
use this model include Ada 95, C++, CLOS, Dylan,
Eiffel, Java, Oberon-2, Sather, and Smalltalk.

In object-oriented systems with multiple inheritance,
some mechanism must be used for resolving conflicts
when inheriting different definitions of the same property
from multiple superclasses. Some languages require
manual resolution by the programmer, with mechanisms
such as explicit delegation in C++ [ES 90] and feature
renaming in Eiffel. [Meyer 88]

Dylan, [Apple 92] [Apple 94] [Shalit 96] like other
object-oriented descendants of Lisp (e.g., Flavors [Moon
86], LOOPS [SB 86], and CLOS [Steele 90] [KdRB 91]),
automatically resolves conflicts occurring in method
dispatch. This resolution is implemented using a
linearization. When a class is created, a linearization of
its superclasses, including itself, (also known as the “class
precedence list” or CPL) is determined, ordered from

Introduction

Why linearizations?

In a class-based object-oriented language, objects are
instances of classes. The properties of an object – what
slots or instance variables it has, which methods are
applicable to it – are determined by its class. A new
class is defined as the subclass of some pre-existing
classes (its superclasses – in a single-inheritance
language, only one direct superclass is allowed), and it
inherits the properties of the superclasses, unless those
properties are overridden in the new class. Typically,
circular superclass relationships are prohibited, so a
hierarchy (or heterarchy, in the case of multiple
inheritance) of classes may be modeled as a directed
acyclic graph with ordered edges. Nodes correspond to
classes, and edges point to superclasses. Languages that

A Monotonic Superclass Linearization for Dylan

Kim Barrett <kab@camellia.org>
Bob Cassels <Cassels@harlequin.com>

Paul Haahr <haahr@netcom.com>
David A. Moon <Moon@mc.lcs.mit.edu>
Keith Playford <keith@harlequin.co.uk>

P. Tucker Withington <ptw@harlequin.com>†

28 June 1996

Abstract

Object-oriented languages with multiple inheritance and automatic conflict resolution typically
use a linearization of superclasses to determine which version of a property to inherit when
several superclasses provide definitions. Recent work has defined several desirable characteristics
for linearizations, the most important being monotonicity, which prohibits inherited properties
from skipping over direct superclasses. Combined with Dylan’s sealing mechanism, a monotonic
linearization enables some compile-time method selection that would otherwise be impossible
in the absence of a closed-world assumption.

The Dylan linearization is monotonic, easily described, strictly observes local precedence order,
and produces the same ordering as CLOS when that is monotonic. We present an implementation
based on merging and a survey of class heterarchies from several large programs, analyzing
where commonly used linearizations differ.

† The work reported here was started when Barrett, Cassels, and
Moon were at Apple Computer, and Haahr, Playford, and
Withington were at Harlequin. At the time of writing, Cassels,
Playford, and Withington are with Harlequin, Barrett is at IS
Robotics, and Haahr and Moon are unaffiliated.

most specific to least specific. When several methods
are applicable for a given call, the one defined on the
most specific class, according to the linearization, is
selected.

Dylan, like CLOS, uses generic functions with
multimethods, that is, methods specialized on more than
one parameter. The use of the class precedence list
generalizes to multimethods without difficulty, but for
purposes of presentation, we will not consider
multimethods further in this paper.

Most object-oriented languages implicitly use a rule
similar to linearization for method dispatching in single
inheritance: a class is more specific than any of its
superclasses, so methods defined for subclasses override
methods defined for superclasses. The problem with
generalizing this to multiple inheritance is that the simple
rule does not make clear which of two superclasses with
no subclass/superclass relationship between them is more
specific.

For example, consider the simple use of multiple
inheritance in example 1a. (For details on Dylan
language constructs, see the Dylan Reference Manual.
[Shalit 96]) The question multiple inheritance raises is
“What is the starting-edge for an <hv-grid> ?” If
it is more like a horizontal than a vertical grid, it is the
left edge, but if it is more like a vertical grid, it is the top
edge. In an explicit resolution system, the author of the
<hv-grid> class would have to write a declaration or

method to choose which superclass to obtain the
starting-edge behavior from. In contrast, when a
linearization is used, the default behavior is determined
by which of <horizontal-grid> or <vertical-

grid> appears first in the linearization.

Following CLOS, Dylan uses the local precedence order
– the order of the direct superclasses given in the class
definition – in computing the linearization, with earlier
superclasses considered more specific than later ones.
Therefore, since <horizontal-grid> precedes
<vertical-grid> in the definition of <hv-grid> it
will also precede it in the linearization. The full
linearization for <hv-grid> is

<hv-grid>, <horizontal-grid>,
<vertical-grid>, <grid-layout>, <object>

On the other hand, to create a combined horizontal and
vertical grid which is more like a vertical grid than a
horizontal one, the only change necessary to the
definitions above would be to reverse the order of the
direct superclasses in the class that combines the two
grids; see example 1b.

It is possible that an inheritance graph is inconsistent
under a given linearization mechanism. This means that
the linearization is over-constrained and thus does not
exist for the given inheritance structure. An example of
an inconsistent inheritance relationship appears in
example 1c. <confused-grid> is inconsistent because
it attempts to create a linearization that has

define class <grid-layout> (<object>) … end;
define class <horizontal-grid> (<grid-layout>) … end;
define class <vertical-grid> (<grid-layout>) … end;
define class <hv-grid> (<horizontal-grid>, <vertical-grid>) … end;

define method starting-edge (grid :: <horizontal-grid>)
 #"left"
end method starting-edge;

define method starting-edge (grid :: <vertical-grid>)
 #"top"
end method starting-edge;

Example 1a: A simple use of multiple inheritance

define class <vh-grid> (<vertical-grid>, <horizontal-grid>) … end;

Example 1b: Reversing classes in the linearization

define class <confused-grid> (<hv-grid>, <vh-grid>) … end;

Example 1c: An inconsistent class definition

<grid-layout>

<object>

<vertical-grid><horizontal-grid>

<hv-grid> <vh-grid>

<confused-grid>

Figure 1: An inconsistent class heterarchy

<horizontal-grid> before <vertical-grid> ,
because it subclasses <hv-grid> , and <vertical-

grid> before <horizontal-grid> , because it
subclasses <vh-grid> . Clearly, both of these constraints
cannot be obeyed in the same class.

Characteristics of linearizations

A number of characteristics have been identified as being
desirable for linearizations. Two of these characteristics
– acceptability and monotonicity – were advocated by
Ducournau, Habib, et. al. [DHHM 92] [DHHM 94]. In
addition, the CLOS linearization strictly observes local
precedence order, and Ducournau, Habib, et. al. discuss
the local precedence order (under the name precC).

An acceptable linearization is one in which only the
shape of a class’s inheritance graph may be used in
determining the linearization. All the linearizations
considered here are acceptable, but one based on classes
outside the inheritance graph (as in the global
linearization proposed in [Baker 91]) or on the names of
classes would not be.

A linearization that observes local precedence order will
not produce a linearization which is inconsistent with
the local precedence orders of any of the superclasses.
That is, if class A precedes class B in the local prece-
dence order of class C, the linearizations of C and all of
its subclasses should have A before B.

A monotonic linearization is one in which every property
inherited by a class is inherited or defined by one of its

direct superclasses; that is, an inherited property cannot
skip over all of the direct superclasses. This means that
the linearization of a class must be an extension without
reordering of the linearizations of all of its superclasses.

[DHHM 94] gives the class heterarchy pictured in figure
2 as an example for monotonicity. The linearizations
for <pedalo> and its direct superclasses using the CLOS
mechanism are:

<pedal-wheel-boat>:
 <pedal-wheel-boat>, <engineless>,
 <day-boat>, <wheel-boat>, <boat>,
 <object>

<small-catamaran>:
 <small-catamaran>, <small-multihull>,
 <day-boat>, <boat>, <object>

<pedalo>:
 <pedalo>, <pedal-wheel-boat>,
 <engineless>, <wheel-boat>,
 <small-catamaran>, <small-multihull>,
 <day-boat>, <boat>, <object>

Consider a method defined on <day-boat> and
<wheel-boat> . For both direct superclasses of
<pedalo> , the method on <day-boat> is the most
specific, yet the method on <wheel-boat> is the most
specific for <pedalo> . With a monotonic linearization,
this surprising result cannot occur.

Figure 2: For CLOS, a non-monotonic
class heterachy, from [DHHM 94]

<boat>

<object>

<wheel-boat><day-boat>

<engine-less> <small-multihull>

<pedal-wheel-boat> <small-catamaran>

<pedalo>

Computing linearizations

Typically, a linearization is computed by merging a set
of constraints or, equivalently, topologically sorting a
relation on a graph, though other mechanisms are pos-
sible. The linearizations we considered can be expressed
as the merging of a set of sequences and a selection rule
for ambiguous cases.

The merge of several sequences is a sequence that
contains each of the elements of the input sequences.
An element that appears in more than one of the input
sequences appears only once in the output sequence. If
two elements appear in the same input sequence, their
order in the output sequence is the same as their order in
that input sequence. (Note that a class cannot appear
twice in the same input sequence.)

The linearization used in Dylan merges the local
precedence order of the class being defined with the
linearizations of its direct superclasses. The CLOS
linearization merges the local precedence orders of the
class and of all its superclasses.

If there is no possible merged output sequence which is
consistent with all the input sequences, the class
heterarchy is inconsistent.

It is possible that there are several valid merges for some
set of input sequences. For example, consider the class
heterarchy in example 2 (pictured in figure 3). Using
the Dylan mechanism, computing the linearization for
<popup-menu> involves merging the sequences:

<popup-menu>, <menu>, <popup-mixin>
<menu>, <choice-widget>, <object>
<popup-mixin>, <object>

where the first is the local precedence order for <popup-

menu> and the second and third are, respectively, the
linearizations of <menu> and <popup-mixin> .

The first two elements of the merged result are <popup-

menu> and <menu>, but the third element of the linear-
ization is not unambiguously determined by the input

sequences. After <popup-menu> and <menu> have been
placed in the output, either <choice-widget> or
<popup-mixin> could appear next, since both have all
their predecessors already in the merged sequence.

A mechanism is needed for choosing between <choice-

widget> and <popup-mixin> . Dylan and CLOS use
the same rule, which is to select the class that has a di-
rect subclass closest to the end of the output sequence,
as currently computed. The result so far is (<popup-

menu>, <menu>), and <menu> is a direct subclass of
<choice-widget> so <choice-widget> is selected.
After that, no ambiguities remain, and the full lineariza-
tion is the sequence (<popup-menu> , <menu>,

<choice-widget> , <popup-mixin> , <object>).

[DHHM 94] introduces the L*LOOPS linearization, a
variation on the linearization used in LOOPS, which was
designed to be monotonic. The original construction of
L*LOOPS is in terms of a depth-first topological sort on the
linearization graph, which is a graph where the vertices
are the classes in the heterarchy and the arcs are
determined by the linearizations of the direct
superclasses. To facilitate comparisons with the other
linearizations, we will describe L*LOOPS in terms of
merging.

L*LOOPS merges the linearizations of the direct
superclasses, but, unlike Dylan and CLOS, does not
include the local precedence order in the merge. When

define class <choice-widget> (<object>) … end;
define class <menu> (<choice-widget>) … end;
define class <popup-mixin> (<object>) …ּend;
define class <popup-menu> (<menu>, <popup-mixin>) … end;

Example 2: A class heterarchy with an ambiguity in constraints

<object>

<popup-menu>

<menu>

<choice-widget>

<popup-mixin>

Figure 3: The heterarchy from Example 2

selecting the next class from several alternatives for which
all the predecessors are already in the output sequence,
it uses the first unselected class in a depth-first ordering
of the linearization graph.

The Dylan Linearization

Why Monotonicity?

Dylan [Apple 92] [Apple 94] [Shalit 96] originally
specified a linearization equivalent to the one used in
CLOS. In light of the research done by Ducournau,
Habib, et. al., and the definition of the monotonicity
criterion, it was decided that the CLOS linearization
should be replaced by a monotonic linearization.

The first reason for the change is that a monotonic
linearization seems a better match for users’ intuitions
about how inheritance and linearizations work. With a
monotonic linearization, it is easier to understand the
behavior of classes when multiple inheritance is used,
largely because behavior of instances of a class can be
explained in terms of the direct superclasses.

A second reason for picking a monotonic linearization
for Dylan is that it enables more compile-time method
selection. Dylan has an innovative mechanism, known
as sealing, for describing what extensions to a library
are possible after it is compiled. A sealed class may not
be directly subclassed outside of the library where it is
defined, whereas an open class may be. Similarly,
methods may be added outside the defining library to an
open generic function, but not to a sealed one. A domain
of a generic function may be sealed, which prohibits the
definition of new methods or classes which would change
the applicability of methods for the types specified by
the domain. (For details on sealing, see the Dylan
Reference Manual. [Shalit 96]) The restrictions imposed
by sealing permit a Dylan compiler to select methods
for generic function calls at compile-time without
imposing a closed-word assumption on the program.

Consider the pedalo example from above in the context
of sealing. Suppose that all the classes are open (and

thus can be extended), but there is a sealed function max-

distance with methods defined on <day-boat> and
<wheel-boat> . Now consider the method defined in
example 3. If the linearization is known to be mono-
tonic, the compiler can choose to dispatch the call to
max-distance directly to the method defined on <day-

boat> . This is known statically because no new meth-
ods can be defined on max-distance – it is sealed –
and <day-boat> is always more specific than <wheel-

boat> for instances of <pedal-wheel-boat> .

The Algorithm

As described above, the Dylan linearization merges the
local precedence order of a class with the linearizations
of its direct superclasses. When there are several possible
choices for the next element of the linearization, the class
that has a direct subclass closest to the end of the output
sequence is selected.

It should be clear that the Dylan linearization is
monotonic, because the merge procedure never reorders
the linearizations of superclasses when producing the
linearization. Similarly, it obeys local precedence order
because the merge explicitly takes local precedence into
account, and the local precedence orders of superclasses
are propagated by the linearizations.

An implementation of the Dylan linearization appears
in Appendix A.

Empirical results

When we decided to adopt a monotonic linearization for
Dylan, we had initially considered using L*LOOPS. The
first problem we encountered was that the presentation
of the algorithm in [DHHM 94] makes it hard to see
what the differences with the existing (CLOS) approach
were. We were concerned that existing class heterarchies
would be reordered by L*LOOPS, causing mysterious bugs.
We wanted to ensure that all of the differences between
our new linearization and the previous one (CLOS) could
be justified as part of the desired new properties (e.g.,
monotonicity) and were not due to gratuitous

define method max-pedal-rotations (pwb :: <pedal-wheel-boat>)
 max-distance(pwb) / distance-per-pedal-rotation(pwb)
end method max-pedal-rotations;

Example 3: A method which may permit sealing optimizations

heterarchy classes MI joins different Dylan vs. Dylan vs. CLOS vs. L*LOOPS

CPLs CLOS L*LOOPS L*LOOPS inconsistent
LispWorks 507 70 0 0 0 0 0
CLIM 842 184 31(21) 31 (21) 5 31 (21) 0
database 38 4 0 0 0 0 0
emulator 571 205 8(4) 8 (4) 0 8 (4) 0
proprietary 665 124 81(12) 2 81 (12) 81 (12) 19 (8)
Watson 673 114 0 0 0 0 0
total 3296 701 120(37) 41 (27) 86 (17) 120 (37) 19 (8)

Table 1: Comparison of the Dylan, CLOS, and L*LOOPS linearizations

incompatibilities. Compatibility with CLOS was
considered important both because of an existing body
of Dylan code that assumed that linearization and because
of the substantial amount of real experience with it in
the Common Lisp community indicating that it could be
used successfully.

In order to understand the scope of the change we were
making to Dylan, we surveyed the classes defined in six
class heterarchies from existing large CLOS programs
and compared the linearizations computed for them by
the Dylan, CLOS, and L*LOOPS mechanisms. The results
of this survey are summarized in table 1.

The first column contains the program which the
heterarchies came from. The programs we studied were:

LispWorks – The implementation of CLOS in
Harlequin’s LispWorks development environ-
ment and the set of classes used in its user inter-
face. (Note that all these class heterarchies were
built on top of the basic LispWorks heterarchy,
but those classes have only been counted once,
in the totals for LispWorks.)

CLIM – The Common Lisp Interface Manager,
a Lisp-based programming interface that
provides a layered set of portable facilities for
constructing user interfaces. [MY 94]

database – An interface to SQL databases.

emulator – A Dylan emulator on top of CLOS
and some basic class libraries (collections,
streams) written in Dylan. (The CLOS linear-
ization was used for all classes when originally
written.)

proprietary – A large proprietary application
written by a Harlequin customer which makes
heavy use of CLOS.

Watson™ – Harlequin’s Watson product, a data
analysis tool.

The next two columns give the number of classes and
the number of multiply inheriting classes in the
heterarchy, respectively. It is only the multiply inherit-
ing classes for which there is the possibility of a differ-
ence in linearizations. The next four columns summa-
rize the differences that appeared in the linearizations.
First, we show the number of classes for which any two
linearizations differed, and the following columns give
the results for pairwise comparisons between the differ-
ent linearizations.

The final column reports the number of classes in each
heterarchy which were inconsistent under the L*LOOPS

linearizations; no inconsistent classes were found when
using Dylan or CLOS. We do not claim that L*LOOPS

inherently makes inconsistent classes more common: this
data was taken from CLOS programs, and any
inconsistencies with respect to the CLOS linearization
would have been eliminated as part of the normal
development process before the class heterarchies were
surveyed. The Dylan linearization is sufficiently similar
to CLOS that definitions consistent with one are typically
consistent with the other.

It is important to recognize that if two linearizations dif-
fer for a given class, they will differ for its subclasses;
similarly, if a class is inconsistent under one lineariza-
tion, all its subclasses will be, too. The difference or
inconsistency even appears in subclasses which are con-
structed by single inheritance, despite the fact that all
linearizations use the same mechanism for single inher-
itance: prefixing the linearization of the single super-
class with the class being defined. Therefore, in the table
above, we have reported in parentheses the number of
classes for each category which were not subclasses of

classes that were already counted in the category, when
that number differed from the total number. The large
number of differences in the linearizations encountered
from the “proprietary” data set can be explained by ob-
serving that a few classes, with a large number of sub-
classes, account for most of the differences; in fact, a
single class accounts for more than half of the differ-
ences between the Dylan and L*LOOPS linearizations.

Comparison with L*L*L*L*L*LOOPS

An important difference between CLOS and L*LOOPS that
our survey made clear is that L*LOOPS does not observe
local precedence order for some inheritance graphs.
Notably, transitivity edges in the inheritance graph –
where a class has a direct superclass that is also an indi-
rect superclass – are ignored by L*LOOPS, leading to cases
where it disobeys local precedence order.

To see the effect of transitivity edges, consider the alter-
nate definition in exampleּ4 of the popup menu class
from example 2.

The L*LOOPS linearization for <new-popup-menu> is
(<new-popup-menu> , <menu>, <choice-widget> ,
<popup-mixin> , <object>), which violates the local
precedence order in <new-popup-menu> that <popup-

mixin> is supposed to appear before <choice-

widget> . The linearization produced by both Dylan
and CLOS is (<new-popup-menu> , <menu>, <popup-

mixin> , <choice-widget> , <object>).

Uses of inheritance with transitivity edges may seem, at
first glance, odd. Why should <new-popup-menu> list
both <menu> and <choice-widget> as direct
superclasses, when <menu> is a superclass of <choice-

widget> ? We hypothesize two reasons for such
inheritance graphs. The first reason is that one can use
such a technique to exercise fine control over the
linearization. That is, the selection rule used in the
linearization may not do what the programmer wants in
some cases, and adding transitivity edges can constrain
the merge so that the intended result is obtained. In this
example, the programmer’s intention could be to ensure
that the behavior of <new-popup-menu> follows
<popup-mixin> and not <choice-widget> for some

<object>

<new-popup-menu>

<menu>

<choice-widget>

<popup-mixin>

Figure 4: The heterarchy from example 4

define class <new-popup-menu> (<menu>, <popup-mixin>, <choice-widget>) … end;

Example 4: A variation on the popup menu class, with an extra constraint

particular method. However, this form of tuning is
fragile, because it requires deep knowledge of the
heterarchy and the linearization on behalf of the
programmer; subtle changes in early parts of the class
heterarchy could cause such uses to create
inconsistencies. We suspect that this technique is rarely
used, but an author of one program in our survey reports
adjusting local precedence orders until method dispatch
matched his intuition, and that process may have
introduced transitivity edges.

The second reason comes from just the opposite cause:
the programmer knows little about the class heterarchy,
and intends to mix in some behavior she wasn’t aware
was already in one of the classes being used. This com-
monly occurs during development if classes near the root
of the heterarchy are redefined with extra superclasses
that might already be inherited by some subclasses.

We believe that observing local precedence order is an
important characteristic for a linearization, and our ex-
perience with Dylan and CLOS confirms this. If local
precedence is not obeyed, the order in a linearization of
the direct superclasses cannot be understand only in terms
of the class declaration and the ability to exercise fine
control over the linearization process is lost. Ducournau,
Habib, et. al., [DHHM 94] disagree, noting that “The
fact that LOOPS does not always respect the local order
– here prec’ – is not a problem … [because] the part of
prec’ which is not respected by LOOPS is always a con-
tradictory part of” the extended precedence graph.
[Section 2.4.4] We note that the “contradiction” caused

by transitivity edges is only with edges that are added to
the class graph to produce the extended precedence graph,
and the contradiction takes the form of cycles in the EPG.
(See below for details on the extended precedence graph.)

Comparison with CLOS

The Dylan linearization is an extension of the one used
in CLOS, where the central difference is that Dylan uses
the linearizations of superclasses to preserve
monotonicity.

The Dylan and CLOS linearizations, when considered
as merge operations, have identical structures. Further,
the rule used in selecting the next class when there are
several for which all predecessors have already been
removed from the input sequences is the same. The only
difference is in the sequences being merged: CLOS uses
the local precedence orders of all superclasses (including
the class itself), whereas Dylan uses the linearizations
of the direct superclasses and the local precedence order
of the class.

Note that the sequences merged in the Dylan lineariza-
tion strictly contain those merged by CLOS; that is,
Dylan imposes a superset of the constraints used in CLOS
on linearizations, and these extra constraints – ordering
requirements from the linearizations of superclasses –
are exactly those needed to enforce monotonicity. The
only cases where the linearizations can be different are
those in which CLOS selects among several classes
where all the predecessors have been placed in the out-
put sequence, but at least one of those classes has a pre-
decessor in the Dylan linearization, and therefore can-
not be selected next. That extra predecessor enforces
monotonicity; if it were not present, the result would be
non-monotonic. Thus, the Dylan and CLOS lineariza-
tions produce the same results when CLOS is monotonic.

Consider the <pedalo> example from above. The Dylan
linearizations of the direct superclasses of <pedalo>

are the same as those found in CLOS:

<pedal-wheel-boat>:
 <pedal-wheel-boat>, <engineless>,
 <day-boat>, <wheel-boat>, <boat>,
 <object>

<small-catamaran>:
 <small-catamaran>, <small-multihull>,
 <day-boat>, <boat>, <object>

Thus the Dylan linearization for <pedalo> is the result
of merging those two sequences with the following,
which is the local precedence order for <pedalo> :

<pedalo>, <pedal-wheel-boat>,
 <small-catamaran>

On the other hand, the CLOS linearization is produced
by merging

<boat>, <object>

<day-boat>, <boat>

<wheel-boat>, <boat>

<engineless>, <day-boat>

<pedal-wheel-boat>, <engineless>,
 <wheel-boat>

<small-multihull>, <day-boat>

<small-catamaran>, <small-multihull>

<pedalo>, <pedal-wheel-boat>,
 <small-multihull>

Note that the sequences used in the Dylan linearization
require that <day-boat> precede <wheel-boat> in
<pedalo> , due to the effect of the linearization of
<pedal-wheel-boat> . No such requirement exists
for CLOS, thus it is able to select <wheel-boat> before
<day-boat> , with a non-monotonic result.

Ducournau, Habib, et. al., derived L*LOOPS from the
LOOPS linearization by constructing a linearization
graph for a class and applying LOOPS to that rather than
to the inheritance graph defining the class. The Dylan
linearization can be considered an application of the
CLOS mechanism to the linearization graph; using the
terminology of [DHHM 94], it might be named L*CLOS.

The extended precedence graph and

the C3 Linearization

The extended precedence graph (or EPG), described in
[DHHM 92] and [DHHM 94], is an extension of a class
heterarchy graph to include the transitive effects of local
precedence order.

Consider the class heterarchy as a directed graph with
nodes corresponding to classes and a directed edge lead-
ing from each subclass to its superclasses. The EPG for
a class C is constructed by augmenting the heterarchy

graph for C with edges connecting each pair of classes
(e.g., A and B) that do not have a subclass/superclass
relationship.

The direction of the edge from A to B is determined by
finding the maximal common subclasses of A and B
among the superclasses of C, that is, classes which are
subclasses of both A and B but do not have any super-
classes that are subclasses of both. Since C is a subclass
of A and B, there exists at least one such class. For each
such class M, if A or a subclass of A precedes B or a
subclass of B in the local precedence order of M, there is
a directed edge from A to B. Similarly, if B or one of its
subclasses precedes A or one of its subclasses in M’s
local precedence order, there is an edge from B to A.

Note that the EPG may contain cycles. Ducournau,
Habib, et. al. [DHHM 92] prove that if the EPG is acyclic,
the CLOS and LOOPS linearizations produce the same
results and are monotonic. (This is true also of the Dylan
and L*LOOPS linearizations.)

A linearization is consistent with the extended precedence
graph if and only if there is a path in the EPG from every
class in the linearization to all of its successors in the
linearization. Since there is a path from every node within
a cycle to every other node in the cycle, consistency with
the EPG imposes no ordering among classes found within
a cycle in the EPG, but does imply an ordering for the
acyclic portions of the graph.

Unfortunately, the Dylan linearization, like CLOS but
unlike L*LOOPS, isn’t always consistent with the extended
precedence graph, and this can lead to counter-intuitive
linearizations. Consider the class heterarchy in figure 5.

The Dylan (and CLOS) linearizations order the super-
classes of <editable-scrollable-pane> as

<editable-scrollable-pane>,
 <scrollable-pane>, <editable-pane>,
 <pane>, <editing-mixin>,
 <scrolling-mixin>, <object>

which may have surprising consequences for the user, in
that <editing-mixin> precedes <scrolling-mixin>

in the linearization of <editable-scrollable-pane> ,
despite the fact that <scrollable-pane> , from where
< e d i t a b l e - s c r o l l a b l e - p a n e > inherits
<scrolling-mixin> , precedes <editable-pane> ,
where it gets <editing-mixin> from, in <editable-

scrollable-pane> ’s local precedence order. If
<editable-scrollable-pane> inherits a property
defined differently by both <scrolling-mixin> and
<editing-mixin> , <editable-scrollable-pane>

will behave like <editable-pane> rather than
<scrollable-pane> , contradicting a programmer’s
reasonable expectation about the interaction of
inheritance and local precedence order.

C3 – A linearization consistent with the EPG

If consistency with the extended precedence graph, local
precedence order, and monotonicity are desired, a hybrid
of the Dylan and L*LOOPS linearizations can be used. We
call this linearization C3, because it is consistent with
these three properties. C3 uses the constraints of the
Dylan linearization with a selection rule modeled on the
one used in L*LOOPS.

Our implementation of C3 is similar to the merging
algorithm used for the Dylan linearization, differing only
in the selection rule. When choosing among several
classes for the next element of the linearization, when
the input sequences alone do not determine the selection,
the C3 linearization chooses the class which appears in
the linearization of the earliest direct superclass of the
class being defined, in local precedence order. Note that
at most one candidate class is in the linearization of each
of the direct superclasses, because if two were to appear,
one would precede the other due to the constraints and
thus the order between them would be determined by
the monotonicity requirement.

Examining the <popup-menu> class from example 2
again, after <popup-menu> and <menu> have been

<pane>

<editing-mixin><scrolling-mixin>

<scrollable-pane> <editable-pane>

<editable-scrollable-pane>

Figure 5: A heterarchy where Dylan's linearization
does not observe the extended precedence graph

heterarchy classes MI joins C3 vs. C3 vs. C3
Dylan L*LOOPS inconsistent

LispWorks 507 70 0 0 0
CLIM 842 184 5 1 0
database 38 4 0 0 0
emulator 571 205 0 0 0
proprietary 665 124 80(11) 62 (4) 19 (8)
Watson 673 114 0 0 0

total 3296 701 85(16) 63 (5) 19 (8)

Table 2: Comparison of the C3, Dylan, and L*
LOOPS

 linearizations

picked as the first two elements of the linearization, a
decision has to be made between <choice-widget>

and <popup-mixin> as the next element. Since
<choice-widget> is a superclass of <menu>, and
<menu> precedes <popup-mixin> in the local
precedence order of <popup-menu> , the C3 algorithm
selects <choice-widget> next. This is the same result
as Dylan, though for a different reason.

On the other hand, given the <editable-scrollable-

pane> example above, where Dylan is not consistent
with the EPG, the selection rule of C3 diverges from
Dylan’s when selecting between <scrolling-mixin>

and <editing-mixin> . Because <scrolling-

mixin> is a superclass of <scrollable-pane> ,
<editing-mixin> is a superclass of <editable-

p a n e > , and < s c r o l l a b l e - p a n e > precedes
<editable-pane> in the local precedence order of
<editable-scrollable-pane> , <scrolling-

mixin> is selected as the next class.

To show that C3 is consistent with the extended prece-
dence graph, we will demonstrate that C3 cannot violate
consistency with the EPG because every time it selects a
class it is following arcs that appear in the EPG. First,
note that the edges of the class heterarchy graph, from
which the EPG is constructed, are included in the input
sequences for the C3 merge: the local precedence order
and the linearizations of superclasses.

Next, observe that the C3 selection rule, when presented
with a choice of two classes where the maximal common
subclass of the classes is the class being defined (say C),
will pick, by construction, the one that is itself or has a
subclass earliest in the local precedence order; that is,
the one consistent with the extended precedence graph.

What about the case where the selection rule must choose
between classes where the maximal common subclass is
a superclass of C? That cannot occur with the C3 algo-
rithm, because, if there were such a choice to make, it
would have been made in the linearization of that maxi-
mal common superclass, and thus would be reflected in
the input sequences used by the C3 merge. Finally, we
observe that every predecessor relationship encoded in
the linearizations of superclasses used in the merging
process comes from one of three sources: a subclass/
superclass relationship, the local precedence order of a
superclass of C, or one of the augmenting edges from
the EPG for a superclass of C.

The general effect of the selection rule used in C3, as in
L*LOOPS, is to produce a depth-first ordering of the class
heterarchy, constrained by superclass relationships and
local precedence orders. In contrast, the selection rule
used by Dylan and CLOS leads to depth-first behavior
locally within the graph, but somewhat arbitrary behavior
when considering the graph as a whole.

An implementation of the C3 linearization appears in
Appendix B.

Comparison with other linearizations

We compared the C3 linearization with the Dylan and
L*LOOPS linearizations on the same set of class heterarchies
we used above. The results of the comparison are
summarized in table 2.

The first three columns report the same information as
in the table above. The fourth and fifth columns report
the number of linearizations for which C3 differed from
Dylan and L*LOOPS, respectively. The final column gives
the number of classes for which C3 was unable to produce

a consistent linearization. Again, parenthesized entries
indicate the number of relevant classes where the
difference or inconsistency was not a result of a similar
problem in a superclass.

We observe that, most of the time, C3, Dylan, and L*LOOPS

produce the same result. When they differ, C3 is more
commonly the same as L*LOOPS than it is the same as
Dylan, though it is often different from both in such cases.

Further, among the classes we surveyed, C3 finds
inconsistent class definitions in exactly the same classes
which L*LOOPS does; in general, this indicates that those
classes multiply inherit from classes where the extended
precedence graphs led to contradictory linearizations.
Again, we do not consider the lack of inconsistencies in
the Dylan linearization a general property of the
mechanism; because of the similarity of the Dylan and
CLOS linearizations, this data, coming from large CLOS
programs, is unlikely to contain inconsistencies under
the Dylan linearization.

Since C3 differs from Dylan only in the selection rule,
and C3’s selection rule is used to enforce consistency
with the extended precedence graph, C3 and Dylan only
produce different results when Dylan’s selection rule
would lead it to be inconsistent with the EPG.

Similarly, since the linearization graph used in L*LOOPS

contains precisely the edges corresponding to the
linearizations of superclasses used as input to C3’s merge
and the same selection rule in both algorithms (though
presented differently in [DHHM 94]), but local
precedence order is not used in the linearization graph,
the only cases where the results of those algorithms differ
is where the presence of local precedence order forces
C3 to make a different decision from L*LOOPS.

Note that if L*LOOPS and Dylan produce the same result
(which is inherently consistent with the extended prece-
dence graph and local precedence order), it is the same
as C3.

Results

We have presented two new linearizations, Dylan and
C3, that are monotonic and obey local precedence order;
C3 is also consistent with the extended precedence graph.
We’ve contrasted those linearizations with two existing

linearizations, CLOS and L*LOOPS, in terms of their
structure and how they behave on existing class
heterarchies.

The differences among the linearizations can be
summarized by examining which kinds of class
topologies they differ on. Dylan is the same as CLOS
except where CLOS is non-monotonic. C3 is the same
as Dylan except where Dylan is not consistent with the
extended precedence graph, and the same as L*LOOPS

except where that violates local precedence order.

In the abstract, C3 is the “best” of the linearizations we
considered. However, C3 diverges from CLOS in more
ways than the Dylan linearization does. Consistency with
the extended precedence graph is not a necessary
precondition for doing Dylan’s sealing optimizations and
C3 makes a significant number of classes from existing
CLOS heterarchies inconsistent; thus, using it for Dylan
would have been a more radical shift, late in the language
design process, than using the monotonic variation on
CLOS that was chosen.

Acknowledgments

Roland Ducournau, Michel Habib, Marianne Huchard,
and M.L. Mugnier formalized the characteristics of
linearizations which underlie this work and offered
valuable clarifications of their research.

Joseph Wilson implemented L*LOOPS in the Marlais
interpreter and proposed changing the linearization used
in Dylan. Glenn S. Burke studied the L*LOOPS algorithm
when we first considered switching linearizations.
Andrew L. M. Shalit participated in the discussions about
changing the linearization. Judy Anderson, John
Aspinall, Nicolas Graube, Kevin Males, Scott McKay,
and Martin Simmons, all of Harlequin, provided us with
the class heterarchies and related information for our
survey of linearizations.

Susan Karp commented on and proofread drafts of this
paper. James Nicholson assisted in the production of a
camera-ready version.

Apple Computer, Inc., and Harlequin, Inc. and Ltd., sup-
ported the authors during the design of the Dylan lan-
guage, when this work was undertaken.

Appendix A: Implementation of the Dylan Linearization

define constant compute-class-linearization =
 method (c :: <class>) => (cpl :: <list>)
 local method merge-lists (reversed-partial-result :: <list>,
 remaining-inputs :: <sequence>)

 if (every?(empty?, remaining-inputs))
 reverse!(reversed-partial-result)
 else

 // start of selection rule
 local method candidate (c :: <class>)
 // returns c if it can go in the result now, otherwise false

 local method head? (l :: <list>)
 c == head(l)
 end method head?,

 method tail? (l :: <list>)
 member?(c, tail(l))
 end method tail?;
 any?(head?, remaining-inputs)
 & ~any?(tail?, remaining-inputs)
 & c
 end method candidate,

 method candidate-direct-superclass (c :: <class>)
 any?(candidate, direct-superclasses(c))
 end method candidate-direct-superclass;

 let next = any?(candidate-direct-superclass,
 reversed-partial-result);
 // end of selection rule

 if (next)
 local method remove-next (l :: <list>)
 if (head(l) == next) tail(l) else l end
 end method remove-next;
 merge-lists(pair(next, reversed-partial-result),
 map(remove-next, remaining-inputs))
 else
 error("Inconsistent precedence graph");
 end if
 end if
 end method merge-lists;

 let c-direct-superclasses = direct-superclasses(c);
 local method cpl-list (c)
 as(<list>, all-superclasses(c))
 end method cpl-list;
 merge-lists(list(c),
 concatenate(map(cpl-list, c-direct-superclasses),
 list(as(<list>, c-direct-superclasses))));

 end method; // compute-class-linearization

A few aspects of this program may need to be explained. The selection rule from above is enforced because, when
choosing the next class, any? searches the reversed partially computed CPL in order and returns the first true value
it encounters.

The function all-superclasses is defined to return the linearization for a class. It is called for each of the direct
superclasses, and it in turn calls compute-class-linearization recursively, potentially storing the results to avoid
recomputing the linearizations. There is no possibility of infinite recursion because circularities are prohibited in the
inheritance graph; the recursive calls bottom out at <object> , the only class in Dylan which has no superclasses.

The function direct-superclasses returns the direct superclasses of its argument, in local precedence order.

For other details on Dylan, see the Dylan Reference Manual. [Shalit 96]

Appendix B: Implementation of the C3 Linearization

The C3 linearization can be obtained by replacing the implementation of the selection rule from Dylan program
above (that is, the definitions of the local methods candidate and candidate-direct-superclass and the
binding of the local variable next) with the following:

local method candidate (c :: <class>)
 // returns c if it can go in the result now,
 // otherwise false

 local method tail? (l :: <list>)
 member?(c, tail(l))
 end method tail?;

 ~any?(tail?, remaining-inputs)
 & c
 end method candidate,

 method candidate-at-head (l :: <list>)
 ~empty?(l) & candidate(head(l))
 end candidate-at-head;

let next = any?(candidate-at-head, remaining-inputs);

Again, the property that any? returns the first matching result enforces the selection rule, because lists of remaining
input sequences are maintained according to the local precedence order of the classes from which they are obtained.

For this to be a correct implementation of C3, the call to all-superclasses in the local function cpl-list must
return the C3 linearization rather than the built-in Dylan linearization.

References
[Apple 92] Apple Computer, Inc. Dylan: an object-oriented dynamic language. 1992.

[Apple 94] Apple Computer, Inc. Dylan Interim Reference Manual. 1994.

[Baker 91] Henry G. Baker. CLOStrophobia: Its Etiology and Treatment. ACM OOPS Messenger 2(4), October
1991.

[DHHM 92] R. Ducournau, M. Habib, M. Huchard, and M.L. Mugnier. Monotonic Conflict Resolution Mechanisms for
Inheritance. OOPSLA ’92 Proceedings, October 1992.

[DHHM 94] R. Ducournau, M. Habib, M. Huchard, and M.L. Mugnier. Proposal for a Monotonic Multiple Inheritance
Linearization. OOPSLA ’94 Proceedings, October 1994.

[ES 90] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual. Addison-Wesley, 1990.

[KdRB 91] Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow. The Art of the Metaobject Protocol. MIT Press,
1991.

[MY 94] Scott McKay, William York, et. al. Common Lisp Interface Manager (CLIM II) Specification. 1994.

[Meyer 88] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall, 1988.

[Moon 86] David A. Moon. Object-oriented Programming with Flavors. OOPSLA ’86 Proceedings, November 1986.

[SB 86] Mark Stefik and Daniel G. Bobrow. Object-Oriented Programming: Themes and Variations. AI Magazine
6(4), 1986.

[Shalit 96] Andrew L.M. Shalit, Dylan Reference Manual. Addison-Wesley, 1996. Available as
http://www.cambridge.apple.com/dylan/drm/drm-1.html on the World Wide Web.

[Steele 90] Guy L. Steele, Jr. Common Lisp: the Language (2nd edition). Digital Press, 1990.

