remove-task is as follows:

define function remove-task
 (task-list :: <task-list>, task :: <task>) => ()
 remove!(task-list.task-list-tasks, task);
 task-list.task-list-modified? := #t
end function remove-task;

This function is analogous to add-task. It takes the same arguments,
and returns no values. The function first removes the <task> from the
task-list-tasks slot of the <task-list>, and then sets the
task-list-modified? slot of the <task-list> to #t, to indicate
that a change in the <task-list> has occurred.

Updating the user interface

This section describes a number of miscellaneous methods that are
required for smooth operation of the task list manager. Each of the
methods defined here ensures that the task list manager displays the
correct information and gives the user access to appropriate commands in
any given situation. Here is a list of the methods defined in this
section, together with a brief description of each one:

	initialize An initialize method is provided for <task-frame>
that ensures information is displayed correctly when the task list
manager is first displayed. This method is described in
Initializing a new instance of <task-frame>.

frame-selected-task

This method returns the task that is currently selected in the task
list manager. This method is described in Determining and
setting the selected task.

frame-selected-task-setter

This is a setter method for frame-selected-task, and is used to
select or deselect item in the task list manager. This method is
described in Determining and setting the selected task.

note-task-selection-change

Two methods are defined that deal with updating the GUI whenever a
change is made to the task selection state. This method is described
in Enabling and disabling buttons in the interface.

refresh-task-frame

This method can be called to refresh the task frame at any time. This
method is described in Refreshing the list of tasks.

Each of these methods should be added to the file frame.dylan.

Initializing a new instance of <task-frame>

The code below provides an initialize method for the class
<task-frame>. This simply ensures that the display in a
<task-frame> is refreshed as soon as it is created, and calls any
subsequent methods that may be defined for it (although, in the case of
the task list manager, there are none). While not strictly necessary,
this initialize method illustrates general good practice when defining
your own classes of frame. If the application was associated with files
of a particular type on disk, then the initialize method would be
necessary to ensure that tasks were displayed correctly after starting
the task list manager by double-clicking on a file of tasks.

define method initialize
 (frame :: <task-frame>, #key) => ()
 next-method();
 refresh-task-frame(frame);
end method initialize;

Add the code for this method to frame.dylan.

Determining and setting the selected task

Two methods are used to determine which task is selected in the task
list manager, and to set a specific task in the task list manager:
frame-selected-task and frame-selected-task-setter.

The frame-selected-task method returns the task that is currently
selected in the task list manager, or #f if no task is selected. This
method is used by frame-remove-task to determine which task should be
deleted from the task list. It is also used by
note-task-selection-change to determine whether or not a task is
selected.

define method frame-selected-task
 (frame :: <task-frame>) => (task :: false-or(<task>))
 let list-box = task-list(frame);
 gadget-value(list-box)
end method frame-selected-task;

The frame-selected-task method works by determining the gadget-value
of the list box that displays the tasks in the task list manager. The
gadget-value of a collection such as a list box is the selected item.
Notice how you can access the value of a pane in a frame instance in
exactly the same way that you can access the value of a slot in a class
instance; the definition of the pane creates an accessor that is just
like a slot accessor. Recall that the name of the list box in the
definition of the <task-frame> class is task-list.

A setter method is also defined for frame-selected-task, as shown
below:

define method frame-selected-task-setter
 (task :: false-or(<task>), frame :: <task-frame>)
=> (task :: false-or(<task>))
 let list-box = task-list(frame);
 gadget-value(list-box) := task;
 note-task-selection-change(frame);
 task
end method frame-selected-task-setter;

This method takes two arguments: the task to select in the task list
manager, and the frame to which the task belongs. It returns the task.
The method determines the list box used to display tasks in frame,
and then sets the gadget-value of that list box to task. Finally,
it calls note-task-selection-change, described below, to update other
parts of the user interface appropriately, such as buttons on the tool
bar.

As with most setter methods, frame-selected-task-setter is not called
directly. Instead, it is called implicitly by setting a value using
frame-selected-task. For example,

frame-selected-task(frame) := #f;

ensures that no tasks are selected in frame.

The frame-selected-task-setter method is called by two other methods:
frame-add-task (to ensure that the task added is subsequently
selected) and frame-remove-task (to ensure that no tasks are selected
once a task has been removed from the list). These methods are described
in DUIM support for adding and removing tasks.

Add the code for these methods to frame.dylan.

Enabling and disabling buttons in the interface

The two methods for note-task-selection-change make a number of
changes to the GUI of the task list manager, to ensure that the correct
information is displayed to the user. In particular, they perform any
changes necessary after an item in the task list has been selected or
deselected. They ensure that the correct priority is displayed in the
radio box, depending on whether there is a task currently selected, and
they also enable or disable the Remove task button and its equivalent
command in the Task menu, depending on whether there is a task
selected or not (if there is no task selected, then the button and menu
command should both be disabled).

There are two methods defined, one on an instance of <task-frame>,
and one on an instance of <gadget>. The Task List 1 project requires
both of these methods. For the Task List 2 project, however, the first
method requires a slightly different definition, and the second method
is not required at all.

The note-task-selection-change method defined on <task-frame>
is called by refresh-task-frame, described on Refreshing the
list of tasks. The
refresh-task-frame method is called whenever the list of tasks needs
to be refreshed for whatever reason. This happens most commonly after
adding or removing a task from the list, or loading in a new task list
from a file on disk. The method refresh-task-frame takes an instance
of <task-frame> as an argument and returns no values. For the
Task List 1 project, the note-task-selection-change method is
defined:

define method note-task-selection-change
 (frame :: <task-frame>) => ()
 let task = frame-selected-task(frame);
 if (task)
 frame.priority-box.gadget-value := task.task-priority;
 end;
 let selection? = (task ~= #f);
 frame.remove-button.gadget-enabled? := selection?;
 frame.remove-menu-button.gadget-enabled? := selection?;
end method note-task-selection-change;

For the Task List 2 project the note-task-selection-change method is
defined:

define method note-task-selection-change
 (frame :: <task-frame>) => ()
 let task = frame-selected-task(frame);
 if (task)
 frame.priority-box.gadget-value := task.task-priority;
 end;
 command-enabled?(frame-remove-task, frame) := task ~= #f;
end method note-task-selection-change;

The method takes an instance of <task-frame> as an argument, and
returns no values. It works by calling frame-selected-task to
determine which, if any, task is currently selected, and sets that to a
local variable, task.

The expression

if (task)
 frame.priority-box.gadget-value := task.task-priority;
end;

sets the gadget value of the priority-box pane in the task list
manager to the value of the task-priority slot of the selected task,
if a task is selected. This ensures that if a task is selected, its
priority is displayed correctly beneath the list of tasks. Note that
priority-box may take the same set of values as the task-priority
slot, namely #"low", #"medium", and #"high", so it is
straightforward to make this kind of assignment.

The rest of the method deals with enabling or disabling gadgets that let
the user remove a task from the task list. If there is no task selected,
then remove-button and remove-menu-button need to be disabled. If
there is a task selected, then they need to be enabled. This behavior is
achieved by converting the value of the variable task, which can take
a value of false-or(<task>), into a boolean value, called
selection?. This is done in the expression

let selection? = (task ~= #f);

This sets selection? to the result of performing an inequality
comparison on task and #f. Thus, if task is #f (there is no
task selected), then selection? is #f, but if task is an instance
of <task> (there is a task selected), then selection? is #t.

The two calls to gadget-enabled? then set the gadget-enabled slot of
the appropriate gadgets to the value of selection?, enabling or
disabling each gadget as appropriate.

The second method for note-task-selection-change is defined for an
instance of <gadget>, as follows:

define method note-task-selection-change
 (gadget :: <gadget>) => ()
 let frame = gadget.sheet-frame;
 note-task-selection-change(frame)
end method note-task-selection-change;

This takes a gadget as an argument. It simply finds the frame that the
gadget belongs to, and calls the other method for
note-task-selection-change on that frame.

The second method for note-task-selection-change needs to be used as
the value-changed callback of the task-list pane in the definition of
<task-frame> ; a value-changed callback is invoked whenever the
gadget-value of a gadget changes. Because the gadget-value of a list
box is the currently selected item, whenever a different item is
selected in the list box, note-task-selection-change is called.

In order to achieve this, a small change is needed to the definition of
the task-list pane in frame.dylan. In this definition for the Task
List 1 project, change the line that reads:

activate-callback: not-yet-implemented);

to

value-changed-callback: note-task-selection-change);

and for the Task List 2 project change the line to

value-changed-callback: method (gadget)
 note-task-selection-change(frame) end);

to give a final definition for this pane as follows:

// definition of list
pane task-list (frame)
 make (<list-box>,
 items: frame.frame-task-list.task-list-tasks,
 label-key: task-name,
 lines: 15,
 value-changed-callback: note-task-selection-change);

Add the code for these methods to frame.dylan.

Refreshing the list of tasks

The refresh-task-frame method is called whenever the list of tasks
needs to be refreshed for whatever reason. This happens most commonly
after adding or removing a task from the list, or loading in a new task
list from a file on disk. The method refresh-task-frame takes an
instance of <task-frame> as an argument and returns no values. For the
Task List 1 project the definition is:

define method refresh-task-frame
 (frame :: <task-frame>) => ()
 let list-box = frame.task-list;
 let task-list = frame.frame-task-list;
 let modified? = task-list.task-list-modified?;
 let tasks = task-list.task-list-tasks;
 if (gadget-items(list-box) == tasks)
 update-gadget(list-box)
 else
 gadget-items(list-box) := tasks
 end;
 gadget-enabled?(frame.save-button) := modified?;
 gadget-enabled?(frame.save-menu-button) := modified?;
 note-task-selection-change(frame);
end method refresh-task-frame;

However, the Task List 2 project requires a call to command-enabled?,
so the definition is:

define method refresh-task-frame
 (frame :: <task-frame>) => ()
 let list-box = frame.task-list;
 let task-list = frame.frame-task-list;
 let modified? = task-list.task-list-modified?;
 let tasks = task-list.task-list-tasks;
 if (gadget-items(list-box) == tasks)
 update-gadget(list-box)
 else
 gadget-items(list-box) := tasks
 end;
 command-enabled?(save-file, frame) := modified?;
 note-task-selection-change(frame);
end method refresh-task-frame;

To begin, refresh-task-frame sets a number of local variables:

	list-box The list box used to display the list of tasks in task
list manager.

	task-list The task list currently loaded in the task list manager.

	modified? The value of the task-list-modified? slot of
task-list.

	tasks The sequence of tasks stored in task-list.

Next, the following code is executed:

if (gadget-items(list-box) == tasks)
 update-gadget(list-box)
else
 gadget-items(list-box) := tasks
end;

This code ensures that if the items in the list box are the same as the
sequence of tasks in the task list, then the display in the list box is
updated to ensure all the items are displayed correctly. If the items in
the list box are not the same as the sequence of tasks, then the items
in the list box are updated to reflect the current task list. The items
in the list box could be different if a task had been added or removed
from the list, or if a completely new set of tasks had been loaded into
the task list manager.

Lastly, the following three lines

gadget-enabled?(frame.save-button) := modified?;
gadget-enabled?(frame.save-menu-button) := modified?;
note-task-selection-change(frame);

ensure that the Save button and File > Save menu command are enabled
if the task list has been modified, and then any changes that need to be
made to the GUI as a result of changing the selected item are performed,
by calling note-task-selection-change.

Add the code for this method to frame.dylan.

Creating an information dialog

The following function displays a simple dialog box that provides
information about the application. This dialog is displayed when you
choose the Help > About menu command.

define function about-task (gadget :: <gadget>) => ()
 notify-user("Task List Manager", owner: sheet-frame(gadget))
end function about-task;

Exiting the task list manager

The exit-task method allows you to exit the task list manager. It is
invoked by choosing File > Exit. The definition of this method is
quite simple.

define method exit-task (gadget :: <gadget>) => ()
 let frame = sheet-frame(gadget);
 let task-list = frame-task-list(frame);
 save-file (gadget);
 exit-frame(frame)
end method exit-task;

Add this method to the file frame.dylan.

The method takes the gadget used to invoke it and returns no values. In
this case, exit-task is only ever invoked by the exit-menu-button
gadget.

As with many other callbacks in this example, exit-task sets a number
of local variables:

	frame The frame that the gadget argument belongs to.

	task-list The task list associated with frame.

The method begins by calling the save-file method (defined in The
save-file method) to save the current task list to disk. This ensures
that the user does not lose any work. Next, the exit-frame generic
function is invoked to exit the task list manager window.

Enhancing the task list manager

This concludes the tutorial on building application with DUIM. At this
point, you can build and run a functional task list manager, but it is a
very basic application. Using Command Tables introduces command tables as a way of
defining hierarchies of menu commands. To do this, it re-implements the
menu hierarchy you defined in Adding Menus To The Application, but does not add any new
functionality to the application.

There are many ways that the task list manager could be extended, and
you might like to try experimenting with the code. To begin with, very
little error checking has been written into the application, and you
might like to add some in order to make the task list manager more
robust. For example, it is currently possible to exit the task list
manager and lose any changes in an unsaved list of tasks.

In addition to error checking, there is a wide range of new
functionality you might like to add. A few ideas are listed below:

	Re-implement the list box and radio box in the main window of the
task list manager as a table control, so that the priority of each
task is displayed next to the text for the task.

	Implement the facility to define categories, so that tasks could be
assigned categories such as “Home” and “Business”. Categories could
be listed in the table control alongside priorities.

	Allow sorting the list of tasks according to a key. Tasks could then
be sorted by priority or category.

	Implement the ability to mark tasks as complete.

	Allow users to add text memos to any task.

This is only a very limited list of ideas. After learning about command
tables in Using Command Tables, read through A Tour of the DUIM Libraries to learn more about
the features that DUIM provides. Then, using the DUIM Reference Manual
as your reference source, get coding!

 Copyright 2011, Dylan Hackers.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Building Applications With DUIM

Using Command Tables

Introduction

Another way that you can define a set of menus is by defining a command
table. A command table lets you create the complete set of commands
for an application in a more compact and reusable way than the standard
menus you have seen so far. As well as making the definition of each
command in a menu shorter and easier to code, it lets you handle effects
such as the disabling of menu commands more elegantly, by removing the
need to use gadget-enabled. You can include a command table in the
definition of a frame in the same way that you can include a tool bar,
or a status bar, and because of this, and the fact that you can include
command tables within other command tables, it is easy to reuse the same
command table across different frames in your application.

Command tables are best used in the following situations:

	If your menu commands do not use check or radio buttons.

	If the menu bar in your application is not context sensitive (that
is, the available commands on the menu remain consistent as the
application state changes).

In other cases, you should define your menu hierarchy by defining panes
that combine specific gadgets, as demonstrated in Adding Menus To The Application. Using a
combination of command tables and standard menu definitions in a GUI
design is not recommended.

The task list manager application does not use check or radio buttons in
any of its menu commands, and the menu bar is not context sensitive.
This means that, if you wish, you can define the commands in the task
list manager using command tables, rather than standard menus.

This chapter provides an introduction to command tables by showing you
how to re-implement the menu system of the task list manager as a set of
command tables. It does not provide a complete copy of all the source
code necessary to implement the task list manager. For a complete copy
of the code, please refer to Source Code For The Task List Manager. To load the code into the
environment, choose Tools > Open Example Project from any window in the
environment, and load the Task List 2 project from the Documentation
category of the Open Example Project dialog.

Note

Please note that this project, like the Task List 1 project,
is called task-list within the source code, and you should not
load them both into the environment at the same time.

Implementing a command table

You use define command-table to define a new command table. Consider
the following command table defined for the File menu in the task list
manager:

define command-table *file-command-table* (*global-command-table*)
 menu-item "Open" = open-file,
 accelerator: make-keyboard-gesture(#"o", #"control"),
 documentation: "Opens an existing file.";
 menu-item "Save" = save-file,
 accelerator: make-keyboard-gesture(#"s", #"control"),
 documentation: "Saves the current file to disk.";
 menu-item "Save As..." = save-as-file,
 documentation: "Saves the current file with a new name.";
 menu-item "Exit" = exit-task,
 accelerator: make-keyboard-gesture(#"f4", #"alt"),
 documentation: "Exits the application.";
end command-table *file-command-table*;

This defines a command table, called *file-command-table*, that
contains all the menu commands required in the File menu of the task
list manager. It replaces the definition of each menu button, as well as
the definition of the File menu itself, in the original implementation
of the task list manager application that was given in Adding Menus To The Application.
As you can see, this definition is considerably shorter than the individual
definitions of the menu and menu buttons previously required,

When defining a command table, you should provide a list of other
command tables from which the command table you are defining inherits.
This is done in the clause

define command-table *file-command-table* (*global-command-table*)

above. This is analogous to the way that the superclasses of any frame
class are listed in the frame’s definition.

Any items defined by the command tables which are to be inherited are
automatically added to the command table being defined.

In the example above, *file-command-table* inherits from only one
command table: *global-command-table*. This is defined globally for
the whole Dylan environment, and every command table that does not
explicitly inherit from other command tables must inherit from this
command table.

Each menu item is introduced using the menu-item option, and a command
is specified for each menu item immediately after the = sign. Each
command is just the activate callback that was defined for the
equivalent menu button gadget in Adding Callbacks to the Application.

Notice that you can use the accelerator: and documentation:
init-keywords to specify a keyboard accelerator and a documentation
string for each menu item in the command table, just like you can when
you define each menu button in a menu using a specific gadget. In the
same way, you can specify the value of any init-keyword that can be
specified for an instance of <menu-button>.

Re-implementing the menus of the task list manager

The code below provides definitions for the entire menu hierarchy of the
task list manager, using the same activate callbacks that are described
and implemented in Adding Callbacks to the Application. Note that the labels, documentation
strings, and keyboard accelerators for each menu item are identical to
the ones used in the original implementation of the task list manager.
For completeness, the definition of *file-command-table*, described
in Using Command Tables, is repeated below.

define command-table *file-command-table* (*global-command-table*)
 menu-item "Open" = open-file,
 accelerator: make-keyboard-gesture(#"o", #"control"),
 documentation: "Opens an existing file.";
 menu-item "Save" = save-file,
 accelerator: make-keyboard-gesture(#"s", #"control"),
 documentation: "Saves the current file to disk.";
 menu-item "Save As..." = save-as-file,
 documentation: "Saves the current file with a new name.";
 menu-item "Exit" = exit-task,
 accelerator: make-keyboard-gesture(#"f4", #"alt"),
 documentation: "Exits the application.";
end command-table *file-command-table*;

define command-table *edit-command-table* (*global-command-table*)
 menu-item "Cut" = cut-command,
 accelerator: make-keyboard-gesture(#"x", #"control"),
 documentation: "Cut the selection to the clipboard.";
 menu-item "Copy" = copy-command,
 accelerator: make-keyboard-gesture(#"c", #"control"),
 documentation: "Copy the selection to the clipboard.";
 menu-item "Paste" = paste-command,
 accelerator: make-keyboard-gesture(#"v", #"control"),
 documentation: "Paste the selection in the clipboard at the current position.";
end command-table *edit-command-table*;

define command-table *task-command-table* (*global-command-table*)
 menu-item "Add..." = frame-add-task,
 accelerator: make-keyboard-gesture(#"a", #"control", #"shift"),
 documentation: "Add a new task.";
 menu-item "Remove" = frame-remove-task,
 accelerator: make-keyboard-gesture(#"d", #"control", #"shift"),
 documentation: "Remove the selected task from the list.";
end command-table *task-command-table*;

define command-table *help-command-table* (*global-command-table*)
 menu-item "About" = about-task,
 accelerator: make-keyboard-gesture(#"f1"),
 documentation: "Display information about the application.";
end command-table *help-command-table*;

The definitions above can be used in place of the definition of each
menu and menu button in the original implementation of the task list
manager. You must place the command table definitions provided above
after the callback definitions themselves, to avoid forward references.

Including command tables in frame definitions

In the previous section, you defined four command tables: one for each
menu in the task list manager. Next, you need to combine these command
tables and include them in the definition of the <task-frame>. The
way to do this is to define an additional command table which has each
of the other command tables as its components, and then supply this
command table as an option in the definition of <task-frame>.

define command-table *task-list-command-table* (*global-command-table*)
 menu-item "File" = *file-command-table*;
 menu-item "Edit" = *edit-command-table*;
 menu-item "Task" = *task-command-table*;
 menu-item "Help" = *help-command-table*;
end command-table *task-list-command-table*

Just like the menu commands in each menu, every menu in the menu bar is
defined as a menu item in the definition of the command table.

You can add a command table to the definition of a frame class in much
the same way as you add a layout, tool bar, status bar, or menu bar,
using the command-table option. In the definition of <task-frame>,
replace the line that reads:

menu-bar (frame) frame.task-menu-bar;

with

command-table (frame) *task-list-command-table*;

A complete listing of the implementation of <task-frame> using command
tables is given in Source Code For The Task List Manager.

Changes required to run Task List 2

In order for the Task List 2 project to run properly, you must modify
some of the definitions you constructed in Adding Callbacks to the Application. This section
outlines the required changes. For your convenience, the complete source
code for both of the Task List projects is provided in Source Code For The Task List Manager.

Changes to button definitions

The definition of each button in the definition of <task-frame> needs
to be modified compared to their definition in the Task List 1 project,
as described in Gluing the new design together.

Broadly speaking, you need to update the command: keyword/argument
pair for each button gadget, and you need to redefine the activate
callback to allow for the fact that the callbacks now take frames as
arguments.

Thus, for a button that is defined as:

pane add-button (frame)
 make (<push-button>, label: "Add task",
 activate-callback: frame-add-task);

the new definition is:

pane add-button (frame)
 make(<push-button>, label: "Add task",
 command: frame-add-task,
 activate-callback: method (gadget)
 frame-add-task(frame)
 end);

This change must also be made for the definition of radio box, which
then becomes:

// Definition of radio box
pane priority-box (frame)
 make(<radio-box>,
 items: $priority-items,
 orientation: #"horizontal",
 label-key: first,
 value-key: second,
 value: #"medium",
 command: not-yet-implemented
 activate-callback: method (gadget)
 not-yet-implemented(frame)
 end);

For complete definitions, you should refer to the source code available
in Appendix A or from the Open Example Project dialog in the
environment.

Changes to callback definitions

The following callbacks should be redefined so as to take an instance of
<task-frame> as an argument, rather than an instance of <gadget>.

	frame-add-task

	frame-remove-task

	open-file

	save-file

	save-as-file

	about-task

	exit-task

For complete definitions of these callbacks, you should refer to the
source code available in Appendix A or from the Open Example Project
dialog in the environment.

Changes to method definitions

The definitions for the methods given in Chapter 5 must be redefined so
as to take an instance of <frame> as an argument, rather than an
instance of <gadget>. This change results in these new definitions:

define method open-file
 (frame :: <task-frame>) => ()
 let task-list = frame-task-list(frame);
 let filename
 = choose-file(frame: frame,
 default: task-list.task-list-filename,
 direction: #"input");
 if (filename)
 let task-list = load-task-list(filename);
 if (task-list)
 frame.frame-task-list := task-list;
 refresh-task-frame(frame)
 else
 notify-user(format-to-string("Failed to open file %s", filename),
 owner: frame)
 end
 end
end method open-file;

define method save-file
 (frame :: <task-frame>) => ()
 let task-list = frame-task-list(frame);
 if (task-list.task-list-modified?)
 save-as-file(frame, filename: task-list.task-list-filename)
 end
end method save-file;

define method save-as-file
 (frame :: <task-frame>, #key filename) => ()
 let task-list = frame-task-list(frame);
 let filename
 = filename | choose-file(frame: frame,
 default: task-list.task-list-filename,
 direction: #"output");
 if (filename)
 if (save-task-list(task-list, filename: filename))
 frame.frame-task-list := task-list;
 refresh-task-frame(frame)
 else
 notify-user(format-to-string
 ("Failed to save file %s", filename),
 owner: frame)
 end
 end
end method save-as-file;

define method frame-add-task (frame :: <task-frame>) => ()
 let task-list = frame-task-list(frame);
 let (name, priority) = prompt-for-task(owner: frame);
 if (name & priority)
 let new-task = make(<task>, name: name, priority: priority);
 add-task(task-list, new-task);
 refresh-task-frame(frame);
 frame-selected-task(frame) := new-task
 end
end method frame-add-task;

define method frame-remove-task (frame :: <task-frame>) => ()
 let task = frame-selected-task(frame);
 let task-list = frame-task-list(frame);
 if (notify-user(format-to-string
 ("Really remove task %s", task.task-name),
 owner: frame, style: #"question"))
 frame-selected-task(frame) := #f;
 remove-task(task-list, task);
 refresh-task-frame(frame)
 end
end method frame-remove-task;

define method note-task-selection-change
 (frame :: <task-frame>) => ()
 let task = frame-selected-task(frame);
 if (task)
 frame.priority-box.gadget-value := task.task-priority;
 end;
 command-enabled?(frame-remove-task, frame) := task ~= #f;
end method note-task-selection-change;

For details about note-task-selection-change, see Enabling and
disabling buttons in the interface. See A
task list manager using command tables for the
complete source code for the Task List 2 project.

 Copyright 2011, Dylan Hackers.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Building Applications With DUIM

A Tour of the DUIM Libraries

Introduction

This chapter provides an overview of the gadgets and functionality that
are provided by DUIM. Of necessity, it covers a lot of ground in as
short a space as possible, and does not attempt to place any information
in the more general context of application development.

To gain an understanding of how different pieces of DUIM functionality
can be glued together to create a working application, you should follow
the extended example given in this manual in Designing A Simple DUIM Application through
Adding Callbacks to the Application. If you need more complete information on any particular
aspect of DUIM, you should refer to the DUIM Reference Manual.

The most important DUIM classes are as follows:

	<frame> A window in your application.

	<sheet> A unique piece of any window.

	<gadget> Sheets that are window controls.

	<layout> Sheets that control the arrangement of other sheets in the
sheet hierarchy.

All of these are subclasses of <object> [http://opendylan.org/books/drm/Object_Classes#object], except <layout> which is a
subclass of <sheet>.

As with any other Dylan class, use make to create an instance of a
DUIM class.

This chapter introduces you to the most important and useful of all
these elements.

	A tour of gadgets describes many of the
gadgets available in DUIM. A wide variety of different gadgets are
available in DUIM, to enable you to create applications that utilize
all of the controls for the target operating system.

	A tour of layouts describes layouts. These
are classes that allow you to group together other sheets
hierarchically (typically gadgets and other layouts) in order to put
together the elements in any window.

	A tour of sheets introduces you to the more
general concept of sheets. If you intend defining your own sheet
classes (for instance, to design your own controls), then you will
need to understand how to handle sheets on a more general level than
is needed to use gadgets or layouts.

	A tour of frames introduces the different
kinds of frame available. There are two basic types of frame: normal
windows and dialog boxes. This section also describes how to create
your own classes of frame.

You can use the Dylan Playground to run the examples in this chapter.
Reminder: to interactively run the segments of example code
presented in this chapter, you must pass them to contain (see
Using contain to run examples interactively for
details).

A tour of gadgets

The DUIM-Gadgets library provides you with all the controls you can use
to create an interface. Objects like buttons, menus, boxes, and other
common interface elements are defined as subclasses of the base class
<gadget>.

General properties of gadgets

Each class of gadget has a set of associated slots that help define the
properties for that class. Different classes of gadget have different
sets of slots. This section describes some of the more important slots
available. The following slots are common across most (though not
necessarily all) gadget classes.

	gadget-label

	This slot holds the label that is associated with a
gadget.

For an item on a menu or a button, for example, this label appears on
the gadget itself. For a gadget such as a text field or a border, the
label may be displayed next to the gadget.

A label is usually a text string, but can often be an icon, such as
is often found on the buttons of an application’s toolbar.

If a gadget does not have a label, gadget-label returns #f.

	gadget-enabled?

	This slot specifies whether or not the gadget is active—that is,
whether the user of your application can interact with the gadget.
All gadgets have a gadget-enabled? slot. The gadget-enabled? slot
returns either #t or #f. When a gadget is disabled, it is
usually grayed out on the screen, and cannot be interacted with in
any way.

	gadget-value

	This slot holds the value of the gadget. Most gadgets
can have a value of some kind; these are general instances of the
<value-gadget> class. However, gadgets such as borders that are
placed around elements have no associated value.

Generally speaking, you can think of the gadget value as a value that
the user of your application has assigned to the gadget. The
gadget-value-type depends on the class of gadget involved. For a
text field, the gadget value is the string typed into the text field.
For a gadget with several items (see gadget-items below), such as a
list, the gadget value is the selected item. For a radio button, the
gadget value is a boolean that denotes whether the button is selected
or not.

If a gadget does not have any values, gadget-value returns #f.

All of the slots described above can also be specified as init-keyword
values when creating an instance of a gadget. In all cases, the
init-keyword name is the same as the slot name, but without the
preceding “gadget-”. Thus, a gadget can be enabled or disabled when it
is first created by specifying the enabled?: init-keyword
appropriately.

Gadgets can also have a variety of associated callbacks. A callback is a
function that is invoked when a particular event occurs that is
associated with a given gadget, such as pressing a button. It is the
primary technique you use to make your applications “do something”. Like
gadget properties, different classes of gadget can have different
callback types available. For an introduction to callbacks, see
Assigning callbacks to gadgets.

Button gadgets

Broadly speaking, these are gadgets whose value can be changed, or for
which some user-defined functionality can be invoked, by clicking on the
gadget. Button gadgets encompass obvious controls such as push buttons,
radio buttons, and check boxes, and, less obviously, menu items.

Standard buttons

DUIM provides three standard button gadget classes:

	<push-button> Sometimes referred to as command button in
Microsoft documentation.

	<radio-button> Sometimes referred to as option button in
Microsoft documentation.

	<check-button> Sometimes referred to as check box in Microsoft
documentation.

[image: _images/tour-3.png]
A push button, a radio button, and a check button

The chapters covering the task list manager application (chapters
Designing A Simple DUIM Application to Using Command Tables) introduced you to the
<push-button> class. This is the default type of button (that is,
creating an instance of <button> actually creates an instance of
<push-button>).

make(<push-button>, label: "Hello");

Radio buttons let you choose one option out of a group of several. They
are usually implemented in groups of several buttons (using the
<radio-box> class), although they can also be created singly, as shown
in A push button, a radio button, and a check button. For more information about creating groups of
radio buttons, see Button boxes.

make(<radio-button>, label: "Hello");

Check buttons are buttons whose setting can be toggled on and off. Like
radio buttons, they are often implemented in groups, although unlike
radio buttons, they are frequently used individually. For more
information about creating groups of check buttons, see Button
boxes.

define variable *my-check-button*
 := make(<check-button>, label: "Hello"
 value: #f);

Remember that you can use gadget-label to set or return the label for
any button. As demonstrated in the examples above, it is also good
practice to set the label when defining any button, using the label:
init-keyword.

Radio and check buttons have a gadget-value of #t or #f,
depending on whether or not the button is selected. For example:

gadget-value(*my-check-button*)

returns #f if the check button is not selected.

You can set the gadget-value with the := operator.

gadget-value(*my-check-button*) := #t;

Supplying a value for a push button is a useful way of sending
information to your application. The value of a push button can be used
by any callback defined on the push button.

You can make any push button the default option for the frame it is a
part of using the default?: init-keyword when defining the button. By
default, this is #f, but if specified as #t, the button is
displayed on the screen with a heavier border, and any callback defined
for the button is invoked by pressing the RETURN key on the keyboard, as
well as by clicking the button itself.

define variable *my-default-button*
 := make(<push-button>,
 label: "Click me or press Return",
 default?: #t));

It is good practice to define a default button in most dialog boxes, so
that the user can easily perform a default action. Generally, the OK
or Yes button in a dialog box is the most acceptable default button,
though for particularly destructive operations you should consider
another choice.

Buttons are intrinsically “non-stretchy” objects. That is, the width of
a button is computed from the length of its label, and the button will
not automatically size itself according to the size of the sheet that it
is a part of. You should use the max-width: init-keyword to make a
button fill all the available space, by setting it to the constant
$fill.

Thus, the button created by

make(<button>, label: "Red");

will only be as wide as the label it is given—”Red”, in this case—but
the button created by

make(<button>, label: "Red", max-width: $fill);

will have a width that is determined by the sheet that it is a child of
and will still have the same minimum width, so it cannot be resized too
small.

Menu buttons

Standard buttons described buttons that are all
displayed in windows on the screen. For each of those buttons, there is
an analogous type of button that is displayed as an item in a menu.

[image: image0] The <push-menu-button> class is used to create a standard
menu item. This class is the menu-specific equivalent to <push-button>.

Like push buttons, you can make a given push menu button the default
command in a menu by specifying the default?: init-keyword. The label
for a default menu button is highlighted in the menu that it is
displayed in, usually by displaying the label using a bold font.

[image: image1] The <radio-menu-button> class is used to create a menu item
that has the properties of a radio button. The value of a radio menu
button may be toggled on and off, just like a radio button, and from any
group of radio menu buttons, only one may be on at any one time.

In appearance, a selected radio menu button is usually shown with a
small dot to the left of the command name on the menu.

As with radio buttons, radio menu buttons are most useful when used in
group form. The class <radio-menu-box> is provided for this purpose.
See Menu boxes for more details.

[image: image2] The <check-menu-button> class is used to create a menu item
that has the properties of a check button. The value of a check menu
button may be toggled on and off, just like a check button, by
repeatedly choosing the menu item. In a group of check menu buttons, any
number may be on at any one time.

In appearance, a selected check menu button is usually shown with a
check mark to the left of the command name on the menu.

For more information about creating menus, see Adding Menus To The Application.

Collection gadgets

Collection gadgets are gadgets whose items can consist of any Dylan
collection. They are typically used to group together a number of
related objects, such as items in a list or a group of buttons. All
collection gadgets are general instances of the protocol class
<collection-gadget>.

Note that collection gadgets are not actually defined as collections of
gadgets, as you might assume. Instead, they contain a sequence of items,
such as strings, numbers, or symbols, that describe the contents of the
collection gadget. It is worth emphasizing this distinction since,
visually, collection gadgets often look like groups of individual
gadgets.

Useful properties of collection gadgets

All collection gadgets share certain essential properties. These can
either be specified when an instance of a gadget is created, using an
init-keyword, or set interactively via a slot value.

	gadget-items

	This slot contains a Dylan collection representing the
contents of a collection gadget.

	gadget-label-key

	The label key is a function that is used to compute the label of each
item in a collection gadget, and therefore defines the “printed
representation” of each item. If gadget-label-key is not explicitly
defined for a collection gadget, its items are labeled numerically.

	gadget-value-key

	Similar to the label key, the value key is used to compute a value
for each item in a collection gadget. The gadget value of a
collection gadget is the value of any selected items in the
collection gadget.

	gadget-selection-mode

	The selection mode of a collection gadget determines how many items
in the gadget can be selected at any time. This takes one of three
symbolic values: #"single" (only one item can be selected at any
time), #"multiple" (any number of items can be selected at once),
#"none" (no items can be selected at all).

Note that you can use gadget-selection-mode to read the selection
mode of a gadget, but you cannot reset the selection mode of a gadget
once it has been created. Instead, use the selection-mode:
init-keyword to specify the selection mode when the gadget is
created.

Generally, different subclasses of collection gadget specify this
property automatically. For example, a radio box is single selection,
and a check box is multiple selection.

To specify any of these slot values as an init-keyword, remove the
“gadget-” prefix. Thus, the gadget-value-key slot becomes the
value-key: init-keyword.

Button boxes

Groups of functionally related buttons are placed in button boxes. The
superclass for button boxes is the <button-box> class. The two most
common types of button box are <check-box> (groups of check buttons)
and <radio-box> (groups of radio buttons). In addition, <push-box>
(groups of push buttons) can be used.

[image: _images/pushbox.png]
A push box

Note

You should be aware of the distinction between the use of the
term “box” in DUIM, and the use of the term “box” in some other
development documentation (such as Microsoft’s interface guidelines).
In the context of DUIM, a box always refers to a group containing
several gadgets (usually buttons). In other documentation, a box may
just be a GUI element that looks like a box. For example, a check
button may sometimes be called a check box.

A <radio-box> is a button box that contains one or more radio buttons,
only one of which may be selected at any time.

[image: _images/rbox.png]

define variable *my-radio-box*
 := make(<radio-box>, items: #[1, 2, 3],
 value: 2);

Note the use of value: to choose the item initially selected when the
box is created.

For all boxes, the gadget-value is the selected button. In the
illustration above the gadget-value is 2.

? gadget-value(*my-radio-box*);
=> 2

You can set the gadget-value to 3 and the selected button changes to
3:

gadget-value(*my-radio-box*) := 3;

As with all collection gadgets, use gadget-items to set or return the
collection that defines the contents of a radio box.

? gadget-items(*my-radio-box*);
=> #[1, 2, 3]

[image: _images/rangebox.png]

If you reset the gadget-items in a collection gadget, the gadget
resizes accordingly:

gadget-items(*my-radio-box*) := range(from: 5, to: 20, by: 5);

A check box, on the other hand, can have any number of buttons selected.
The following code creates a check box. After creating it, select the
buttons labelled 4 and 6, as shown below.

[image: _images/cbox.png]

define variable *my-check-box*
 := make(<check-box>, items: #(4, 5, 6));

You can return the current selection, or set the selection, using
gadget-value.

gadget-value(*my-check-box*);
=> #[4, 6]
gadget-value(*my-check-box*) := #[5, 6];

Remember that for a multiple-selection collection gadget, the gadget
value is a sequence consisting of the values of all the selected items.
The value of any given item is calculated using the value key.

Menu boxes

In addition to groups of buttons, groups of menu items can be created.
All of these are subclasses of the class <menu-box>.

[image: image5] A <push-menu-box> is a group of several standard menu items.
A <push-menu-box> is the menu-specific version of <push-box>. This
is the default type of <menu-box>.

[image: image6] A <radio-menu-box> is a group of several radio menu items. A
<radio-menu-box> is the menu-specific version of <radio-box>.

[image: image7] A <check-menu-box> is a group of several check menu items. A
<check-menu-box> is the menu-specific version of <check-box>.

All the items in a menu box are grouped together on the menu in which
they are placed. A divider separates these items visually from any other
menu buttons or menu boxes placed above or below in the menu. It is
useful to use push menu boxes to group together related menu commands
such as Cut, Copy, and Paste, where the operations performed by
the commands are related, even though the commands themselves do not act
as a group. Note that you can also use command tables to create and
group related menu commands. See Using Command Tables for more details.

Lists

A <list-box>, although it has a different appearance than a
<radio-box>, shares many of the same characteristics:

make(<list-box>, items: #(1, 2, 3));

[image: _images/lbox.png]
A list box

As with other boxes, gadget-value is used to return and set the
selection in the box, and gadget-items is used to return and set the
items in the box.

Like button boxes, list boxes can be specified as either single,
multiple, or no selection when they are created, using the
selection-mode: init-keyword. Unlike button boxes, different values
for selection-mode: do not produce gadgets that are different in
appearance; a single selection list box is visually identical to a
multiple selection list box.

Two init-keywords let you specify different characteristics of a list
box.

The borders: init-keyword controls the appearance of the border placed
between the list itself, and the rest of the gadget. It takes a number
of symbolic arguments, the most useful of which are as follows:

	#"sunken" The list looks as if it is recessed compared to the
surrounding edge of the gadget.

	#"raised" The list looks as if it is raised compared to the
surrounding edge of the gadget.

	#"groove" Rather than raising or lowering the list with respect to
its border, a groove is drawn around it.

	#"flat" No border is placed between the list and the edges of the
gadget.

The scroll-bars: init-keyword controls how scroll bars are placed
around a list box. It takes the following values:

	#"vertical" The list box is given a vertical scroll bar.

	#"horizontal" The list box is given a horizontal scroll bar.

	#"both" The list box is given both vertical and horizontal scroll
bars.

	#"none" The list box is given no scroll bars.

	#"dynamic" The list box is given vertical and horizontal scroll
bars only when they are necessary because of the amount of
information visible in the list.

[image: image8] The <option-box> class is another list control that you will
frequently use in your applications. This gadget is usually referred to
in Microsoft documentation as a drop-down list box. It differs from a
standard list box in that it looks rather like a text field, with only
the current selection visible at any one time. In order to see the
entire list, the user must click on an arrow displayed to the right of
the field.

make(<option-box>, items: #("&Red", "&Green", "&Blue"));

Notice the use of the & character to denote a keyboard shortcut.
Pressing the R key when the option box has focus selects Red, pressing G
selects Green, and pressing B selects Blue.

Like list boxes, option boxes also support the borders: and
scroll-bars: init-keywords.

The <combo-box> class is visually identical to the <option-box>
class, except that the user can type into the text field portion of the
gadget. This is a useful way of allowing the user to specify an option
that is not provided in the list, and a common technique is to add any
new options typed by the user into the drop-down list part of the gadget
for future use.

Like list boxes and option boxes, combo boxes support the borders: and
scroll-bars: init-keywords.

Display controls

Display controls describe a set of collection gadgets that provide a
richer set of features for displaying more complex objects, such as
files on disk, that may have properties such as icons associated with
them.

A number of display controls are available that, like lists, are used to
display information in a variety of ways.

Tree controls

The <tree-control> class (also known as a tree view control in
Microsoft documentation) is a special list control that displays a set
of objects in an indented outline based on the logical hierarchical
relationship between the objects. A number of slots are available to
control the information that is displayed in the control, and the
appearance of that information.

[image: _images/tree.png]
A tree control

The tree-control-children-generator slot contains a function that is
used to generate any children below the root of the tree control. It is
called with one argument, which can be any instance of <object> [http://opendylan.org/books/drm/Object_Classes#object].

The icon-function: init-keyword specifies a function that returns an
icon to display with each item in the tree control. The function is
called with the item that needs an icon as its argument, and it should
return an instance of <image> as its result. Typically, you might want
to define an icon function that returns a different icon for each type
of item in the control. For example, if the control is used to display
the files and directories on a hard disk, you would want to return the
appropriate icon for each registered file type.

Typically, icons should be no larger than 32 pixels high and 32 pixels
wide: if the icon function returns an image larger than this, then there
may be unexpected results.

Note that there is no setter for the icon function, so the function
cannot be manipulated after the control has been created. In the example
below, $odd-icon and $even-icon are assumed to be icons that have
been defined.

make(<tree-control>,
 roots: #[1],
 children-generator:
 method (x) vector(x * 2, 1 + (x * 2)) end,
 icon-function: method (item :: <integer>)
 case
 odd?(item) => $odd-icon;
 even?(item) => $even-icon;
 end);

Like list boxes and list controls, tree controls support the
scroll-bars: init-keyword.

List controls

[image: image9] The <list-control> class is used to display a collection of
items, each item consisting of an icon and a label. In Microsoft
documentation, this control corresponds to the List View control in its
“icon”, “small icon”, and “list” views. Like other collection gadgets,
the contents of a list control is determined using the gadget-items
slot.

Like tree controls, list controls support the icon-function:
init-keyword. Note, however, that unlike tree controls, you can also use
the list-control-icon-function generic function to retrieve and set
the value of this slot after the control has been created.

A number of different views are available, allowing you to view the
items in different ways. These views let you choose whether each item
should be accompanied by a large or a small icon. You can specify the
view for a list control when it is first created, using the view:
init-keyword. After creation, the list-control-view slot can be used
to read or set the view for the list control.

The list control in the example below contains a number of items, each
of which consists of a two element vector.

	The first element (a string) represents the label for each item in
the list control.

	The second element (beginning with “reply-”) represents the value of
each item in the list control—in this case the callback function that
is invoked when that item is double-clicked.

The example assumes that you have already defined these callback
functions elsewhere.

make(<list-control>,
 items: vector(vector("Yes or No?", reply-yes-or-no),
 vector("Black or White?",
 reply-black-or-white),
 vector("Left or Right?", reply-left-or-right),
 vector("Top or Bottom?", reply-top-or-bottom),
 vector("North or South?",
 reply-north-or-south)),
 label-key: first,
 value-key: second,
 scroll-bars: #"none",
 activate-callback: method (sheet :: <sheet>)
 gadget-value(sheet)(sheet-frame(sheet))
 end);

In the example above, first is used to calculate the label that is
used for each item in the list, and second specifies what the value
for each item is. The activate callback examines this gadget value, so
that the callback specified in the items: init-keyword can be used.
Note that the scroll-bars: init-keyword can be used to specify which,
if any, scroll bars are added to the control.

Like list boxes, and tree controls, list controls support the borders:
and scroll-bars: init-keywords.

Table controls

[image: image10] The <table-control> class (which corresponds to the List
View control in its “report” view in Microsoft documentation) allows you
to display items in a table, with information divided into a number of
column headings. This type of control is used when you need to display
several pieces of information about each object, such as the name, size,
modification date and owner of a file on disk. Typically, items can be
sorted by any of the columns shown, in ascending or descending order, by
clicking on the column header in question.

Because a table control displays more complex information than a list
control, two init-keywords, headings: and generators: are used to
create the contents of a table control, based on the control’s items.

	headings: This takes a sequence of strings that are used as the
labels for each column in the control.

	generators: This takes a sequence of functions. Each function is
invoked on each item in the control to calculate the information
displayed in the respective column.

Thus, the first element of the headings: sequence contains the heading
for the first column in the control, and the first function in the
generators: sequence is used to generate the contents of that column,
and so on for each element in each sequence, as shown here:

[image: _images/table-headings-and-contents.png]
Defining column headings and contents in table controls

Note that the sequences passed to both of these init-keywords should
contain the same number of elements, since there must be as many column
headings as there are functions to generate their contents.

Like list boxes and list controls, table controls support the borders:
and scroll-bars: init-keywords. Like list controls, the view:
init-keyword and table-control-view slot can be used to manipulate the
view used to display the information: choose between #"table",
#"small-icon", #"large-icon", and #"list". The widths:
init-keyword can be used to determine the width of each column in a
table control when it is created. This column takes a sequence of
integers, each of which represents the width in pixels of its respective
column in the control.

Spin boxes

A <spin-box> is a collection gadget that only accepts a limited set of
ordered values as input. To the right of the text field are a pair of
buttons depicting an upward pointing|image11| arrow and a downward
pointing arrow. Clicking on the buttons changes the value in the text
field, incrementing or decrementing the value as appropriate.

A typical spin box might accept the integers 0-50. You could specify a
value in this spin box either by typing it directly into the text field,
or by clicking the up or down arrows until the number 50 was displayed
in the text field.

The gadget-items slot is used to specify the possible values that the
spin box can accept.

Consider the following example:

make(<spin-box>, items: range(from: 6, to: 24, by: 2));

This creates a spin box that accepts any even integer value between 6
and 24.

Text gadgets

Several text gadgets are provided by the DUIM-Gadgets library. These
represent gadgets into which the user of your application can type
information. The superclass of all text gadgets is the <text-gadget>
class.

There are three kinds of text gadget available: text fields, text
editors, and password fields.

Useful properties of text gadgets

You an initialize the text string in a text gadget using the text:
init-keyword. The gadget-text slot can then be used to manipulate this
text after the gadget has been created.

The value-type: init-keyword (and the gadget-value-type slot) is
used to denote that a given text gadget is of a particular type.
Currently, three types are supported: <string> [http://opendylan.org/books/drm/Collection_Classes#string], <integer> [http://opendylan.org/books/drm/Number_Classes#integer], and
<symbol> [http://opendylan.org/books/drm/Simple_Object_Classes#symbol]. The type of a text gadget defines the way that the text
typed into a text gadget is treated by gadget-value. The default is
<string> [http://opendylan.org/books/drm/Collection_Classes#string].

The gadget-text slot always returns the exact text contents of a
text gadget. However, gadget-value interprets the text and returns a
value of the proper type, depending on the gadget-value-type, or #f
if the text cannot be parsed. Setting the gadget-value “prints” the
value and inserts the appropriate text into the text field.

For example, if you specify value-type: <integer>, then gadget-text
always returns the exact text typed into the text gadget, as an instance
of <string> [http://opendylan.org/books/drm/Collection_Classes#string], even if the text contains non-integer characters.
However, gadget-value can only return an instance of <integer> [http://opendylan.org/books/drm/Number_Classes#integer],
having interpreted the gadget-text. If the gadget-text contains any
non-integer characters, then interpretation fails, and gadget-value
returns #f.

Note that the combo boxes and spin boxes also contains a textual
element, though they are not themselves text gadgets.

Text fields

The <text-field> class is a single line edit control, and is the most
basic type of text gadget, consisting of a single line into which you
can type text.

[image: _images/textfld.png]

make(<text-field>, value-type: <integer>, text: "1234");

Use the``x-alignment:`` init-keyword to specify how text typed into the
field should be aligned. This can be either #"left", #"center", or
#"right", the default being #"left".

Text editors

The <text-editor> class is a multiple line edit control, used when
more complex editing controls and several lines of text are needed by
the user.

[image: _images/texted.png]

The columns: and lines: init-keywords control the size of a text
editor when it is created. Each init-keyword takes an integer argument,
and the resulting text editor has the specified number of character
columns (width) and the specified number of lines (height).

In addition, text editors support the scroll-bars: init-keyword
described in Lists.

make(<text-editor>, lines: 10, fixed-height?: #t);

Password fields

The <password-field> class provides a specialized type of single line
edit control for use in situations where the user is required to type
some text that should not be seen by anyone else, such as when typing in
a password or identification code. Visually, a password field looks
identical to a text field. However, when text is typed into a password
field, it is not displayed on the screen; a series of asterisks may be
used instead.

[image: _images/passwd.png]

Range gadgets

Range gadgets are gadgets whose gadget-value can be any value on a
sliding scale. The most obvious examples of range gadgets are scroll
bars and sliders. The protocol class of all range gadgets is the class
<value-range-gadget>.

Useful properties of range gadgets

When creating a range gadget, you must specify the range of values over
which the gadget-value of the gadget can vary, using the
gadget-value-range slot. An instance of type <range> [http://opendylan.org/books/drm/Collection_Classes#range] must be passed
to this slot. You can initialize this value when creating a value range
gadget using the value-range: init-keyword. The default range for any
value range gadget is the set of integers from 0 to 100.

When first created, the value of a range gadget is the minimum value of
the gadget-value-range of the gadget, unless value: is specified. As
with all other gadgets, use gadget-value to return or set this value,
as shown in Returning or setting the gadget-value of a scroll-bar, which
illustrates this behavior for a scroll bar.

[image: _images/tour-24.png]
Returning or setting the gadget-value of a scroll-bar

Scroll bars

The <scroll-bar> class is the most common type of value range gadget.
Interestingly, it is probably also the class that is explicitly used the
least. Because most gadgets that make use of scroll bars support the
scroll-bars: init-keyword; you rarely need to explicitly create an
instance of <scroll-bar> and attach it to another gadget.

define variable *my-scroll-bar* :=
 contain(make(<scroll-bar>,
 value-range: range(from: 0, to: 50)));

On the occasions when you do need to place scroll bars around a gadget
explicitly, use the scrolling macro.

scrolling (scroll-bars: #"vertical")
 make(<radio-box>,
 orientation: #"vertical",
 items: range(from: 1, to: 50))
end

Sliders

Sliders can be created in much the same way as scroll bars. By default,
the gadget value is displayed alongside the slider itself.

[image: image12] You can display tick marks along the slider using the
tick-marks: init-keyword, which is either #f (no tick marks are
displayed) or an integer, which specifies the number of tick marks to
display. The default is not to show tick marks.

If tick marks are used, they are distributed evenly along the length of
the slider. You can use as many or as few tick marks as you wish, and
you are advised to use a number that is natural to the user, such as 3,
5, or 10. While it is possible to use oddball numbers such as 29, this
could confuse the user of your application, unless there is a compelling
reason to do so.

define variable *my-slider*
 := make(<slider>,
 value-range: range(from: 0, to: 50)
 tick-marks: 10);

Progress bars

[image: image13] The <progress-bar> class is used to display a dialog that
provides a gauge illustrating the progress of a particular task.
Possible uses for progress bars include the progress of an installation
procedure, downloading e-mail messages from a mail server, performing a
file backup, and compiling one or more files of source code. Any
situation in which the user may have to wait for a task to complete is a
good candidate for a progress bar.

Assigning callbacks to gadgets

To make gadgets actually do something, you have to assign them callback
functions. A callback is a function that is invoked when a particular
event occurs on a gadget, such as pressing a button. When the user
presses a button, the appropriate callback method is invoked and some
behavior, defined by you, occurs. It is the main way of providing your
applications with some kind of interactive functionality. Most classes
of gadget have a number of different callbacks available. Like gadget
properties, different classes of gadget can have different callback
types available.

The most common type of callback is the activate callback. This is the
callback that is invoked whenever a general instance <action-gadget>
is activated: for instance, if a push button is clicked. All the gadget
classes you have seen so far are general instances of <action-gadget>.

The following code creates a push button that has an activate callback
defined:

make(<push-button>,
 label: "Hello",
 activate-callback: method (button)
 notify-user("Pressed button!",
 owner: button)
 end)));

The notify-user function is a useful function that lets you display a
message in a dialog.

Now when you click on the button, a notification pops up saying “Pressed
button!”

[image: _images/notify.png]
Simple behavior of notify-user

Two callbacks are unique to general instances of <value-gadget> : the
value-changing and the value-changed callbacks. The value-changing
callback is invoked as the gadget value of the gadget changes, and the
value-changed callback is invoked when the value has changed, and is
passed back to the gadget.

In practice, a value-changing callback is of most use in a gadget whose
value you need to monitor constantly, such as a <value-range-gadget>.
A value-changed callback is of most use when the user enters a value
explicitly and returns it to the application, for instance by clicking
on a button or pressing RETURN.

In a text field, for example, a value-changing callback would be invoked
whenever a character is typed in the text field, whereas a value-changed
callback would be invoked once the user had finished typing and had
returned the value to the gadget. For a text field, the value-changed
callback is usually more useful than the value-changing callback.

contain(make(<text-field>,
 value-changed-callback:
 method (gadget)
 notify-user
 ("Changed to %=", gadget-value(gadget))
 end));

A tour of layouts

Layouts determine how the elements that make a GUI are presented on the
screen. Together with gadgets, layouts are an important type of sheet
that you need to be familiar with in order to develop basic DUIM
applications. Support for layouts is provided by the DUIM-Layouts
library.

You can think of layouts as containers for gadgets and other layouts.
They have little or no physical substance on the screen, and simply
define the way in which other elements are organized. The sheet at the
top of the sheet hierarchy will always be a layout.

Any layout takes a number of children, expressed as a sequence (usually
a vector), and lays them out according to certain constraints. Each
child must be an instance of a DUIM class. Typically, the children of
any layout will be gadgets or other layouts.

There are six main classes of layouts, as follows:

	<column-layout>

	This lays out its children in a single column, with all its children
left-aligned by default.

	<row-layout>

	This lays out its children in a single row.

	<pinboard-layout>

	This does not constrain the position of its children in any way. It
is up to you to position each child individually, like pins on a
pinboard.

	<fixed-layout>

	This class is similar to pinboard layouts, in that
you must specify the position of each child. Unlike pinboard layouts,
however, you must also specify the size of each child.

	<stack-layout>

	This lays out its children one on top of another,
with all the children aligned at the top left corner by default. It
is used to design property sheets, tab controls, or wizards, which
contain several layouts, only one of which is visible at any one
time.

	<table-layout>

	This lays out its children in a table, according to
a specified number of rows and columns.

Row layouts and column layouts

Create a column layout containing three buttons as follows:

contain(make(<column-layout>,
 children: vector(make(<push-button>, label: "One"),
 make(<push-button>, label: "Two"),
 make(<push-button>, label: "Three"))));

[image: _images/column.png]
Three button arranged in a column layout

Similarly, <row-layout> can be used to lay out any number of children
in a single row.

A number of different init-keywords can be used to specify the initial
appearance of any layouts you create. Using these init-keywords, you can
ensure that all children are the same size in one or both dimensions,
and that a certain amount of space is placed between each child. You can
also place a border of any width around the children of a layout.

To equalize the heights or widths of any child in a layout, use
equalize-heights?: #t or equalize-widths?: #t respectively. To
ensure that each child is shown in its entirety, the children are sized
according to the largest child in the layout, for whatever dimension is
being equalized.

The equalize-heights?: and equalize-widths?: init-keywords are
particularly useful when defining a row of buttons, when you want to
ensure that the buttons are sized automatically. In addition, remember
that each button can be specified as max-width: $fill to ensure that
the button is sized to be as large as possible, rather than the size of
its label.

To add space between each child in a layout, use spacing:, which
takes an integer value that represents the number of pixels of space
that is placed around each child in the layout. Use border: in much
the same way; specifying an integer value creates a border around the
entire layout which is that number of pixels wide. Notice that while
spacing: places space around each individual child in the layout,
border: creates a border around the entire layout. You can use
border-type: to specify whether you want borders to appear sunken,
raised, or flat.

Each of the init-keywords described above apply to both row layouts and
column layouts. The following init-keywords each only apply to one of
these classes.

Use x-alignment: to align the children of a column layout along the
x axis. This can be either #"left", #"right", or #"center",
and the children of the column layout are aligned appropriately. By
default, the children of a column layout are aligned along the left hand
side.

Use y-alignment: to align the children of a row layout along the y
axis. This can be either #"top", #"bottom", or #"center", and
the children of the column layout are aligned appropriately. By default,
the children of a row layout are aligned along the top.

Stack layouts

The <stack-layout> class is provided to let you create layout classes
in which only one child is visible at a time. They are used to implement
tab controls and wizards. In a stack layout, all children are placed on
top of one another, with each child aligned at the top left corner by
default.

make(<stack-layout>,
 children: vector(make(<list-box>, label: "List 1"
 items: #("One", "Two",
 "Three", "Four"),
 make(<list-box>, label: "List 2"
 items: #("Five", "Six",
 "Seven", "Eight"),
 make(<push-button>, label: "Finish")));

Pinboard layouts and fixed layouts

A pinboard layout is a framework that serves as a place to locate any
number of child gadgets. It has no built in layout information, so,
unless you specify coordinates explicitly, any object placed in a
pinboard layout is placed at the coordinates 0,0 (top left), with the
most recently created object on top.

In normal use, you should supply coordinate information for each child
to determine its position in the layout. You have complete flexibility
in positioning objects in a pinboard layout by giving each object
coordinates, as shown in the following example:

contain
 (make
 (<pinboard-layout>,
 children:
 vector (make(<push-button>, label: "One", x: 0, y: 0),
 make(<push-button>, label: "Two", x: 50,y: 50),
 make(<push-button>, label: "Three",
 x: 50, y: 100))));

[image: _images/pinboard.png]
Three buttons arranged in a pinboard layout

Any child in a pinboard layout obeys any size constraints that may apply
to it, whether those constraints have been specified by you, or
calculated by DUIM. For instance, any button you place on a pinboard
layout will always be large enough to display all the text in its label,
as shown in Three buttons arranged in a pinboard layout. The <fixed-layout>
class takes generalization of layouts a step further, by requiring that
you specify not only the position of every child, but also its size, so
that DUIM performs no constraint calculation at all. This class of layout
should only be used if you know exactly what size and position every child
in the layout should have. It might be useful, for instance, if you were
setting up a resource database in which the sizes and positions of a number
of sheets were specified, and were to be read directly into your application
code from this database. For most situations, however, you will not need to
use the <fixed-layout> class.

Using horizontally and vertically macros

The macros horizontally and vertically are provided to position
objects sequentially in a column layout or row layout. Using these
macros, rather than creating layout objects explicitly, can lead to
shorter and more readable code.

horizontally ()
 make(<push-button>, label: "One");
 make(<push-button>, label: "Two");
 make(<push-button>, label: "Three")
end;

[image: _images/row.png]
Three buttons arranged in a horizontal layout

vertically ()
 make(<push-button>, label: "One");
 make(<push-button>, label: "Two");
 make(<push-button>, label: "Three")
end;

You can specify any init-keywords that you would specify for an instance
of <row-layout> or <column-layout> using vertically and
horizontally. To do this, just pass the init-keywords as arguments to
the macro. The following code ensures that the row layout created by
horizontally is the same width as the button with the really long
label. In addition, the use of max-width: in the definitions of the
two other buttons ensures that those buttons are sized so as to occupy
the entire width of the row layout.

vertically (equalize-widths?: #t)
 horizontally ()
 make(<button>, label: "Red", max-width: $fill);
 make(<button>, label: "Ultraviolet", max-width: $fill);
 end;
 make(<button>,
 label: "A button with a really really long label");
end

A tour of sheets

Each unique piece of a window is a sheet. Thus, a sheet creates a
visible element of some sort on the screen. In any frame, sheets are
nested in a parent-child hierarchy. The DUIM-Sheets library provides
DUIM with many different types of sheet, and defines the behavior of
sheets in any application.

For basic DUIM applications, you do not need to be aware of sheet
protocols, and you do not need to define your own sheet classes, since
most of the sheet classes you need to use have been implemented for you
in the form of gadgets (A tour of gadgets) and layouts
(A tour of layouts).

Basic properties of sheets

All sheets, including gadgets and layouts, have a number of properties
that deal with the fairly low level implementation behavior of sheet
classes. When developing basic DUIM applications, you do not need to be
concerned with these properties for the most part, since gadgets and
layouts have been designed so as to avoid the need for direct low level
manipulation. However, if you design your own classes of sheet, you need
to support these properties.

	sheet-region

	The sheet region is used to define the area of the
screen that “belongs to” a sheet. This is essential for deciding in
which sheet a particular event occurs. For example, the
sheet-region for a gadget defines the area of the screen in which
its callbacks are invoked, should an event occur.

The sheet region is expressed in the sheet’s own coordinate system.
It can be an instance of any concrete subclass of <region>, but is
usually represented by the region class <bounding-box>.

The sheet-region is defined relative to the region of its parent,
rather than an absolute region of the screen.

	sheet-transform

	This maps the sheet’s coordinate system to the coordinate system of
its parent. This is an instance of a concrete subclass of
<transform>.

Providing the sheet transform means that you do not have to worry
about the absolute screen position of any given element of an
interface. Instead, you can specify its location relative to its
parent in the sheet hierarchy. For example, you can arrange gadgets
in an interface in terms of the layout that contains them, rather
than in absolute terms.

	sheet-parent

	This is #f if the sheet has no parent, or another
sheet otherwise. This slot is used to describe any hierarchy of
sheets.

	sheet-mapped?

	This is a boolean that specifies whether the sheet is
visible on a display, ignoring issues of occluding windows.

	sheet-frame

	This returns the frame a sheet belongs to.

Many sheet classes, such as <menu-bar> or <tool-bar>, have single
or multiple children, in which case they have additional attributes:

	
	sheet-children The value of this slot is a sequence of sheets. Each

	sheet in the sequence is a child of the current sheet.

	Methods to add, remove, and replace a child.

	Methods to map over children.

Some classes of sheet — usually gadgets — can receive input. These have:

sheet-event-queue

	This is a list of all the events currently queued and waiting for
execution for a given sheet.

Methods for <handle-event>

	Each class of sheet must have methods for <handle-event> defined,
so that callbacks may be described for the sheet class.

Sheets that can be repainted have methods for handle-repaint. Sheets
that can display output have a sheet-medium slot. As a guide, all
gadgets can be repainted and can display output, and no layouts can be
repainted or display output.

A tour of frames

As you will have seen if you worked through the task list manager
example application, frames are the basic components used to display
DUIM objects on-screen. Every window in your application is a general
instance of <frame>, and contains a hierarchy of sheets. Frames
control the overall appearance of the entire window, and organize such
things as menu bars, tool bars, and status bars.

A subclass of <frame>, <simple-frame>, is the way to create basic
frames. Usually, you will find it most convenient to define your own
classes of frame by subclassing <simple-frame>.

The event loop associated with a frame is represented by a queue of
instances, each instance being a subclass of <event>. The most
important events are subclasses of <device-event>, for example,
<button-press-event> and <key-press-event>. Unless you intend
defining your own event or sheet classes, you do not need to understand
events.

Different types of frame are provided, allowing you to create normal
windows, as well as dialog boxes (both modal and modeless), property
pages and wizards.

Support for frames is provided by the DUIM-Frames library.

Creating frames and displaying them on-screen

To create an instance of a frame class, use make, as you would any
other class. To display an instance of a frame on the screen, use the
function start-frame. This takes as an argument a name bound to an
existing frame, or an expression (including function and macro calls)
that evaluates to a frame instance.

For example, to create a simple frame that contains a single button, use
the following code:

start-frame(make(<simple-frame>,
 title: "Simple frame",
 layout:
 make(<push-button>,
 label: "A button on a simple frame")));

[image: _images/frame.png]
A simple frame

Note that normally you should define your own subclasses or
<simple-frame> and call start-frame on instances of these, rather
than creating direct instances of <simple-frame>.

Useful properties of frames

You can specify a wide variety of properties for any instance or class
of frame. This section describes some of the most common properties you
might want to use. Naturally, when you create your own classes of frame
by subclassing <simple-frame>, you can define new properties as well.
For more information on creating your own frame classes, see
Defining new classes of frame, and review the description of the task
list manager in Improving The Design and Adding Menus To The Application.

The frame-pane property is used to define every discrete element in a
frame class. Exactly what constitutes a discrete element is, to a large
extent, up to the programmer. As a guide, every pane definition creates
an accessor just like a slot accessor, and so any element whose value
you might want to retrieve should be defined as a pane. Individual
gadgets, layouts, and menus are all generally expressed as panes in a
frame definition. When defining a frame class, use the pane option to
define each pane.

The frame-layout property is used to specify the topmost layout in the
sheet hierarchy that forms the contents of a frame class. This take an
instance of any subclass of <layout> which may itself contain any
number of gadgets or other layouts as children. The children of this
layout are themselves typically defined as panes within the same frame
definition. When defining a frame class, use the layout option to
define the topmost layout.

Other major components of a frame can be specified using
frame-menu-bar, frame-tool-bar, and frame-status-bar. Each
property takes an instance of the corresponding gadget class as its
value. You can also use frame-command-table to specify a command table
defining all the menu commands available in the menu bar. All of these
slots have corresponding options you can set when creating your own
frame classes.

To determine the initial size and position of any frame, use
frame-width, frame-height, frame-x, and frame-y. Each of
these properties takes an integer argument that represents a number of
pixels. Note that frame-x and frame-y represent the position of the
frame with respect to the top left hand corner of the screen.

Sometimes, it may be useful to fix the height or width of a frame. This
can be done using frame-fixed-width? and frame-fixed-height?, both
of which take a boolean value. Setting frame-resizable? to #f fixes
both the width and height of a frame.

Defining new classes of frame

As described in Defining a new frame class, the define frame
macro is used to create new classes of frame. The bulk of the
definition of any new frame is split into several parts:

	The definition of any slots and init-keywords you want available for
the new class of frame.

	The definition of any panes that should be used in the new class of
frame.

	The definition of other components that you wish to include, such as
a menu bar, status bar, and so on.

Slots and init-keywords can be used to let you (or the user of your
applications) set the properties of any instances of the new frame class
that are created.

Panes control the overall appearance of the new class of frame. You need
to define panes for any GUI elements you wish to place in the frame.

Specifying slots for a new class of frame

As with any other Dylan class, you can use standard slot options to
define slots for any new class of frame. This includes techniques such
as setting default values, specifying init-keyword names, and specifying
whether or not an init-keyword is required.

The following example defines a subclass of <simple-frame> that
defines an additional slot that can be set to a date and time. The
default value of the slot is set to the current date and time using an
init expression. So that you can provide an initial value for the slot,
it is defined with an init-keyword of the same name.

define frame <date-frame> (<simple-frame>)
 slot date :: <date> = current-date(),
 init-keyword: date:;
 // Other stuff here
end class <date-frame>;

Specifying panes for a new class of frame

In the same way that you can define slots, you can define panes for a
frame class using pane options. Panes may be used to define all the
visual aspects of a frame class, including such things as:

	The layouts and gadgets displayed in the frame

	The menu bar, menus, and menu commands available in the frame

	Additional components, such as tool bars or status bars

Typically, the definition for any pane has the following syntax:

pane *pane-name* (*pane-owner*) *pane-definition* ;

This breaks down into the following elements:

	The reserved word pane.

	The name you wish to give the pane, which acts as a slot accessor for
the frame, to let you retrieve the pane.

	A space in which you can bind the owner of the pane (usually the
frame itself) to a local variable for use inside the pane definition

	The definition of the pane

Once you have defined all the visual components of a frame using an
arrangement of panes of your choice, each major component needs to be
included in the frame using an appropriate clause. For example, to
include a tool bar, having created a pane called app-tool-bar that
contains the definition of the tool bar itself, you need to include the
following code at the end of the definition of the frame:

tool-bar (frame) frame.app-tool-bar;

The major components that need to be activated in any frame definition
are the top level layout, menu bar, tool bar, and status bar.

The following example shows how to define and activate panes within a
frame.

Three panes are defined:

	button A push button that contains a simple callback.

	status A status bar.

	main-layout A column layout that consists of the button pane,
together with a drawing pane.

define frame <example-frame> (<simple-frame>)
 ... other code here

 // pane definitions
 pane button (frame)
 make(<push-button>,
 label: "Press",
 activate-callback:
 method (button)
 notify-user (format-to-string ("Pressed button"),
 owner: frame)
 end);

 pane status (frame)
 make(<status-bar>);

 pane main-layout (frame)
 vertically (spacing: 10)
 horizontally (borders: 2, x-alignment: #"center")
 frame.button;
 end;
 make(<drawing-pane>,
 foreground: $red);
 end;

 ... other code here

 // activate components of frame
 layout (frame) frame.main-layout;
 status-bar (frame) frame.status;

 // frame title
 keyword title: = "Example Frame";
end frame <example-frame>;

The following method creates an instance of an <example-frame>.

The simplest way to create an example frame is by calling this method
thus: make-example-frame();.

define method make-example-frame => (frame :: <example-frame>)
 let frame
 = make(<example-frame>);
 start-frame(frame);
end method make-example-frame;

For a more complete example of how to define your own class of frame for
use in an application, see the chapters that cover the development of
the Task List Manager in this manual (Chapters Designing A Simple DUIM Application to
Using Command Tables).

Overview of dialogs

Dialog boxes are a standard way of requesting more information from the
user in order to proceed with an operation. Typically, dialog boxes are
modal — that is, the operation cannot be continued until the dialog is
dismissed from the screen. Whenever an application requires additional
information from the user before carrying out a particular command or
task, you should provide a dialog to gather information.

For general purposes, you can create your own custom dialog boxes using
frames: the class <dialog-frame> is provided as a straightforward way
of designing frames specifically for use as dialogs. See A tour of
frames for an introduction to frames.

For commonly used dialog boxes, DUIM provides you with a number of
convenience functions that let you use predefined dialogs in your
applications without having to design each one specifically. These
convenience functions use pre-built dialog interfaces supplied by the
system wherever possible,. This not only makes them more efficient, it
also guarantees that the dialogs have the correct look and feel for the
system for which you are developing.

Many systems, for example, provide pre-built interfaces for the Open,
Save As, Font, and similar dialog boxes. By using the functions
described in this section, you can guarantee that your application uses
the dialog boxes supplied by the system wherever they are available.

The most commonly used convenience function is notify-user, which you
have already seen. This function provides you with a straightforward way
of displaying an alert message on screen in whatever format is standard
for the target operating system.

contain(make(<push-button>,
 label: "Press me!",
 activate-callback:
 method (gadget)
 notify-user
 (format-to-string ("You pressed me!"))
 end));

The example above creates a push button which, when pressed, calls
notify-user to display message.

The common Open File and Save File As dialogs can both be generated
using choose-file. The direction: keyword lets you specify a
direction that distinguishes between the two types of dialog: thus, if
the direction is #"input", a file is opened, and if the direction is
#"output" a file is saved.

choose-file(title: "Open File", direction: #"input");
choose-file(title: "Save File As", direction: #"input");

Note that DUIM provides default titles based on the specified direction,
so you need only specify these titles if you want to supply a
non-standard title to the dialog.

Further examples of this function can be found in Handling files in
the task list manager.

The convenience functions choose-color and choose-text-style
generate the common dialogs for choosing a color and a font
respectively. Use choose-color when you need to ask the user to choose
a color from the standard color palette available on the target
operating system, and use choose-text-style when you want the user to
choose the font, style, and size for a piece of text.

Several other convenience dialogs are provided by DUIM. The following is
a complete list, together with a brief description of each. For more
information on these dialogs, please refer to the DUIM Reference
Manual.

choose-color — Choose a system color.

choose-directory — Choose a directory on disk.

choose-file — Choose an input or output file.

choose-from-dialog — Choose from a list presented in a dialog.

choose-from-menu — Choose from a list presented in a popup menu

choose-text-style — Choose a font.

notify-user — Provide various kinds of notification to the user.

There are a number of standard dialogs provided by Windows that are not
listed above. If you wish to use any of them, you must either use the
Win32 control directly, or you must emulate the dialog yourself by
building it using DUIM classes.

Where to go from here

This concludes a fairly basic tour of the major functionality provided
by DUIM. Other topics that have not been covered in this tour include
colors, fonts, images, generic drawing properties, and the functionality
provided to for defining your own sheets and handling events.

From here, you can refer to two other sources of information.

	If you have not already done so, go back and study the chapters that
cover the development of the Task List Manager application (Designing A Simple DUIM Application
to Adding Callbacks to the Application inclusive). Try building the project in the
development environment, experiment with the code, and extend the
application in any way you wish.

	A number of DUIM examples are supplied with Open Dylan, in
addition to those discussed in this book. In the environment, choose
Tools > Open Example Project to display the Open Example Project
dialog, and try some of the examples listed under the DUIM category.

	For complete information on everything provided by DUIM, look at the
DUIM Reference Manual. This contains a complete description of
every interface exported by DUIM, together with examples where
relevant. The reference manual also provides further information
about how you should use DUIM, and the organization of the DUIM class
hierarchy.

 Copyright 2011, Dylan Hackers.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 previous |

 	Building Applications With DUIM

Source Code For The Task List Manager

For completeness, here is the full source code for both versions of the
task list manager. If you have followed the example given in Designing A Simple DUIM Application
through Using Command Tables from the beginning, then your code should be the
same as the code given in A task list manager using menu gadgets. The
source code for the second version of the task list manager, using command
tables, is given in A task list manager using command tables.

A task list manager using menu gadgets

This section contains the complete source code to the first complete
design of the task list manager, described in Chapters Improving The Design
to Adding Callbacks to the Application. To load this code into the environment, choose
Tools > Open Example Project from any window in the environment. The
code in this section can be loaded by choosing Task List 1 in the
Documentation category of the Open Example Project dialog.

Contents of the file frame.dylan :

Module: task-list
Synopsis: Task List Manager.
Author: Functional Objects, Inc.
Copyright: Original Code is Copyright (c) 1995-2004 Functional Objects, Inc.
 All rights reserved.
License: See License.txt in this distribution for details.
Warranty: Distributed WITHOUT WARRANTY OF ANY KIND

define constant $priority-items
 = #(#("Low", #"low"),
 #("Medium", #"medium"),
 #("High", #"high"));

define frame <task-frame> (<simple-frame>)
 slot frame-task-list :: <task-list> = make(<task-list>);

 // definition of menu bar
 pane task-menu-bar (frame)
 make(<menu-bar>,
 children: vector(frame.file-menu,
 frame.edit-menu,
 frame.task-menu,
 frame.help-menu));
 // definition of menus
 pane file-menu (frame)
 make(<menu>, label: "File",
 children: vector(frame.open-menu-button,
 frame.save-menu-button,
 frame.save-as-menu-button,
 frame.exit-menu-button));
 pane edit-menu (frame)
 make(<menu>, label: "Edit",
 children: vector(frame.cut-menu-button,
 frame.copy-menu-button,
 frame.paste-menu-button));
 pane task-menu (frame)
 make(<menu>, label: "Task",
 children: vector(frame.add-menu-button,
 frame.remove-menu-button));
 pane help-menu (frame)
 make(<menu>, label: "Help",
 children: vector(frame.about-menu-button));

 // definition of menu buttons

 // Commands in the File menu
 pane open-menu-button (frame)
 make(<menu-button>, label: "Open...",
 activate-callback: open-file,
 accelerator: make-keyboard-gesture(#"o", #"control"),
 documentation: "Opens an existing file.");
 pane save-menu-button (frame)
 make(<menu-button>, label: "Save",
 activate-callback: save-file,
 accelerator: make-keyboard-gesture(#"s", #"control"),
 documentation: "Saves the current file to disk.");
 pane save-as-menu-button (frame)
 make(<menu-button>, label: "Save As...",
 activate-callback: save-as-file,
 documentation:
 "Saves the current file with a new name.");
 pane exit-menu-button (frame)
 make(<menu-button>, label: "Exit",
 activate-callback: exit-task,
 accelerator: make-keyboard-gesture(#"f4", #"alt"),
 documentation: "Exits the application.");

 //Commands in the Edit menu
 pane cut-menu-button (frame)
 make(<menu-button>, label: "Cut",
 activate-callback: not-yet-implemented,
 accelerator: make-keyboard-gesture(#"x", #"control"),
 documentation: "Cut the selection to the clipboard.");
 pane copy-menu-button (frame)
 make(<menu-button>, label: "Copy",
 activate-callback: not-yet-implemented,
 accelerator: make-keyboard-gesture(#"c", #"control"),
 documentation: "Copy the selection to the clipboard.");
 pane paste-menu-button (frame)
 make(<menu-button>, label: "Paste",
 activate-callback: not-yet-implemented,
 accelerator: make-keyboard-gesture(#"v", #"control"),
 documentation: "Paste the selection in the clipboard at the current position.");

 //Commands in the Task menu
 pane add-menu-button (frame)
 make(<menu-button>, label: "Add...",
 activate-callback: frame-add-task,
 accelerator: make-keyboard-gesture
 (#"a", #"control", #"shift"),
 documentation: "Add a new task.");
 pane remove-menu-button (frame)
 make(<menu-button>, label: "Remove",
 activate-callback: frame-remove-task,
 accelerator: make-keyboard-gesture
 (#"d", #"control", #"shift"),
 documentation:
 "Remove the selected task from the list.");

 //Commands in the Help menu
 pane about-menu-button (frame)
 make(<menu-button>, label: "About",
 activate-callback: about-task,
 accelerator: make-keyboard-gesture(#"f1"),
 documentation:
 "Display information about the application.");

 // definition of buttons
 pane add-button (frame)
 make(<push-button>, label: "Add task",
 activate-callback: frame-add-task);
 pane remove-button (frame)
 make(<push-button>, label: "Remove task",
 activate-callback: frame-remove-task);
 pane open-button (frame)
 make(<push-button>, label: "Open file",
 activate-callback: open-file);
 pane save-button (frame)
 make(<push-button>, label: "Save file",
 activate-callback: save-file);

 // definition of radio box
 pane priority-box (frame)
 make (<radio-box>,
 items: $priority-items,
 orientation: #"horizontal",
 label-key: first,
 value-key: second,
 value: #"medium",
 activate-callback: not-yet-implemented);

 // definition of tool bar
 pane task-tool-bar (frame)
 make(<tool-bar>,
 child: horizontally ()
 frame.open-button;
 frame.save-button;
 frame.add-button;
 frame.remove-button
 end);

 // definition of status bar
 pane task-status-bar (frame)
 make(<status-bar>, label: "Task Manager");

 // definition of list
 pane task-list (frame)
 make (<list-box>,
 items: frame.frame-task-list.task-list-tasks,
 label-key: task-name,
 lines: 15,
 value-changed-callback: note-task-selection-change);

 // main layout
 pane task-layout (frame)
 vertically ()
 frame.task-list;
 frame.priority-box;
 end;

 // activation of frame elements
 layout (frame) frame.task-layout;
 tool-bar (frame) frame.task-tool-bar;
 status-bar (frame) frame.task-status-bar;
 menu-bar (frame) frame.task-menu-bar;

 // frame title
 keyword title: = "Task List Manager";
end frame <task-frame>;

define method initialize
 (frame :: <task-frame>, #key) => ()
 next-method();
 refresh-task-frame(frame);
end method initialize;

define method prompt-for-task
 (#key title = "Type text of new task", owner)
 => (name :: false-or(<string>),
 priority :: false-or(<priority>))
 let task-text
 = make(<text-field>,
 label: "Task text:",
 activate-callback: exit-dialog);
 let priority-field
 = make(<radio-box>,
 items: $priority-items,
 label-key: first,
 value-key: second,
 value: #"medium");
 let frame-add-task-dialog
 = make(<dialog-frame>,
 title: title,
 owner: owner,
 layout: vertically ()
 task-text;
 priority-field
 end,
 input-focus: task-text);
 if (start-dialog(frame-add-task-dialog))
 values(gadget-value(task-text), gadget-value(priority-field))
 end
end method prompt-for-task;

define function make-keyboard-gesture
 (keysym :: <symbol>, #rest modifiers)
 => (gesture :: <keyboard-gesture>)
 make(<keyboard-gesture>, keysym: keysym, modifiers: modifiers)
end function make-keyboard-gesture;

define function not-yet-implemented (gadget :: <gadget>) => ()
 notify-user("Not yet implemented!", owner: sheet-frame(gadget))
end function not-yet-implemented;

define method start-task () => ()
 let frame
 = make(<task-frame>);
 start-frame(frame);
end method start-task;

define method frame-add-task (gadget :: <gadget>) => ()
 let frame = sheet-frame(gadget);
 let task-list = frame-task-list(frame);
 let (name, priority) = prompt-for-task(owner: frame);
 if (name & priority)
 let new-task = make(<task>, name: name, priority: priority);
 add-task(task-list, new-task);
 refresh-task-frame(frame);
 frame-selected-task(frame) := new-task
 end
end method frame-add-task;

define method frame-remove-task (gadget :: <gadget>) => ()
 let frame = sheet-frame(gadget);
 let task = frame-selected-task(frame);
 let task-list = frame-task-list(frame);
 if (notify-user(format-to-string
 ("Really remove task %s", task.task-name),
 owner: frame, style: #"question"))
 frame-selected-task(frame) := #f;
 remove-task(task-list, task);
 refresh-task-frame(frame)
 end
end method frame-remove-task;

define method frame-selected-task
 (frame :: <task-frame>) => (task :: false-or(<task>))
 let list-box = task-list(frame);
 gadget-value(list-box)
end method frame-selected-task;

define method frame-selected-task-setter
 (task :: false-or(<task>), frame :: <task-frame>)
 => (task :: false-or(<task>))
 let list-box = task-list(frame);
 gadget-value(list-box) := task;
 note-task-selection-change(frame);
 task
end method frame-selected-task-setter;

define method refresh-task-frame
 (frame :: <task-frame>) => ()
 let list-box = frame.task-list;
 let task-list = frame.frame-task-list;
 let modified? = task-list.task-list-modified?;
 let tasks = task-list.task-list-tasks;
 if (gadget-items(list-box) == tasks)
 update-gadget(list-box)
 else
 gadget-items(list-box) := tasks
 end;
 gadget-enabled?(frame.save-button) := modified?;
 gadget-enabled?(frame.save-menu-button) := modified?;
 note-task-selection-change(frame);
end method refresh-task-frame;

define method note-task-selection-change
 (gadget :: <gadget>) => ()
 let frame = gadget.sheet-frame;
 note-task-selection-change(frame)
end method note-task-selection-change;

define method note-task-selection-change
 (frame :: <task-frame>) => ()
 let task = frame-selected-task(frame);
 if (task)
 frame.priority-box.gadget-value := task.task-priority;
 end;
 let selection? = (task ~= #f);
 frame.remove-button.gadget-enabled? := selection?;
 frame.remove-menu-button.gadget-enabled? := selection?;
end method note-task-selection-change;

define method open-file
 (gadget :: <gadget>) => ()
 let frame = sheet-frame(gadget);
 let task-list = frame-task-list(frame);
 let filename
 = choose-file(frame: frame,
 default: task-list.task-list-filename,
 direction: #"input");
 if (filename)
 let task-list = load-task-list(filename);
 if (task-list)
 frame.frame-task-list := task-list;
 refresh-task-frame(frame)
 else
 notify-user(format-to-string("Failed to open file %s", filename),
 owner: frame)
 end
 end
end method open-file;

define method save-file
 (gadget :: <gadget>) => ()
 let frame = sheet-frame(gadget);
 let task-list = frame-task-list(frame);
 save-as-file(gadget, filename: task-list.task-list-filename)
end method save-file;

define method save-as-file
 (gadget :: <gadget>, #key filename) => ()
 let frame = sheet-frame(gadget);
 let task-list = frame-task-list(frame);
 let filename
 = filename
 | choose-file(frame: frame,
 default: task-list.task-list-filename,
 direction: #"output");
 if (filename)
 if (save-task-list(task-list, filename: filename))
 frame.frame-task-list := task-list;
 refresh-task-frame(frame)
 else
 notify-user(format-to-string
 ("Failed to save file %s", filename),
 owner: frame)
 end
 end
end method save-as-file;

define function about-task (gadget :: <gadget>) => ()
 notify-user("Task List Manager", owner: sheet-frame(gadget))
end function about-task;

define method exit-task (gadget :: <gadget>) => ()
 let frame = sheet-frame(gadget);
 let task-list = frame-task-list(frame);
 save-file (gadget);
 exit-frame(frame)
end method exit-task;

define method main (arguments :: <sequence>) => ()
 // handle the arguments
 start-task();
end method main;

begin
 main(application-arguments()) // Start the application!
end;

Contents of the file task-list.dylan :

Module: task-list
Synopsis: Task List Manager.
Author: Functional Objects, Inc.
Copyright: Original Code is Copyright (c) 1995-2004 Functional Objects, Inc.
 All rights reserved.
License: See License.txt in this distribution for details.
Warranty: Distributed WITHOUT WARRANTY OF ANY KIND

define class <task-list> (<object>)
 constant slot task-list-tasks = make(<stretchy-vector>),
 init-keyword: tasks:;
 slot task-list-filename :: false-or(<string>) = #f,
 init-keyword: filename:;
 slot task-list-modified? :: <boolean> = #f;
end class <task-list>;

define constant <priority> = one-of(#"low", #"medium", #"high");

define class <task> (<object>)
 slot task-name :: <string>,
 required-init-keyword: name:;
 slot task-priority :: <priority>,
 required-init-keyword: priority:;
end class <task>;

define function add-task
 (task-list :: <task-list>, task :: <task>) => ()
 add!(task-list.task-list-tasks, task);
 task-list.task-list-modified? := #t
end function add-task;

define function remove-task
 (task-list :: <task-list>, task :: <task>) => ()
 remove!(task-list.task-list-tasks, task);
 task-list.task-list-modified? := #t
end function remove-task;

define function save-task-list
 (task-list :: <task-list>, #key filename)
 => (saved? :: <boolean>)
 let filename = filename | task-list-filename(task-list);
 with-open-file (stream = filename, direction: #"output")
 for (task in task-list.task-list-tasks)
 format(stream, "%s\n%s\n",
 task.task-name, as(<string>, task.task-priority))
 end
 end;
 task-list.task-list-modified? := #f;
 task-list.task-list-filename := filename;
 #t
end function save-task-list;

define function load-task-list
 (filename :: <string>) => (task-list :: false-or(<task-list>))
 let tasks = make(<stretchy-vector>);
 block (return)
 with-open-file (stream = filename, direction: #"input")
 while (#t)
 let name = read-line(stream, on-end-of-stream: #f);
 unless (name) return() end;
 let priority = read-line(stream, on-end-of-stream: #f);
 unless (priority)
 error("Unexpectedly missing priority!")
 end;
 let task = make(<task>, name: name,
 priority: as(<symbol>, priority));
 add!(tasks, task)
 end
 end
 end;
 make(<task-list>, tasks: tasks, filename: filename)
end function load-task-list;

A task list manager using command tables

This section contains the complete source code of the task list manager
when command tables have been used to implement the menu system, rather
than explicit menu gadgets. To load this code into the environment,
choose Tools > Open Example Project from any window in the
environment. The code in this section can be loaded by choosing Task
List 2 in the Documentation category of the Open Example Project dialog.

The command tables used in this implementation are described in
Using Command Tables. You should refer to Improving The Design and Adding Callbacks to the Application,
for a full description of the rest of the code shown here. Note that,
apart from code specific to command tables and callbacks, the code listed
in this section is a repeat of code listed in A task list manager using
menu gadgets.

Contents of the file frame.dylan :

Module: task-list
Synopsis: Task List Manager.
Author: Functional Objects, Inc.
Copyright: Original Code is Copyright (c) 1995-2004 Functional Objects, Inc.
 All rights reserved.
License: See License.txt in this distribution for details.
Warranty: Distributed WITHOUT WARRANTY OF ANY KIND

define constant $priority-items
 = #(#("Low", #"low"),
 #("Medium", #"medium"),
 #("High", #"high"));

define frame <task-frame> (<simple-frame>)
 slot frame-task-list :: <task-list> = make(<task-list>);

 // Note: no definition of menu buttons in this implementation,
 // See definition of command tables instead.

 // definition of buttons
 pane add-button (frame)
 make(<push-button>, label: "Add task",
 command: frame-add-task,
 activate-callback: method (gadget) frame-add-task(frame) end);
 pane remove-button (frame)
 make(<push-button>, label: "Remove task",
 command: frame-remove-task,
 activate-callback: method (gadget) frame-remove-task(frame) end);
 pane open-button (frame)
 make(<push-button>, label: "Open file",
 command: open-file,
 activate-callback: method (gadget) open-file(frame) end);
 pane save-button (frame)
 make(<push-button>, label: "Save file",
 command: save-file,
 activate-callback: method (gadget) save-file(frame) end);

 // definition of radio box
 pane priority-box (frame)
 make(<radio-box>,
 items: $priority-items,
 orientation: #"horizontal",
 label-key: first,
 value-key: second,
 value: #"medium",
 activate-callback: method (gadget) not-yet-implemented(frame) end);

 // definition of tool bar
 pane task-tool-bar (frame)
 make(<tool-bar>,
 child: horizontally ()
 frame.open-button;
 frame.save-button;
 frame.add-button;
 frame.remove-button
 end);

 // definition of status bar
 pane task-status-bar (frame)
 make(<status-bar>, label: "Task Manager");

 // definition of list
 pane task-list (frame)
 make (<list-box>,
 items: frame.frame-task-list.task-list-tasks,
 label-key: task-name,
 lines: 15,
 value-changed-callback: method (gadget) note-task-selection-change(frame) end);

 // main layout
 pane task-layout (frame)
 vertically ()
 frame.task-list;
 frame.priority-box;
 end;

 // activation of frame elements
 layout (frame) frame.task-layout;
 tool-bar (frame) frame.task-tool-bar;
 status-bar (frame) frame.task-status-bar;
 command-table (frame) *task-list-command-table*;

 // frame title
 keyword title: = "Task List Manager";
end frame <task-frame>;

define method initialize
 (frame :: <task-frame>, #key) => ()
 next-method();
 refresh-task-frame(frame);
end method initialize;

define method prompt-for-task
 (#key title = "Type text of new task", owner)
 => (name :: false-or(<string>),
 priority :: false-or(<priority>))
 let task-text
 = make(<text-field>,
 label: "Task text:",
 activate-callback: exit-dialog);
 let priority-field
 = make(<radio-box>,
 items: $priority-items,
 label-key: first,
 value-key: second,
 value: #"medium");
 let frame-add-task-dialog
 = make(<dialog-frame>,
 title: title,
 owner: owner,
 layout: vertically ()
 task-text;
 priority-field
 end,
 input-focus: task-text);
 if (start-dialog(frame-add-task-dialog))
 values(gadget-value(task-text), gadget-value(priority-field))
 end
end method prompt-for-task;

define function not-yet-implemented (frame :: <task-frame>) => ()
 notify-user("Not yet implemented!", owner: frame)
end function not-yet-implemented;

define method start-task () => ()
 let frame
 = make(<task-frame>);
 start-frame(frame);
end method start-task;

define method frame-add-task (frame :: <task-frame>) => ()
 let task-list = frame-task-list(frame);
 let (name, priority) = prompt-for-task(owner: frame);
 if (name & priority)
 let new-task = make(<task>, name: name, priority: priority);
 add-task(task-list, new-task);
 refresh-task-frame(frame);
 frame-selected-task(frame) := new-task
 end
end method frame-add-task;

define method frame-remove-task (frame :: <task-frame>) => ()
 let task = frame-selected-task(frame);
 let task-list = frame-task-list(frame);
 if (notify-user(format-to-string
 ("Really remove task %s", task.task-name),
 owner: frame, style: #"question"))
 frame-selected-task(frame) := #f;
 remove-task(task-list, task);
 refresh-task-frame(frame)
 end
end method frame-remove-task;

define method frame-selected-task
 (frame :: <task-frame>) => (task :: false-or(<task>))
 let list-box = task-list(frame);
 gadget-value(list-box)
end method frame-selected-task;

define method frame-selected-task-setter
 (task :: false-or(<task>), frame :: <task-frame>)
 => (task :: false-or(<task>))
 let list-box = task-list(frame);
 gadget-value(list-box) := task;
 note-task-selection-change(frame);
 task
end method frame-selected-task-setter;

define method refresh-task-frame
 (frame :: <task-frame>) => ()
 let list-box = frame.task-list;
 let task-list = frame.frame-task-list;
 let modified? = task-list.task-list-modified?;
 let tasks = task-list.task-list-tasks;
 if (gadget-items(list-box) == tasks)
 update-gadget(list-box)
 else
 gadget-items(list-box) := tasks
 end;
 command-enabled?(save-file, frame) := modified?;
 note-task-selection-change(frame);
end method refresh-task-frame;

define method note-task-selection-change
 (frame :: <task-frame>) => ()
 let task = frame-selected-task(frame);
 if (task)
 frame.priority-box.gadget-value := task.task-priority;
 end;
 command-enabled?(frame-remove-task, frame) := task ~= #f;
end method note-task-selection-change;

define method open-file
 (frame :: <task-frame>) => ()
 let task-list = frame-task-list(frame);
 let filename
 = choose-file(frame: frame,
 default: task-list.task-list-filename,
 direction: #"input");
 if (filename)
 let task-list = load-task-list(filename);
 if (task-list)
 frame.frame-task-list := task-list;
 refresh-task-frame(frame)
 else
 notify-user(format-to-string("Failed to open file %s", filename),
 owner: frame)
 end
 end
end method open-file;

define method save-file
 (frame :: <task-frame>) => ()
 let task-list = frame-task-list(frame);
 if (task-list.task-list-modified?)
 save-as-file(frame, filename: task-list.task-list-filename)
 end
end method save-file;

define method save-as-file
 (frame :: <task-frame>, #key filename) => ()
 let task-list = frame-task-list(frame);
 let filename
 = filename
 | choose-file(frame: frame,
 default: task-list.task-list-filename,
 direction: #"output");
 if (filename)
 if (save-task-list(task-list, filename: filename))
 frame.frame-task-list := task-list;
 refresh-task-frame(frame)
 else
 notify-user(format-to-string
 ("Failed to save file %s", filename),
 owner: frame)
 end
 end
end method save-as-file;

define function about-task (frame :: <task-frame>) => ()
 notify-user("Task List Manager", owner: frame)
end function about-task;

define method exit-task (frame :: <task-frame>) => ()
 let task-list = frame-task-list(frame);
 save-file(frame);
 exit-frame(frame)
end method exit-task;

define function make-keyboard-gesture
 (keysym :: <symbol>, #rest modifiers)
 => (gesture :: <keyboard-gesture>)
 make(<keyboard-gesture>, keysym: keysym, modifiers: modifiers)
end function make-keyboard-gesture;

// Definition of the File menu

define command-table *file-command-table* (*global-command-table*)
 menu-item "Open" = open-file,
 accelerator: make-keyboard-gesture(#"o", #"control"),
 documentation: "Opens an existing file.";
 menu-item "Save" = save-file,
 accelerator: make-keyboard-gesture(#"s", #"control"),
 documentation: "Saves the current file to disk.";
 menu-item "Save As..." = save-as-file,
 documentation: "Saves the current file with a new name.";
 separator;
 menu-item "Exit" = exit-task,
 accelerator: make-keyboard-gesture(#"f4", #"alt"),
 documentation: "Exits the application.";
end command-table *file-command-table*;

// Definition of the Edit menu

define command-table *edit-command-table* (*global-command-table*)
 menu-item "Cut" = not-yet-implemented,
 accelerator: make-keyboard-gesture(#"x", #"control"),
 documentation: "Cut the selection to the clipboard.";
 menu-item "Copy" = not-yet-implemented,
 accelerator: make-keyboard-gesture(#"c", #"control"),
 documentation: "Copy the selection to the clipboard.";
 menu-item "Paste" = not-yet-implemented,
 accelerator: make-keyboard-gesture(#"v", #"control"),
 documentation: "Paste the selection in the clipboard at the current position.";
end command-table *edit-command-table*;

// Definition of the Task menu

define command-table *task-command-table*
 (*global-command-table*)
 menu-item "Add..." = frame-add-task,
 accelerator: make-keyboard-gesture(#"a", #"control", #"shift"),
 documentation: "Add a new task.";
 menu-item "Remove" = frame-remove-task,
 accelerator: make-keyboard-gesture(#"d", #"control", #"shift"),
 documentation: "Remove the selected task from the list.";
end command-table *task-command-table*;

// Definition of the Help menu

define command-table *help-command-table* (*global-command-table*)
 menu-item "About" = about-task,
 accelerator: make-keyboard-gesture(#"f1"),
 documentation: "Display information about the application.";
end command-table *help-command-table*;

// Definition of the overall menu bar

define command-table *task-list-command-table*
 (*global-command-table*)
 menu-item "File" = *file-command-table*;
 menu-item "Edit" = *edit-command-table*;
 menu-item "Task" = *task-command-table*;
 menu-item "Help" = *help-command-table*;
end command-table *task-list-command-table*;

define method main (arguments :: <sequence>) => ()
 // handle the arguments
 start-task();
end method main;

begin
 main(application-arguments()) // Start the application!
end;

Contents of the file task-list.dylan :

The file task-list.dylan is identical to the listing shown in A
task list manager using menu gadgets, and so is not repeated here.

 Copyright 2011, Dylan Hackers.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	Building Applications With DUIM

Index

 Copyright 2011, Dylan Hackers.
 Created using Sphinx 1.3.6.

 _static/up.png

_static/comment-close.png

_static/comment-bright.png

_images/checkmbx.png

_static/down.png

_static/comment.png

_static/up-pressed.png

_images/tablecnt.png

_images/tour-24.png
oriptehe(ayaolltas); -6 \
gtpt-mbe{mg- sl = 3

_images/rangebox.png

_images/passwd.png

_images/progress.png

_images/frame.png
ISEIES|

A button on simple frame:

search.html

 Navigation

 		
 index

 		Building Applications With DUIM »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, Dylan Hackers.
 Created using Sphinx 1.3.6.

_images/tour-20.png

_images/listcont.png
i i the o

g leb
o el el for T
This s the fong label for Thres.

_images/slider.png

_images/texted.png

_images/radiomb.png

_images/pushmbox.png
one

Tuo
Three

_images/pushbox.png
st one | T | e |

_images/checkmb.png

_images/lbox.png

_images/textfld.png

_images/rbox.png
G2 s

_images/tour-3.png
Three.

I Three

€ Thees

_images/tasklist.png
[Task List Manager [-[olx]
Fle Edt Task telp

openfie | savefie | addtask | Removetask

i the sk Ist menager
[t minutes of meeting
By flowers

Reply to andrews mai

[Rea the OLE specification
By food for dinner

T the dog for 3 walk
[Reformet hard cisk

[t to salctars

Clow C Medum @ Hgh

Task Manager

_images/tree.png

_images/pinboard.png

_images/obox.png
R

B
[creen

_images/radiombx.png
Red
o Green

_images/row.png
Twa | Three

_images/pushmb.png

_images/column.png

_images/table-headings-and-contents.png
headings: #["One", "Two", "Three"]

One

Two.

Three

AN L

generators: #[in1, in2, in3]

_images/notify.png
(3 ressedtutons

_images/new-task.png
[s

Clow @ Medum C Hgh

ok | con

_static/ajax-loader.gif

_images/cbox.png
5P

_static/minus.png

_static/plus.png

_static/down-pressed.png

_static/file.png

